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Abstract— While various time synchronization protocols for
clocks in wired and/or wireless networks are under develop-
ment, recently it has been shown by Freris, Graham and Kumar
that clocks in distributed networks cannot be synchronized pre-
cisely even in idealized situations. In this paper by determining
the clock synchronization errors in the similar settings of the
impossibility result just mentioned, we are able to show that
the clocks can get synchronized within an acceptable level of
accuracy. After studying the basic case of synchronizing two
clocks with asymmetric time delays in the two-way message
passing process, we first analyze the directed ring networks,
in which neighboring clocks are likely to experience severe
asymmetric time delays. We then discuss connected undirected
networks with two-way message passing between each pair
of adjacent nodes. In the end, we expand the discussions to
networks with directed topologies that are strongly connected.

I. INTRODUCTION

As physical devices, such as computational units, sensors
and actuators, are more and more frequently working to-
gether over distances, people are more and more concerned
with the problem of how to synchronize the clocks that are
installed at those physical devices and connected through
wired and/or wireless data networks [6]. Clock synchroniza-
tion has been discussed intensively in the area of theoretical
computer science especially in the 1980’s [8], [15], and
various impossibility results and bounds for synchronization
errors have been reported [11], [10]. More recently, with the
growing interest in the application of large-scale networks, in
particular ad hoc and sensor networks, clock synchronization
problems have attracted considerable attention [12], [1], [14],
[13].

Very recently, Freris, Graham and Kumar have shown that
in an idealized setting the clocks cannot be synchronized
precisely in distributed networks when asymmetric time
delays are present [7]. This result is obtained by using tools
from linear system theory and is consistent with the results
obtained previously in theoretical computer science. On the
other hand, in engineering practice when clocks are adjusted
repeatedly to compensate the differences between their time
displays, their displays can indeed get synchronized within
an acceptable level of accuracy in a distributed fashion. In
[16], the Time-Diffusion synchronization Protocol (TDP) has
been proposed to enable sensor networks to synchronize
their clocks with bounded errors. In [9], both synchronous
and asynchronous versions of a rate-based diffusion protocol
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have been discussed, in which clocks adjust their displays
repeatedly by taking the weighted average of the displays of
themselves and their adjacent clocks.

In this paper, we determine the clock synchronization
errors in the similar settings to that in [7] under which
the impossibility result for clock synchronization has been
achieved. By updating all clocks repeatedly, we are able to
derive explicit expressions of the synchronization errors in
steady states, which are within an acceptable range even
when the time delays are asymmetric. We first look into
directed ring networks, in which neighboring clocks may
experience severe asymmetric time delays in the two directed
paths that connect them. We then investigate connected undi-
rected networks, in which each pair of adjacent nodes can
exchange messages with each other. In the end we discuss
clock synchronization in networks with strongly connected
directed topologies.

The rest of the paper is organized as follows. In Section
II, we review the basic setting in [7] for synchronizing
two clocks with asymmetric time delays and then analyze
the linear system model to determine the asymptotic clock
synchronization errors through state augmentation. We an-
alyze the synchronization errors in directed ring networks,
in connected undirected networks and finally in strongly
connected directed networks in Sections III, IV, and V,
respectively. Concluding remarks are given in Section VI.

II. SYNCHRONIZING TWO CLOCKS

As in [7], we consider affine models for clocks. Let i > 0
be the label of a clock in a network, and denote its display
by xi. Then the evolution of xi can be described by

xi(t) = ait + bi, (1)

where t is the time of a standard reference clock, ai > 0
is called the skew that is the ratio of the speed of clock
i with respect to the reference clock, and bi is called the
offset that is the difference between the display of clock
i and the reference clock at time t = 0. In practice, the
values of clocks’ skews are very close to one. As shown
in [7], when the skews of the clocks are fixed, e.g. not
affected by the changes in the environmental temperature,
and the communications within the network are noiseless
and fault-free, clocks can always estimate precisely their
skews through message passing. Hence, clocks can always
compensate the differences in their skews or even adjust their
skews to a common value [4]. Consequently, to simplify the
analysis in this paper, in what follows, we assume that ai = 1
for all i.
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We consider the case when clocks are installed at nodes in
a distributed network. We use the label of the clock to denote
the node where the clock is installed. It is assumed in [7]
that when a message is sent from node i to another node j,
the latter can only receive it after a fixed but unknown time
delay dij > 0. In addition, the time delays are not necessarily
symmetric, and in fact for a pair of distinct nodes i and j,
dij is in general not equal to dji.

For analysis purposes, we can always describe the message
passing process with respect to the standard reference clock,
although such a clock is not known to any of the two clocks.
In the sequel, we use the sequence {tk}, k ≥ 0, to denote
the set of time instances embedded in the reference time
axis t at which a clock sends or receives messages. Then the
message exchange process for two clocks 1 and 2 trying to
get synchronized is illustrated in Figure 1. At time t0, node
1 sends a message of its current value of x1(t0) to node 2.
We say node 1 has sent a message time stamped by its clock
just before the transmission. Node 2 records the time x2(t1)
when it receives the message x1(t0) and after a constant
time w1, it sends the message x2(t1) at the time t2 back to
node 1 with the time-stamp x2(t2). Correspondingly, node 1
receives this message at time t3 and records the time x1(t3).
It then sends a message after a constant time w2. In this
manner the messages are sent back and forth. Hence, from
the information contained in the exchanged time-stamped
messages, the round-trip time delay d12+d21 can be obtained
accurately by

d12 + d21 = x1(t3)− x2(t2) + x2(t1)− x1(t0).

However, the individual time delays d12 and d21 can never be
determined precisely and this is part of the synchronization
impossibility result for a pair of clocks shown in [7], which
as argued in the same paper leads to synchronization errors
that cannot be eliminated.

Node 1

Node 2

t0 t1 t2 t3 t4 t5 t6 t7

d12 d12d21 d21w1 w1w2

x t1( )

x t2 ( )

Fig. 1. Message exchanges between two clocks.

Now we try to synchronize the two clocks by repeatedly
updating their displays. We use D to denote the round-trip
time delay d12 + d21. When the two clocks update their
displays, they use the average delay D̄ = D

2 as the nominal
delay to compensate the time-stamped messages they receive
about the most recent values of the other clock’s display.
For example, when clock 1 receives a message of x2(tk)
from clock 2, it takes x2(tk) + D̄ as the estimated current
value of the display of clock 2. The same estimation strategy
is adopted by both of the two clocks. To get synchronized,
after a clock receives a new message from the other, it always
updates its display to the average of its current display and
the latest estimation of the other clock’s current display.

We assume the updates take place instantaneously and the
message exchanges are carried out repeatedly.

The embedding technique to write down a distributed
system’s dynamics with respect to a common reference
time axis for analysis purposes has been used before when
studying distributed and parallel computations and asyn-
chronous systems [2], [3]. Following this approach, we use
the sequence {tk}, k ≥ 0, embedded in the reference time
axis t, to write the system equations. Since the clocks have
the same skew and both of them update periodically, we
know that for any time τ > 0, there always exists k ≥ 0 such
that tk ≤ τ < tk+1 and x1(τ)−x2(τ) = x1(tk)−x2(tk). For
the sake of conciseness, in the sequel we use the notation
xi(k) instead of xi(tk). Then the system equations of the
updating process of the two clocks after embedding can be
written as
{

x1(4k + 1) = x1(4k) + d12

x2(4k + 1) = 1
2 ((x1(4k) + D̄) + (x2(4k) + d12)){

x1(4k + 2) = x1(4k + 1) + l1d12

x2(4k + 2) = x2(4k + 1) + l1d12{
x1(4k + 3) = 1

2 ((x2(4k + 2) + D̄) + (x1(4k + 2) + d21))
x2(4k + 3) = x2(4k + 2) + d21{
x1(4(k + 1)) = x1(4k + 3) + l2d12

x2(4(k + 1)) = x2(4k + 3) + l2d12,

(2)

where k ≥ 0 and li = wi

d12
, i = 1, 2.

The main result in this section is to show that during the
above updating process (2), the synchronization error con-
verges to a constant determined by the differences between
the delays d12 and d21.

Theorem 1: As t goes to infinity, the difference x1(t) −
x2(t) between the two clocks converges to 1

2 (d12 − d21).

Proof : Let e(k) ∆= x1(k)− x2(k) for k ≥ 0. Then from (2),
one has

e(4k + 1) =
1
2
e(4k) +

1
4
(d12 − d21)

e(4k + 2) = e(4k + 1)

e(4k + 3) =
1
2
e(4k + 2) +

1
4
(d12 − d21)

e(4(k + 1)) = e(4k + 3). (3)

Substituting the first three equations of (3) into the last
equation of (3), we obtain

e(4(k + 1)) = (
1
2
)2e(4k) +

3
8
(d12 − d21)

= (
1
2
)2(k+1)e(0) +

3
8
(d12 − d21)

k+1∑

i=0

1
4i

.

Since the geometric series
∑∞

i=0
1
4i converges, we know

lim
k→∞

e(4(k + 1)) =
3(d12 − d21)

8

∞∑

i=0

1
4i

=
d12 − d21

2
. (4)
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Combining equation (4) with (3), one can check that

lim
k→∞

e(4k + i) =
1
2
(d12 − d21), 1 ≤ i ≤ 4. (5)

From (5), we know that for any ε > 0, there exists a positive
integer N , such that for any n > N , |e(4n + i) − 1

2 (d12 −
d21)| < ε, 1 ≤ i ≤ 4. Hence, for any k > 4(N+1), it always
holds that |e(k)− 1

2 (d12 − d21)| < ε, which is equivalent to

lim
k→∞

e(k) =
1
2
(d12 − d21). (6)

This completes the proof. ¤
Note that when applying the Network Time Protocol

(NTP) [12], it is assumed that most of the time delays are
symmetric between a pair of distinct nodes in a network,
namely dij = dji for i 6= j. In fact, in view of Theorem 1,
when d12 = d21, the two clocks can indeed get synchronized
precisely.

Corollary 1: When d12 = d21, the synchronization error
x1(t) − x2(t) between the two clocks goes to zero asymp-
totically.

In the next three sections, we will study how the main idea
of compensation with nominal delays can be applied to larger
networks by utilizing the message passing mechanism just
described. It has proven convenient to use graphs to describe
topologies of general networks. A graph G with the node set
N = {1, . . . , n} and the edge set E ⊂ {(i, j) : i, j ∈ N} can
be used to describe the topology of a network consisting of n
nodes. In G, there is a directed edge from node i to j if i can
send messages to j; correspondingly, there is an undirected
edge between i and j if both i and j can send messages
to each other. A directed path in a directed graph G is a
sequence of distinct nodes i1, . . . , ik such that (is, is+1) ∈ E
for s = 1, . . . , k − 1. G is said to be strongly connected if
there is a directed path from every node to every other node.
For an undirected graph, strongly connectedness is equivalent
to connectedness.

Since among the networks with the same number of nodes,
the network with a directed ring topology can lead to the
greatest difference in the delays of dij and dji for a given
pair of adjacent nodes i and j, we first study synchronizing
clocks in networks with directed ring topologies.

III. SYNCHRONIZING CLOCKS IN DIRECTED RING
NETWORKS

A. Synchronizing three clocks in a directed ring network

We fist consider a ring network of three nodes 1, 2 and 3
and three directed edges (1, 2), (2, 3) and (3, 1). Similar to
the message passing process for the 2-clock case discussed
in the previous section, we illustrate the message passing
process among the three clocks in Fig. 2, where d12, d23,
d31 and wi, i = 1, 2, 3, are the time delays and idling times,
respectively.

Although the delays d12, d23 and d31 cannot be deter-
mined from the time-stamped messages, the round-trip delay
D = d12 + d23 + d31 can be determined precisely by

D = x1(5)− x3(4) + x3(3)− x2(2) + x2(1)− x1(0).

Node 1

Node 2

Node 3

t0 t1 t2 t3 t4 t5 t6 t7

d12 d31d23 d12w1 w3w2

t8 t9

w1 d23

x t1( )

x t2 ( )

x t3( )

Fig. 2. Message passing among three clocks with directed links.

We take D̄ = D
3 as the nominal delay for the three clocks

when they update their displays. To be more specific, we take
time t1, when node 2 receives a message from node 1, as
an example. At t1 clock 2 updates its display to the average
of its current display and the current estimate of clock 1’s
display x1(0)+D̄. And w1 time units later, clock 2 sends the
message x2(2) to clock 3, which in turn updates its display
following the same averaging rule. This procedure repeats
periodically. As one can see from Fig. 2, every link is used
exactly once in each period from t6k to t6(k+1) for k ≥ 0.

Now we write down the system equations. Define

x(k) = [x1(k), x2(k), x3(k)]T , v = [d12, d23, d31]T .

Then for k ≥ 0,




x1(6k + 1)
x2(6k + 1)
x3(6k + 1)


 =




x1(6k) + d12

1
2

(
(x1(6k) + D̄) + (x2(6k) + d12)

)

x3(6k) + d12




=




1 0 0
1
2

1
2 0

0 0 1







x1(6k)
x2(6k)
x3(6k)


 +




1 0 0
2
3

1
6

1
6

1 0 0







d12

d23

d31


 .

Through a similar procedure, one can obtain

x(6k + i) = Aix(6k + i− 1) + Biv, 1 ≤ i ≤ 6, (7)

where

A1 =




1 0 0
1
2

1
2 0

0 0 1


 , A3 =




1 0 0
0 1 0
0 1

2
1
2


 , A5 =




1
2 0 1

2
0 1 0
0 0 1


 ,

B1 =




1 0 0
2
3

1
6

1
6

1 0 0


 , B3 =




0 1 0
0 1 0
1
6

2
3

1
6


 , B5 =




1
6

1
6

2
3

0 0 1
0 0 1


 ,

A2 = A4 = A6 = I3, B2j = lj
[
13 O3×2

]
, j = 1, 2, 3.

Here, I3 is the 3-dimensional identity matrix, 13 is the 3-
dimensional all-one column vector, O3×2 is the 3 × 2 zero
matrix, and lj = wj

d12
. We can further obtain the following

system equation in an iterative form

x(6(k + 1)) = A6A5 · · ·A1x(6k) +
6∑

i=1

A6 · · ·Ai+1Biv.

Define A
∆= A6A5 · · ·A1 = A5A3A1 and B

∆=∑6
i=1 A6 · · ·Ai+1Bi, then we have

x(6(k + 1)) = Ak+1x(0) +
k∑

i=0

AiBv, k ≥ 0. (8)
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We first show the following convergence result.
Proposition 1: As k goes to infinity, xi(6(k + 1)) −

xj(6(k + 1)) converge to some constants for i, j =
1, 2, 3, i 6= j.

The proof of Proposition 1 will be present in the full-
length version of the paper.

If we take t2 or t4 in Fig. 2 as the starting time of the
system evolution, one can get that xi(6k + 2)− xj(6k + 2)
and xi(6k+4)−xj(6k+4) both converge to some constants
for 1 ≤ i, j ≤ 3, i 6= j, as k →∞. Since

xi(6k + r)−xj(6k + r) = xi(6k + r− 1)−xj(6k + r− 1),

hold for r = 2, 4, 6, one can get the following conclusion.
Proposition 2: As k goes to infinity, xi(6k+r)−xj(6k+

r) converge to some constants for all r = 1, . . . , 6, and i, j =
1, 2, 3, i 6= j.

From Proposition 2, we know that we can define

eij(6k + r) ∆= xi(6k + r)− xj(6k + r),

e(6k + r) ∆= [e12(6k + r), e23(6k + r)]T ,

and the constants

er
ij

∆= lim
k→∞

eij(6k + r),

where i, j = 1, 2, 3, i 6= j, and r = 1, . . . , 6. From the
system equations (7), one can get a set of equations

e(6k + i) = Ãie(6k + i− 1) + B̃iv, 1 ≤ i ≤ 6, (9)

where

Ã1 =
[

1
2 0
1
2 1

]
, Ã3 =

[
1 0
0 1

2

]
, Ã5 =

[
1
2 − 1

2
0 1

]
,

B̃1 =
[

1
3 − 1

6 − 1
6

− 1
3

1
6

1
6

]
, B̃3 =

[
0 0 0
− 1

6
1
3 − 1

6

]
,

B̃5 =
[

1
6

1
6 − 1

3
0 0 0

]
,

Ã2 = Ã4 = Ã6 = I2, B̃2 = B̃4 = B̃6 = O2×3.

By iteration, one has

e(6(k + 1)) = Ã6Ã5 · · · Ã1e(6k) +
6∑

i=1

Ã6 · · · Ãi+1B̃iv

= Ãk+1e(0) +
k∑

i=0

ÃiB̃v, k ≥ 0,

where Ã
∆= Ã6Ã5 · · · Ã1 = Ã5Ã3Ã1 and B̃ =∑6

i=1 Ã6 · · · Ãi+1B̃i. Taking k to infinity, one has

lim
k→∞

e(6(k+1)) = lim
k→∞

Ãk+1e(0)+ lim
k→∞

k∑

i=0

ÃiB̃v, k ≥ 0.

Since the limit limk→∞ e(6(k + 1)) exists for any initial
condition and any time delays from Proposition 2, it must
be true that both limk→∞ Ãk+1 and limk→∞

∑k
i=0 Ãi con-

verge, from which we conclude that ρ(Ã) < 1, namely, the
spectral radius of Ã is strictly less than 1.

In view of the fact that er+1
i,i+1 = er

i,i+1, i = 1, 2, r =
1, 3, 5, we define

er ∆= [er
12, e

r
23]

T , e
∆= [(e1)T , (e3)T , (e5)T ]T .

Then we get the equation of the asymptotic synchronization
errors between clocks by taking k on both sides of (9) to
infinity:

e = Āe + B̄v,

where

Ā =




O O Ã1

Ã3 O O

O Ã5 O


 , B̄ =




B̃1

B̃3

B̃5


 ,

with O being the zero matrix of compatible dimension. If
the matrix I − Ā is invertible, where I is the identity matrix
of compatible dimension, the error e can be calculated as
e = (I − Ā)−1B̄v.

Lemma 1: The matrix I − Ā is invertible.
The proof of Lemma 1 makes use of the fact that ρ(Ã) < 1

and will be present in the full-length version of the paper.
Thus, by calculating e = (I − Ā)−1B̄v, one has

er
12 = d12 − D̄, er

23 = d23 − D̄, r = 1, . . . , 6.

Hence, we have proved the following.
Theorem 2: As time goes to infinity, the synchronization

errors between clocks in the three-clock ring network con-
verge and

lim
t→∞

(xi(t)− x[i](t)) = di,[i] − D̄, i = 1, 2, 3,

where [i] = i + 1 if i = 1, 2 and [i] = 1 if i = 3.
The following result is a direct consequence of Theorem

2.
Corollary 2: For the three clocks in the ring network, if

the delays are all equal, namely d12 = d23 = d31, the clocks
can get synchronized asymptotically.

In the next subsection, we extend the results that we have
obtained for the three-clock ring network to general ring
networks with n ≥ 3 nodes.

B. Synchronizing more clocks in a directed ring network

Now we consider a directed ring network of n ≥ 3
nodes. The message passing procedure in the network with
unidirectional communications is illustrated in Fig. 3, where
di,[i] and wi, i = 1, . . . , n, are time delays and idling
times respectively. Here, [i] is defined to be i + 1 when
i = 1, . . . , n− 1 and 1 when i = n.

Node 1

Node 2

Node 3

Node n

t0 t1 t3 t n2 2-

…
.

…
.

….t2

d12 d23w1 dn1 wn

t n2 1- t n2 1+t n2

d12

x t1( )

x t2 ( )

x t3( )

x tn ( )

…
.

Fig. 3. Message passing among n ≥ 3 clocks with directed links.
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Although the time delays di,[i], i = 1, . . . , n, between
clocks cannot be determined precisely no matter how many
time-stamped messages are exchanged, the round-trip delay
D =

∑n
i=1 di,[i] can be calculated after sufficiently many

messages are delivered

D =
n−1∑

i=0

(
x[i+1](2i + 1)− xi+1(2i)

)
.

Similar to the three-clock case in Subsection III-A, we use
D̄ = D

n as the nominal delay for all the clocks which they
use when updating their displays. Using similar arguments to
that in Subsection III-A, one can prove the following result.

Theorem 3: As time goes to infinity, the synchronization
errors between clocks in the n-clock ring network, n ≥ 3,
converge and

lim
t→∞

(xi(t)− x[i](t)) = di,[i] − D̄, i = 1, . . . , n.

In the next section, we discuss how to synchronize clocks
in connected undirected networks.

IV. SYNCHRONIZING CLOCKS IN CONNECTED
UNDIRECTED NETWORKS

A. Synchronizing three clocks in a connected undirected
network

We fist consider a network of three nodes with undirected
edges (1, 2), (2, 3) and (1, 3). Similar to the message passing
process for the 2-clock case discussed before, we illustrate
the message passing process among the three clocks in Fig.
4.

Node 1

Node 2

Node 3

t0 t1 t2 t3 t4
t5 t6 t7

d12 d3121dw1 w3
w2

t8 t9

4wd23

x t1( )

x t2 ( )

x t3( )

10t 13t
11t 12t

13d32d 5w 6w

Fig. 4. Message passing among three clocks with undirected links.

Although the delays dij , 1 ≤ i, j ≤ 3, cannot be
determined from the time-stamped messages, the round-
trip delay between each pair of connected clocks can be
calculated precisely. For example, the round-trip delay D12

between clocks 1 and 2 is

D12 = d12 + d21 = x1(3)− x2(2) + x2(1)− x1(0).

We take D̄ij = Dij

2 for a pair of adjacent clocks i and j
when they update their displays, where Dij = dij + dji

is the round-trip delay between clocks i and j. As before
the clocks update following the same average rule and this
procedure repeats periodically. It can be seen from Fig. 4
that, in each update period from t12k to t12(k+1) for k ≥ 0,
a pair of adjacent nodes exchange messages exactly once.

Define x(k) ∆= [x1(k), x2(k), x3(k)]T and v =
[d12, d21, d23, d32, d13, d31]T . Then we obtain the system
equations

x(12k + i) = Aix(12k + i− 1) + Biv, (10)

where Ai and Bi can be derived similarly as in Subsection
III-A, 1 ≤ i ≤ 12 and k ≥ 0. By iteration, we have

x(12(k + 1)) = Ak+1x(0) +
k∑

i=0

AiBv, k ≥ 0,

where A = A12A11 · · ·A1 and B =
∑12

i=1 A12 · · ·Ai+1Bi.
Following similar arguments to that in Subsection III-A, one
can prove the following result.

Proposition 3: As k goes to infinity, xi(12k + r) −
xj(12k+r) converge to some constants for all r = 1, . . . , 12,
and i, j = 1, 2, 3, i 6= j.

Define er
ij

∆= limk→∞(xi(12k + r)−xj(12k + r)), where

i, j = 1, 2, 3, i 6= j, and r = 1, . . . , 12, er ∆= [er
12, e

r
23]

T and
e

∆= [(e1)T , (e3)T , . . . , (e11)T ]T . We can get the equation
for the synchronization errors between clocks

e = Āe + B̄v, (11)

where

Ā =




O O · · · O Ã1

Ã3 O · · · O O
...

. . . . . .
...

...

O O
. . . O O

O O · · · Ã11 O




, B̄ =




B̃1

B̃3

...
B̃9

B̃11




,

and Ãi and B̃i can be derived similarly as in Subsection
III-A. Since (I − Ā) is invertible, which can be proved
using similar arguments as in Lemma 1, the error e can be
calculated by e = (I − Ā)−1B̄v. Thus we have proved the
following result.

Theorem 4: As time goes to infinity, the synchronization
errors between each pair of distinct clocks in the three-
clock connected undirected network will approach permanent
oscillations among at most 6 values, which are determined
by

e = (I − Ā)−1B̄v.
Although the synchronization errors between a pair of

distinct clocks in general will oscillate, in some cases, the
errors will converge.

Corollary 3: If d12 + d23 + d31 = d13 + d32 + d21, then
as time goes to infinity, the synchronization errors between
clocks in the three-clock undirected network converge and

lim
t→∞

(xi(t)− xj(t)) = dij − D̄ij , i 6= j.

Specifically, if the time delays are symmetric, namely dij =
dji i 6= j, then the three clocks can get synchronized
asymptotically.

In the next subsection, we extend the results that we have
obtained for the three-clock connected network to general
connected networks with bidirectional links.

B. Synchronizing more clocks in a connected undirected
network

We consider a connected network consisting of n nodes
and m undirected edges. For the ease of describing the
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message passing process, we assume that the edges have been
labeled and in each update period, a pair of connected nodes
exchange messages exactly once. The indices of the edges
determine the ordering of the pair of nodes that are activated
to exchange messages. For the two nodes associated with
an edge, the one with the smaller index starts the message
exchange process. For the sth edge of the graph, let s1 < s2

denote the indices of the associated two nodes. Then s1

always sends a message to s2 first, and then s2 replies.
Taking the three clocks in Subsection IV-A as an example,
we label the edges (1, 2), (2, 3) and (1, 3) by 1©, 2© and 3©,
respectively. For the 2nd edge (2, 3), node 2©1 = 2 always
sends a message to node 2©2 = 3 first, and after waiting for
some idling time, node 3 sends back a message to node 2.
Thus the message passing process can be illustrated more in
detail in Fig. 4.

Using similar arguments to that in Subsection IV-A, one
can obtain the following result.

Theorem 5: As time goes to infinity, the synchronization
errors between each pair of distinct clocks in the n-clock
connected undirected network will approach permanent os-
cillations among at most 2m values.

Networks with tree topologies are preferred when applying
network clock synchronization protocols [5], the following
corollary suggests the reason behind it.

Corollary 4: If the communication graph G is an undi-
rected tree, the synchronization errors between clocks in the
network converge and

lim
t→∞

(xi(t)− xj(t)) = dij − D̄ij , i 6= j,

where (i, j) ∈ E and D̄ij = 1
2 (dij + dji).

In the next section, we discuss how to synchronize clocks
in networks with strongly connected directed topologies.

V. EXTENSION TO STRONGLY CONNECTED NETWORKS

In order to synchronize n clocks in a network with strongly
connected topology, we may use only some of the edges in
the network. To better explain this idea, we need to introduce
some more notions.

For a graph G = (N , E), a subgraph G′ = (N ′, E ′)
of G is a graph such that N ′ ⊆ N and E ′ ⊆ E . Since
G is strongly connected, we can find subgraphs Gi =
(Ni, Ei), i = 1, . . . , p, of G such that ∪p

i=1Ni = N and
each Gi is a directed ring graph. Those edges in ∪p

i=1Ei are
to be utilized in the message passing process. We divide
each update period of the overall network into p stages.
Each stage corresponds to a directed ring subgraph Gi,
in which the message passing process is the same as that
in Subsection III-B. Note that Gi might share common
edges and the nodes associated with these edges will carry
out message passing more than once in each period. We
take the message passing process in Subsection IV-A as an
example since connected undirected graphs can always be
viewed as strongly connected directed graphs. The graph
corresponds to Fig. 4 is G = (N , E) with N = {1, 2, 3} and
E = {(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)}. Define Gi =
(Ni, Ei), i = 1, 2, 3, with N1 = {1, 2}, E1 = {(1, 2), (2, 1)},

N2 = {2, 3}, E2 = {(2, 3), (3, 2)}, and N3 = {1, 3},
E3 = {(1, 3), (3, 1)}. It is easy to check that ∪3

i=1Ni = N
and Gi are directed ring graphs for i = 1, 2, 3. Thus each
update period can be divided into 3 stages, and each stage
corresponds to a subgraph Gi. The message passing process
in each stage is the same as that in Subsection III-B. Let |E|
be the cardinality of the set E . One can obtain the following
result which is similar to that in the previous section.

Theorem 6: As time goes to infinity, the synchronization
errors between each pair of distinct clocks in the n-clock
strongly connected network will approach permanent oscil-
lations among at most

∑p
i=1 |Ei| values.

VI. CONCLUDING REMARKS

We have presented explicit expressions for the asymptotic
synchronization errors between two interconnected clocks,
and expanded the results to larger networks with directed
ring topologies, connected undirected topologies, and general
strongly connected directed topologies respectively. The ob-
tained synchronization errors complements the impossibility
results for clock synchronization in the literature. Our future
research will focus on the determination of clock synchro-
nization errors when the time delays are random, which is
closer to reality in distributed data networks.
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