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Abstract— A sliding mode observer in the presence of sam-
pled output information and its application to fault reconstruc-
tion is studied. The observer is designed by using the delayed
continuous-time representation of the sampled-data system,
for which a set of Linear Matrix Inequalities (LMIs) provide
conditions for the ultimate boundedness. It is shown that an
ideal sliding motion cannot be achieved in the observer when
outputs are sampled. However, ultimately bounded solutions
can be obtained provided the sampling frequency is fast enough.
The bound on the solution is proportional to the sampling time
and the magnitude of the switching gain. The proposed observer
design is applied to the problem of fault reconstruction under
sampled output. It is shown that, for a sufficiently small value
of µ , a perturbation parameter, a transducer or sensor fault can
be reconstructed reliably from the output error dynamics. An
example of observer design for an inverted pendulum system
is used to demonstrate the merit of the proposed methodology
compared to existing sliding mode observer design approaches.

I. INTRODUCTION
A sliding mode observer is a category of robust observer

which facilitates the complete rejection of a class of uncer-
tainty between the system and observer [21]. In most cases,
the sliding surface is set to be the difference between the
observer output and system output, which is therefore forced
to zero [3], [22]. A discontinuous injection term is designed
and applied to drive the observer so that the error between the
output of the observer and the output of the plant will move
onto this surface within the error space and then remain there.
In the physical world, delays exist in many areas, for example
those caused by transmission delay and computational delay.
If performance levels are to be optimised in the presence of
such delays it is necessary to consider the development of
methodologies which incorporate knowledge of the delay in
the design framework. There have been many contributions
that investigate the effect of state delay on observer design
[1], [2]. However very few contributions have considered
the effect of delays in the output measurement on observer
performance. In terms of work that considers the effect of
time-delay in sliding mode observers, the literature is very
sparse [15] and is strongly aligned to observer based control
rather than fault detection and estimation with an emphasis
on state delay rather than measurement delay [19], [20].
Since the switching term in a sliding mode observer depends
on the output measurement, which may be subject to delay
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in practice, the resulting discontinuous injection applied to
the observer has the potential to cause chattering of large
amplitude and may limit the magnitude of the discontinuous
signal that it is possible to apply to the observer.

There has been a great deal of interest in the application
of sliding mode observers to the problem of model based
fault detection and isolation [5], [6], [23]. The merit of the
approach lies in the application of the so-called equivalent
output injection to explicitly reconstruct fault signals. The
results obtained to date mostly require that an ideal sliding
motion is attained in finite time before the appearance of
faults, and that no delay is present on the output measurement
used to drive the observer. It is clear that in the presence of
a sampled output, the ideal sliding mode cannot be achieved.
Indeed the error dynamics in the observer can become
unstable as the sampling frequency is reduced. Motivated
by recent results in the area of relay delay control in [7],
[13], this paper will consider the effects of sampled output
measurements when designing sliding mode observers for
fault reconstruction.

It has been shown in [9], [18] that a sampled output can
be represented with fast varying delay where the derivative
of the delay is equal to 1. From this representation, the
main contribution in this paper is a general framework for
sliding mode observer design and fault reconstruction under
multiple sampled output. The error dynamics is forced to
exhibit a bound proportional to the sampling period of the
output and the magnitude of the discontinuous switching
gain employed in the observer. The observer, which is
designed using a singular perturbation approach, possesses a
sufficiently small perturbation parameter µ such that faults
are reliably constructed despite the presence of the sampled
output. In section II, the problem of sliding mode observer
design with sampled output is formulated in terms of a
system representation with known fast varying delay. Section
III develops a constructive observer design approach which
guarantees ultimate boundedness of the error dynamics. Sec-
tion IV highlights the advantages of the observer, using the
singular perturbation method to achieve fault reconstruction.
A linearized model of the inverted pendulum is used to
demonstrate the efficiency of the results. Some preliminary
results from this paper in the context of the input delay
problem were presented in [12].

Notation: Throughout the paper, the superscript “T ”
stands for matrix transposition, Rn denotes the n-dimensional
Euclidean space with vector norm ‖ · ‖, Rn×m is the set
of all n× m real matrices, and the notation P > 0, for
P ∈ Rn×n means that P is symmetric and positive definite.
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The symmetric elements of the symmetric matrix are denoted
by ∗. The symbol ‖ · ‖∞ stands for essential supremum.

II. PROBLEM STATEMENT

Consider the linear, time-invariant system with sampled
outputs

ẋ(t) = Ax(t)+Bu(t)+D fi(t)
y(t) = Cxd(tk), tk ≤ t < tk+1

(1)

where x ∈ Rn, u ∈ Rm are the state and the input vec-
tor respectively and y ∈ Rp represents discrete-time output
measurements generated by zero-order hold functions with
a sequence of hold times 0 = t0 < t1 · · · < tk < · · · , where
limk→∞ tk = ∞. fi ∈Rq represents an unknown actuator fault
which is assumed to be bounded by ‖ fi(t)‖ ≤ ∆. It is
assumed q ≤ p < n and A, B, C, D are constant matrices
of appropriate dimensions. Following the approach in [18],
[9], system (1) with sampled output can be presented as a
continuous-time system with a known output measurement
delay

ẋ(t) = Ax(t)+Bu(t)+D fi(t)
y(t) = Cx(t− τ(t)), t ∈ [tk, tk+1), τ(t) = t− tk

(2)

Assume that tk+1− tk ≤ h, ∀ k ≥ 0, i.e. the time between
any two sequential sampling times is not greater than some
pre-chosen h > 0, then τ(t) ∈ (0,h] with τ̇(t) = 1 for t 6= tk
is known. It is assumed that

1) rank (CD) = q;
2) any invariant zeros of (A,D,C) lie in the left half plane.

Under these assumptions and using the same linear change

of coordinates as in [4], where
[

x1
x2

]
= T0x, the system (2)

can be transformed into:

ẋ1(t) = A11x1(t)+A12x2(t)+B1u(t)
ẋ2(t) = A21x1(t)+A22x2(t)+B2u(t)+D1 fi(t)
y(t) = T x2(t− τ(t))

(3)

where x1 ∈ Rn−p, x2 ∈ Rp, D1 =
[

0
D̄1

]
, D̄1 ∈ Rq×q, A11

has stable eigenvalues and T is an orthogonal matrix. An
observer will be designed which, for sufficiently large t,
induces motion in the h∆-neighbourhood of the surface

E = {x2, x̂2 ∈Rp : se(t) = T
(
x2(t−τ(t))− x̂2(t−τ(t))

)
= 0}

(4)
where x̂2(t − τ(t)) is the corresponding component of the
estimated states from an observer to be designed. An ideal
sliding mode can be achieved with h = 0 under assumptions
1, 2.

III. OBSERVER DESIGN

Consider an observer of the form
˙̂x(t) = Ax̂(t)+Bu(t)−Gl ē2(t− τ(t))+Gnv(t− τ(t))
ŷ(t) = Cx̂d(tk), tk ≤ t < tk+1

(5)

where Gl ∈ Rn×p, Gn ∈ Rn×p and ē2(t) = T
(
x2(t)− x̂2(t)

)
.

The discontinuous injection term v is given by

v(t) =−(‖T D1‖+δ )∆[sign ē21(t), . . . ,sign ē2p(t)]
T (6)

where δ > 0 is a positive number. Assuming there exists an
L ∈ R(n−p)×p which has the form L =

[
L̄ 0

]
with L̄ ∈

R(n−p)×(p−q) such that the linear change of co-ordinates T0
to the observer (5) has the form

˙̂x1(t) = A11x̂1(t)+A12x̂2(t)+B1u(t)
−( 1

µ
L+A11L)(x2(t− τ(t))− x̂2(t− τ(t)))+LT T v(t− τ(t))

˙̂x2(t) = A21x̂1(t)+A22x̂2(t)+B2u(t)
−(A21L− 1

µ
Ip)(x2(t− τ(t))− x̂2(t− τ(t))−T T v(t− τ(t))

ŷ(t) = T x̂2(t− τ(t))
(7)

where

Gl = T−1
0

[
1
µ

L+A11L
A21L− 1

µ
Ip

]
, Gn = T−1

0

[
LT T

−T T

]
(8)

with µ > 0. Defining the state estimation error as e1(t) =
x1(t)− x̂1(t) and e2(t) = x2(t)− x̂2(t), it is obtained that

ė1(t) = A11e1(t)+A12e2(t)
+L
( 1

µ
e2(t− τ(t))−T T v(t− τ(t))

)
+A11Le2(t− τ(t))

ė2(t) = A21e1(t)+A22e2(t)+D1 fi(t)
+T T v(t− τ(t))− ( 1

µ
Ip−A21L)e2(t− τ(t))

(9)

A change of coordinates exists such that
[

ē1(t)
ē2(t)

]
=

TL

[
e1(t)
e2(t)

]
with TL =

[
In−q L

0 T

]
. Since LD1 = 0, one

obtains

˙̄e1(t) = (A11 +LA21)ē1(t)− (A11L+LA21L−A12
−LA22)T T ē2(t)+(A11 +LA21)ē2(t− τ(t)) (10)

˙̄e2(t) = TA21ē1(t)− (TA21LT T −TA22T T )ē2(t)
+TA21LT T ē2(t− τ(t))− 1

µ
ē2(t− τ(t))

+v(t− τ(t))+T D1 fi(t)
(11)

with initial condition

ē(t0) = ē0, ē(t) = 0, t < t0 (12)

The dynamics of the switching manifold is governed by
equation (10), where (A11,A21) is detectable from assump-
tions 1, 2.

Lemma 1: Given scalars α > 0, b > 0, if there exists an
(n− p)× (n− p) matrix P > 0 and a matrix Y ∈ R(n−p)×p

with last q columns zero, such that the LMI[
PA11 +AT

11P+YA21 +AT
21Y T +αP −P

∗ −bI

]
< 0 (13)

holds, then the solution of (10) with L = P−1Y and with the
initial condition (12) is bounded by

ēT
1 (t)Pē1(t) < e−α(t−t0)ēT

1 (t0)Pē1(t0)+ b
α

(
‖(A11L+LA21L

−A12−LA22)T T ‖2 +‖A11 +LA21‖2)‖ē2[t0 ,t] (t)‖
2
∞

(14)

The proof of the lemma follows analogously as in [10] by
finding solutions for

V̇ (t)+αV (t)−b
(
‖(A11L+LA21L−A12−LA22)T T ‖2

·‖ē2(t)‖2 +‖A11 +LA21‖2‖ē2(t− τ(t))‖2)< 0

where V (t) = ēT
1 (t)Pē1(t).
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A. Input-to-state stability of the error dynamics: a singular
perturbation approach

The closed-loop system (10), (11) can be expressed as

˙̄e1(t) = Ā11ē1(t)+ Ā12ē2(t)+ Ā11LT T ē2(t−µξ (t)) (15)

µ ˙̄e2(t) = µĀ21ē1(t)+ µĀ22ē2(t)+(µĀd22− Ip)
·ē2(t−µξ (t))+ µ f̄i(t)

(16)

where Ā11 = A11 + LA21, Ā12 = −(A11L + LA21L− A12 −
LA22)T T , Ā21 = TA21, Ā22 =−(TA21LT T −TA22T T ), Ād22 =
TA21LT T , µξ (t) = τ(t), µξ̄ = h, 0≤ ξ (t)≤ ξ̄ and f̄i(t) =
v(t − µξ (t)) + T D1 fi(t), i.e. ‖ f̄i(t)‖ ≤

(
(‖T D1‖+ δ )

√
p +

‖T D1‖
)
∆. Let Pµ ∈ Rn×n be a positive definite matrix with

the following structure [16]

Pµ =
[

P1 µPT
3

∗ µP2

]
> 0 (17)

where P1 ∈Rn−p, and choose the Lyapunov-Krasovskii func-
tional designed for sampled data system [11]:

V (t) = ē(t)T Pµ ē(t)+(h−µξ (t))
∫ t

t−µξ (t)
eᾱ(s−t) ˙̄e2(s)U ˙̄e2(s)ds (18)

with respect to the error dynamics (15), (16), where U ∈Rp

is a positive matrix, then following lemma can be stated:
Lemma 2: Given positive scalars µ , ξ̄ , ᾱ and b̄, let there

exist a n× n matrix Pµ > 0 in (17), p× p matrices U > 0,
P4, P5 and (n− p)× (n− p) matrices P6, P7 such that the
following LMIs

Θµ0 =


θ11 θ12 θ13
∗ θ22 θ23
∗ ∗ −PT

7
∗ ∗ ∗
∗ ∗ ∗

µĀT
21P5 + µPT

3 0
θ24 PT

4
0 0

−µPT
5 + µξ̄U PT

5
∗ −b̄I

< 0 (19)

Θµ1 =


θ11 θ12 θ13 µĀT

21P5 + µPT
3

∗ θ22 θ23 θ24
∗ ∗ −PT

7 0
∗ ∗ ∗ −µPT

5
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
−µξ̄ PT

6 Ā11LT T 0
−µξ̄ PT

4 (µĀd22− Ip) PT
4

−µξ̄ PT
7 Ā11LT T 0

−µξ̄ PT
5 (µĀd22− Ip) PT

5
−µξ̄ e−ᾱµξ̄U 0

∗ −b̄I

< 0

(20)

where
θ11 = PT

6 Ā11 + ĀT
11P6 + ᾱP1,

θ12 = µĀT
21P4 + ᾱµPT

3 +PT
6 (Ā12 + Ā11LT T )

θ13 =−PT
6 +P1 + ĀT

11P7
θ22 = µPT

4 Ā22 + µĀT
22P4 +PT

4 (µĀ22− Ip)
+(µĀT

22− Ip)P4 + µᾱP2,
θ23 = µP3 +(Ā12 + Ā11LT T )T P7
θ24 = µĀT

22P5 +(µĀT
22− Ip)P5 + µP2−µPT

4

(21)

are feasible, then solutions of (10)-(11) with initial condition
(12) satisfy the bound

ēT (t)Pµ ē(t) < e−ᾱ(t−t0)ēT (t0)Pµ ē(t0)+ µ2 b̄
ᾱ
‖ f̄i [t0 ,t]‖2

∞
(22)

for all µξ (t)∈ [0, h] with µξ̇ (t) = 1, thus (10)-(11) is input-
to-state stable.

Proof: The following inequality

W (t) = d
dt V (t)+ ᾱV (t)−µ2b̄ f̄i

T (t) f̄i(t) < 0 (23)

along the trajectories of (10), (11) for ‖ē0‖2 +‖ f̄i[t0,t]‖2
∞ > 0

guarantees (22) [10]. Differentiating V of the structure (17),
(18) along (15), (16), and analogously to [11], it follows

W (t)≤ 2
(
ēT

1 (t)P1 ˙̄e1(t)+ ēT
2 (t)µP3 ˙̄e1(t)+ µ ēT

1 (t)PT
3 ˙̄e2(t)

+µ ēT
2 (t)P2 ˙̄e2(t)

)
+ ᾱ

(
ēT

1 (t)P1ē1(t)+ ēT
2 (t)µP3ē1(t)

+µ ēT
1 (t)PT

3 ē2(t)+ µ ēT
2 (t)P2ē2(t)

)
− e−ᾱhvT

1 Uv1

+(h−µξ (t)) ˙̄eT
2 (t)U ˙̄e2(t)−µ2b̄ f̄i

T (t) f̄i(t)

(24)

where v1 = 1
µξ (t)

∫ t
t−µξ (t) ˙̄e2(s)ds. Apply the descriptor

method [8], the right-hand sides of the expressions
0 = 2[ēT

2 (t)PT
4 + ˙̄eT

2 (t)PT
5 ][µĀ21ē1(t)+ µĀ22ē2(t)+(µĀd22

−Ip)ē2(t)−µξ (t)(µĀd22− Ip)v1 + µ f̄i(t)−µ ˙̄e2(t)]
0 = 2[ēT

1 (t)PT
6 + ˙̄eT

1 (t)PT
7 ][Ā11ē1(t)+(Ā12 + Ā11LT T )ē2(t)

−µξ (t)Ā11LT T v1− ˙̄e1(t)]

(25)

with some p× p-matrices P4, P5 and (n− p)× (n− p)
matrices P6, P7 are added into the right-hand side of (24).
Setting η1(t) = col{ē1(t), ē2(t), ˙̄e1(t), ˙̄e2, v1, µ f̄i(t)}, it
follows

V̇ (t)+ ᾱV (t)−µ
2b̄ f̄i

T (t) f̄i(t)≤ η
T
1 (t)Θµ η1(t) < 0 (26)

if the following matrix inequality is feasible:

Θµ =


θ11 θ12 θ13 µĀT

21P5 + µPT
3

∗ θ22 θ23 θ24
∗ ∗ −PT

7 0
∗ ∗ ∗ −µPT

5 +(h−µξ (t))U
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
−µξ (t)PT

6 Ā11LT T 0
−µξ (t)PT

4 (µĀd22− Ip) PT
4

−µξ (t)PT
7 Ā11LT T 0

−µξ (t)PT
5 (µĀd22− Ip) PT

5
−µξ (t)e−ᾱhU 0

∗ −b̄I

< 0

(27)

The latter matrix inequality for µξ (t) → 0 and µξ (t) →
h, leads to the LMIs (19), (20). Setting η0(t) =
col{ē1(t), ē2(t), ˙̄e1(t), ˙̄e2, µ f̄i(t)}, then the following holds

h− τ(t)
h

η
T
0 Θµ0η0 +

τ(t)
h

η
T
1 Θµ1η1 = η

T
1 Θµ η1 < 0, ∀ η1 6= 0

B. LMIs for switching gain design
Conditions will now be derived that guarantee the follow-

ing bound for the solutions of (11):
limsupt→∞ ‖

[
Ā21 Ā22

]
ē(t)‖ ≤ k1δ∆,

limsupt→∞ ‖
[

0 Ād22
]

ē(t− τ(t))‖ ≤ k2δ∆
(28)

with some k1,k2 ≥ 0 such that k1 + k2 = 1. Taking into
account (22) it can be concluded that (28) holds if the
following inequalities are satisfied for t→ ∞:

µ2ēT (t)[Ā21 Ā22]T [Ā21 Ā22]ē(t) <
ᾱ ēT (t)Pµ ē(t)k2

1δ 2

b̄
(
(‖T D1‖+δ )

√
p+‖T D1‖

)2

µ2ēT (t−µξ (t))[0 Ād22]T [0 Ād22]ē(t−µξ (t))

<
ᾱ ēT (t−µξ (t))Pµ ē(t−µξ (t))k2

2δ 2

b̄
(
(‖T D1‖+δ )

√
p+‖T D1‖

)2

Hence, the inequalities −k2
1M1P1 −µk2

1M1PT
3 µĀT

21
∗ −µk2

1M1P2 µĀT
22

∗ ∗ −Ip

< 0 −k2
2M1P1 −µk2

2M1PT
3 0

∗ −µk2
2M1P2 µĀT

d22
∗ ∗ −Ip

< 0

(29)

where M1 = ᾱδ 2

b̄
(
(‖T D1‖+δ )

√
p+‖T D1‖

)2 , guarantee that the solu-

tions of (10), (11) satisfy the bound (28).
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C. Ultimate boundedness of the error dynamics

Let φ(t, t0,µ) be the fundamental solution of the equation

µ ż(t) =−z(t−µξ (t)), z(t) ∈ R (30)

with φ(t0, t0,µ) = 1 and φ(t, t0,µ) = 0 for t < t0. It is shown
in [11] that (30) remains exponentially stable for all variable
delays µξ (t)≤ 1.99. Then the following bound holds

‖φ(t, t0,µ)‖ ≤ e−
α2(t−t0)

µ (31)

for small enough α2 > 0 and ∀ µ > 0, µξ (t)≤ h, µξ̇ (t) = 1.
Main results may now be stated:

Theorem 1: Given positive constants µ , ξ̄ , ᾱ , b̄ and
k1, k2, let there exist a n×n-matrix Pµ > 0, positive p× p-
matrices U > 0 and p× p matrices P4, P5, (n− p)× (n− p)
matrices P6, P7 such that LMIs (17), (19), (20) and (29)
are feasible. Let ē(t) be a solution to (10), (11), then every
component of ē2(t) satisfies the bound

limsup
t→∞

|ē2i(t)| ≤ 2M0µξ̄ (32)

where M0 = 2(δ + ‖T D1‖)∆, i = 1, . . . , p denotes the i-th
component of ē2 for all µξ (t) ∈ [0, h] with µξ̇ (t) = 1.

Proof: The i-th component of differential equation (11)
with the initial condition (12) can be represented in the form
of an integral equation [17]

ē2i(t) = φ(t, t0,µ)ē2i(t0)+
∫ t

t0 φ(t,s,µ)
[
[Ā21i Ā22i ]ē(s)

+Ād22i ē2(s−µξ (t))+(T D1)i fi(s)
−(‖T D1‖+δ )∆sign ē2i(s−µξ (s))

]
ds

(33)
The feasibility of (29) implies the bound (28), then the
following inequality holds for t→ ∞:

|[Ā21i Ā22i ]ē(s)+ Ād22i ē2(s−µξ (t))+(T D1)i fi(s)
−(‖T D1‖+δ )∆sign ē2i(s−µξ (s))|< M0

(34)

Taking into account (31) and (34), it is established from (33)
that for t→ ∞

|ē2i(t +θ)− ē2i(t)| ≤
∣∣∫ t

t+θ
φ(t,s,µ)

(
[Ā21i Ā22i ]ē(s)

+Ād22i ē2(s−µξ (t))+(T D1)i fi(s)
−(‖T D1‖+δ )∆sign ē2i

(
s−µξ (s)

))
ds
∣∣

< M0
∫ t

t+θ
e

α2(t−s)
µ ds < µM0

1−e2α2h

α2

≤ 2M0µξ̄

where θ ∈ [−2µξ̄ , 0]. Therefore,

ē2i(t)−2M0µξ̄ < ē2i(t +θ) < ē2i(t)+2M0µξ̄ (35)

for t→ ∞ and the following implication holds

|ē2i(t)| ≥ 2M0µξ̄ ⇒ sign ē2i(t +θ) = sign ē2i(t) (36)

for large enough t. Thus, from (28), (34) and (36) for
sufficiently large t the following holds:

|ē2i(t)| ≥ 2M0µξ̄ ⇒
ēT

2i
(t)
[
[Ā21i Ā22i ]ē(t +θ)+ Ād22i ē2(t−µξ (t)+θ)

+(T D1)i fi(t +θ)− (‖T D1‖+δ )∆sign ē2i(t +θ)
]

< |ē2i(t)|
(
|[Ā21i Ā22i ]ē(t +θ)|+ |[0 Ād22i ]ē(t−µξ (t)+θ)|

+‖T D1‖∆
)
− (‖T D1‖+δ )∆|ē2i(t)|

< 0 (37)

It will be shown next that the ē2i -component of the solutions
to (11) exponentially converges to the ball (32). Moreover,
for sufficiently large t, whenever ē2i(t) achieves the ball (32),
it will never leave it. Taking into account (37), for sufficiently
large t it follows that

|ē2i(t)| ≥ 2M0µξ̄ ⇒
d
dt µ ē2

2i
(t) = 2µ ē2i(t) ˙̄e2i(t)

= 2ē2i(t)
[
− ē2i(t−µξ (t))+ µ

(
[Ā21i Ā22i ]ē(t)+ [0 Ād22i ]

·ē(t−µξ (t))+(T D1)i fi(t)− (‖T D1‖+δ )∆sign ē2i(t)
)]

≤−2ē2i(t)
(
ē2i(t)−

∫ t
t−µξ (t) ˙̄e2i(s)ds

)
=−2ē2

2i
(t)+2ē2i(t)

∫ t
t−µξ (t)

[
− ē2i (s−µξ (t))

µ
ds

+[Ā21i Ā22i ]ē(s)+ [0 Ād22i ]ē(s−µξ (t))+(T D1)i fi(s)
−(‖T D1‖+δ )∆sign ē2i(s)

]
ds

≤−2ē2
2i
(t)−2

ē2i (t)
µ

∫ t
t−µξ (t) ē2i(s−µξ (t))ds

Therefore, given (36) holds for large enough t, it follows that

−
∫ t

t−µξ (t)
ē2i(t)ē2i(s−µξ (t))ds≤ 0

Hence

|ē2i(t)| ≥ 2M0µξ̄ ⇒ d
dt

µ ē2
2i
(t)≤−2ē2

2i
(t) (38)

Assume now that for large enough t1 the ē2i component of
the solution to (1) is outside the ball (32). Then from (38)
it follows that for all t ≥ t1 such that |ē2i(t)| ≥ 2M0µξ̄ then

ē2
2i
(t)≤ e−

2
µ

(t−t1)ē2
2i
(t1) (39)

i.e. ē2i exponentially converges to the ball (32). Let t2 > t1 is
the time when |ē2i(t2)|= 2M0µξ̄ . Then due to (38) ē2

2i
(t+2 ) <

ē2
2i
(t2). Therefore, whenever ē2i(t) attains the ball (32), it will

never leave it.

IV. RECONSTRUCTION OF THE INPUT AND OUTPUT
FAULT SIGNALS

The fault reconstruction properties of the observer de-
signed above are now considered. Effectively this extends
the presentation in [5] to consider the effect of the sampled
output. For sufficiently small µ , (16) becomes

0≈− 1
µ

ē2(t− τ(t))+ v(t− τ(t))+T D1 fi(t) (40)

Since rank(D1) = q it follows from (40) that

fi(t)≈
(
(T D1)T (T D1)

)−1(T D1)T ( 1
µ

ē2(t− τ(t))− v(t− τ(t)) (41)
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To reconstruct the fault signal fi, [5] proposed to replace the
discontinuous component v(t) by the continuous approxima-
tion

vr =−(‖T D1‖+δ )∆[
ē21

|ē21 |+ r
, . . . ,

ē2p

|ē2p |+ r
]T (42)

where r≥ 0 is chosen to be small enough. Now consider the
case when fi = 0 and consider the effect of a fault f0(t) at
the output. In this situation, x2 is replaced by x2→ x2 + f0
and ey = e2 + f0. For sufficiently small µ , it can be obtained
from (9) that

e1(t)≈−A−1
11 ( L

µ
+A11L) f0

ėy(t) = A21e1(t)+A22ey(t)−A22 f0

+(A21L− Ip
µ

)ey(t− τ(t))+T T v(t− τ(t))+ ḟ0

(43)

The fault can be approximated by

f0 ≈W−1((A22L− Ip
µ

)ey(t− τ(t))+T T v(t− τ(t))
)

(44)

if W = A21A−1
11 ( L

µ
+A11L)+A22 is invertible.

Remark 1: Fault reconstruction using sliding mode tech-
nique usually requires an ideal sliding motion to be attained
in finite time [5], [24]. Practically, due to model uncertainties
and sampled output effects for example, an ideal sliding mo-
tion in the observer does not usually appear. Instead, motion
is bounded within a region of the sliding surface. This paper
uses a singular perturbation approach for fault reconstruction
under sampled outputs for which, by choosing a sufficiently
small µ , the fault can be approximated depending only on
the output error.

V. EXAMPLE
An inverted pendulum system is considered as in [5] which

is linearized about the equilibrium at the origin

A =

 0 0 1 0
0 0 0 1
0 −1.9333 −1.9872 0.0091
0 36.9771 6.2589 −0.1738

 ,

B =

 0
0

0.3205
−1.0095

 , C =

 1 0 0 0
0 1 0 0
0 0 1 0


(45)

A compensator approach from [14] is designed to stabilize
the pendulum. It is assumed that D = B and an input fault
is bounded by ‖ fi‖ ≤ ∆ = 2. The sampled data outputs
are implemented in the simulation using the zero-order-hold
function. In the LMI (13), L = [0 1.526 0] is obtained. LMIs
(19) and (20) are feasible with ᾱ = 8, µ = 0.019, ξ̄ = 0.524,
i.e. the sampling period is given by µξ̄ = 0.01s. LMI (29)
is feasible with δ = 77 and k1 = 0.8, k2 = 0.2. Hence the
observer (5) with gains in (8) and (6) has been chosen which
ensures the error variable is bounded in the range |e2i(t)| ≤
6.2 according to the estimate (32). Figure 1 is plotted using
the sign function where every error variable is stabilized into
a bound |e2i | ≤ 1.1, which is within the estimate. Note that
the high degree of switching is acceptable for an observer
error signal; this is not present in the reconstruction of the
fault signals.

Suppose the input fault is fi(t) = 2sin(t), while the out-
put fault fo = 0. The fault is reconstructed in Figure 2(a)
according to (41). From the fault distribution structure

W =

 0 0 1
0 −4.77 −3.15
0 −1.97 −2.01


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Fig. 1. Error response e2 with sampling period h = 0.01s at outputs.

in (44), only the third output fault can be reconstructed reli-
ably despite the appearance of the input fault and other output
faults. It can be approximated as the equivalent injection
signal at the first channel of (A22L− Ip

µ
)ey(t−τ(t))+T T v(t−

τ(t)). Suppose the third output fault f03 = 5sin(t), the fault
signal is reconstructed accurately in Figure 2(b) under the
sampled output with sampling period h = 0.01s. The observer
preserves the construction accuracy even when it is operating
under a larger sampling time h = 0.03s as seen in Figure 4(a).

The observer in [5], which did not incorporate the effect
of output sampling in the design, will now be compared to
benchmark the results obtained in this paper. It is seen that
the corresponding fault reconstruction shown in Figure 3 is
achieved with lower accuracy in this case. Increase in the
sampling period produces a decrease in the accuracy of the
fault reconstruction. This can be demonstrated in Figure 4(b)
where the input fault is reconstructed with sampling time h =
0.03s. The proposed method of observer design is shown to
have significant advantages when compared with the classical
approach if the output is sampled. It should be noted that the
ē2 term in (41) is pertinent to the reconstruction accuracy.
For the observer in [5], the equivalent term is assumed to be
zero.

VI. CONCLUSION

This paper develops an observer design framework for
systems with multiple outputs where the outputs are sampled
and thus the output error signal used to drive the observer
is subject to delay. A singular perturbation approach is em-
ployed for the analysis which guarantees the ultimate bound
on the error dynamics is proportional to the sampling time
and the switching gain. A corresponding fault reconstruction
technique is proposed which finds a sufficiently small value
of the singular perturbation parameter, µ , for which the fault
can be reconstructed reliably when the measured output is
subject to sampling. The results are obtained by presenting
the sampled output system in the form of continuous delayed
system, and thus many existing advances in the continuous
time domain can be employed to solve problems relating to
model uncertainties and related robustness problems within
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vector

Fig. 2. Fault reconstruction using the proposed observer scheme with
output sampling period h = 0.01s, as assumed for the observer design
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(b) Output fault reconstruction in the third component of the output
vector

Fig. 3. Fault reconstruction using a classical sliding mode observer [5];
implemented with output sampling period h = 0.01s
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(a) Fault reconstruction using the proposed observer approach; the
output sampling period is greater than that assumed in the design.
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(b) Fault reconstruction using the classical observer designed with
no a priori knowledge of output sampling characteristics [5]

Fig. 4. Input fault reconstruction with output sampling period h = 0.03s

the observer design. This could be a promising direction for
future work.
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