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Abstract—Event-triggered approaches to control and estima-
tion have the sensor transmit processed information when a
measure of information ‘novelty’ exceeds a threshold. Prior work
has empirically demonstrated that event-triggered systems may
have significantly longer average sampling intervals than com-
parably performing periodically triggered systems. There are,
however, few results that analytically characterize the tradeoff
that event-triggering introduces between average sampling period
and system performance. This paper examines that tradeoff for a
sub-optimal solution to the constrained state-estimation problem
considered by Xu and Hespanha. The sub-optimal solution is
comparable to that used by Cogill, and extends the earlier work
to unstable systems. In particular, the paper derives a sub-optimal
solution that guarantees the specified least average sampling
period. The paper also derives upper and lower bounds on the
event-triggered estimator performance. Simulation results are
used to demonstrate the utility of these bounds.

I. INTRODUCTION

Due to the digital nature of communication networks,
the feedback flows in networked systems consist of discrete
packets of information. Traditional networked control systems
have used periodic feedback flows; where the time between
consecutive packets is constant. There has, however, been
recent interest in the impact that sporadic feedback flows have
on the performance of such systems. A sporadic flow is one
in which the time between consecutive packets is bounded but
not necessarily constant. Such sporadic flows may arise due to
variations in the reliability of the feedback channel or it may
arise in an intentional manner as is the case in event-triggered
systems.

An event-triggered system is one where sensor information
is transmitted when a measure of information ‘novelty’ ex-
ceeds a threshold. On an intuitive level, event-triggering can
be seen as only using the channel when there is something
‘novel’ to transmit. The hope is that such an approach to
channel utilization will result in longer average sampling
periods without significantly compromising the networked
system performance. This fact was empirically demonstrated
for event-triggered control systems using constant thresholds
in [1], [2]. It has also been empirically demonstrated for state
dependent thresholds for input-to-state stable (ISS) [3] or L2-
stable [4] control systems. While this prior work suggests
that event-triggering uses fewer communication resources than
periodically triggered systems for comparable levels of per-
formance, there has been little substantive work analytically

Lichun Li and Michael Lemmon are with the department of Electrical
Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. (e-
mail:lli3,lemmon@nd.edu). We acknowledge the partial financial support of
the National Science Foundation (ECCS-0925229).

investigating this tradeoff between performance and average
sampling period. The purpose of this paper is to analytically
examine the tradeoff between performance and average sam-
pling period for event-triggered state estimation systems.

The state estimation problem considered in this paper was
originally studied in [5]. That work considered a system
in which a local sensor observing a discrete-time process
transmits the observed state information to a remote observer.
The problem is when to transmit the sensor information to
the remote observer to minimize the mean square estimation
error discounted by the cost of transmitting the data. The
optimal decision logic was derived in [5], but computing the
thresholds used in that decision was computationally complex.
A simpler sub-optimal approach was proposed in [6] which
was able to bound the difference in the performance achieved
by the optimal and sub-optimal decision logics for stable
systems. Since the proposed optimization metric is explicitly
discounted by the cost of transmission, it implicitly considers
the tradeoff between the performance and the sampling period.
That tradeoff, however, was never made explicit in the earlier
papers.

This paper re-examines the problem in [5] using a sub-
optimal solution similar to that proposed in [6], and extends
the earlier work in [6] to unstable systems. The paper’s main
results are the design of quadratic sub-optimal triggering
events that guarantee the required least average sampling
period and explicit lower and upper bounds on discounted
mean square estimation error.

II. PROBLEM STATEMENT

The event-triggering problem assumes that a sensor is ob-
serving an observable linear discrete-time process. The process
state x : Z+ → Rn (Z+ = 0, 1, · · ·) satisfies the difference
equation

x(k) = Ax(k − 1) + w(k − 1)

for k = 1, 2, · · · where A ∈ Rn×n, w : Z+ → Rn is a
zero mean white Gaussian noise process with variance W .
The initial state, x0, is assumed to be a Gaussian random
variable with mean µ0 and variance Π0. The sensor generates
a measurement y : Z+ → Rm. The sensor measurement at
time k is

y(k) = Cx(k) + v(k)

for k ∈ Z+ and where v : Z+ → Rm is another zero mean
white Gaussian noise process with variance V . We assume
that the two noise processes w,v and the initial state x0 are
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Fig. 1. Structure of event triggered networked state estimator

independent with each other. The process and sensor blocks
are shown on the left hand side of Figure 1. In this figure,
the output of the sensor feeds into a sensor subsystem that
decides when to transmit information to a remote observer.
The subsystem consists of three components: a Kalman filter,
a local observer and an event detector.

Let Y(k) = {y(0), y(1), · · · , y(k)} denote the measure-
ment information available at step k. The Kalman filter
generates a state estimate xKF : Z+ → Rn that mini-
mizes the weighted mean square estimation error (MSEE)
E
[
∥x(k)− xKF (k)∥2M | Y(k)

]
at each step conditioned on all

of the sensor information received up to and including step k,
where M ≥ 0 is the weight matrix and ∥θ∥2M = θTMθ. Let
M = PT

MPM . For the process under study xKF satisfies

xKF (k) = AxKF (k − 1) + L (y(k)− CAxKF (k − 1)) ,

where L = XCT (CXCT +V )−1, and X satisfies the discrete
linear Riccati equation

AXAT −X −AXCT (CXCT + V )−1CXAT +W = 0.

The steady state estimation error eKF (k) = x(k) − xKF (k)
is a Gaussian random variable with zero mean and weighted
variance E(eKFMeTKF ) = Q = (I − LC)X .

Let {τ ℓ}∞ℓ=1 denote a sequence of increasing times (τ ℓ ∈
[0,+∞]) when information is transmitted from the sensor
to the local and the remote observers. We require that
τ ℓ is forward progressing, i.e. for any k ≥ 0, there
always exists an ℓ such that τ ℓ ≥ k. Let X (k) ={
xKF (τ

1), xKF (τ
2), . . . , xKF (τ

ℓ(k))
}

denote the filter esti-
mates that are transmitted to the local and the remote observers
by step k where ℓ(k) = max

{
ℓ : τ ℓ ≤ k

}
. We can think of

this as the ‘information set’ available to both the local observer
and the remote observer at time k. The local observer generates
a posteriori estimate xLO : Z+ → Rn of the process state that
minimizes the weighted MSEE, E

[
∥x(k)− xLO(k)∥2M | X k

]
,

at time k conditioned on the information received up to and
including time k. The a priori estimate of the local observer,
x−
LO : Z+ → Rn, minimizes E

[
∥x(k)− x−

LO(k)∥2M | X k−1

]
,

the weighted MSEE at time k conditioned on the information
received up to and including step k− 1. These estimates take
the form

x−
LO(k) =AxLO(k − 1)

xLO(k) =

{
x−
LO(k), if no transmission at step k;

xKF (k), otherwise ,

where x−
LO(0) = µ0.

Let e−KF,LO(k) = xKF (k) − x−
LO(k) and S(k) ⊆ Rn be a

triggering set at step k. The event detector detects the a priori
gap e−KF,LO(k) and compares the gap with the triggering set
S(k). If the gap is inside the triggering set S(k), then no data
is transmitted. Otherwise, the state estimate in Kalman filter
xKF (k) is sent to both the local and the remote observers.

The remote observer and the local observer have similar
behavior. It produces an a priori state estimate x−

RO(k) and an
a posteriori state estimate xRO(k) to minimize the weighted
MSEE at step k based on the information received by step
k − 1 and by step k with weight matrix M , respectively.
Because there is communication error, the remote observer
receives the corrupted state estimate of the Kalman filter
when transmission occurs. The dynamics of the state estimate
x−
RO(k) and xRO(k) in the remote observer are

x−
RO(k) =AxRO(k − 1)

xRO(k) =

{
x−
RO(k), if no transmission at step k;

xKF (k) + n(k), otherwise ,

where x−
RO(0) = µ0, n(k) is a zero mean white Gaussian

noise with variance N and independent with w and v.
The communication between the sensor and the remote ob-

server is limited in the sense that the communication channel
can only reliably transmit a limited number of packets over
the channel. This limitation on channel capacity means that
the average interval between any consecutive packets has to
be greater than a number Tr ≥ 1. Formally, we express it as

min{t : E(e−KF,LO(t+τ ℓ)) /∈ S(t+τ ℓ)} ≥ Tr, ∀ℓ ∈ Z+. (1)

Let S be the collection of all triggering sets. The average
cost is

J({S(k)}∞k=0) = lim
N→∞

1

N

N−1∑
k=0

E
(
c(eTRO(k), S(k))

)
, (2)

where eRO(k) = x(k)−xRO(k) is the remote state estimation
error, λ ∈ R+ is the communication price and the cost function
c : Rn × S → R+ is defined as

c(eTRO(k), S(k)) = ∥eTRO(k)∥2M + λ1e−KF,LO(k)/∈S(k),

which is the weighted mean square estimation error discounted
by the cost of transmitting data with 1{·} a characteristic
function.

Our objective is to find the optimal triggering sets
{S(k)}∞k=0 to minimize the average cost J ({S(k)}∞k=0) sub-
ject to the communication requirement (1), and the optimal
cost is denoted by J∗.

III. MAIN RESULTS

For the convenience of the rest of this paper, we define

e−KF,LO(k) =xKF (k)− x−
LO(k),

eKF,LO(k) =xKF (k)− xLO(k),

e−LO,RO(k) =x−
LO(k)− x−

RO(k),

eLO,RO(k) =xLO(k)− xRO(k).
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The variances of these random variables are denoted by
U−
KF,LO(k), UKF,LO(k), U−

LO,RO(k) and ULO,RO(k), respec-
tively. Note that eRO(k) = (eKF + eKF,LO + eLO,RO)(k).
Since eKF (k), eKF,LO(k) and eLO,RO(k) are uncorrelated
with each other, it can be shown that

Ja({S(k)}∞k=0) =J({S(k)}∞k=0)− tr(Q)

= lim
N→∞

1

N

N−1∑
k=0

E(ca(e
−
KF,LO(k), S(k))),

where

ca(e
−
KF,LO(k), S(k)) =

[
∥e−KF,LO(k)∥

2
M + tr(MU−

LO,RO(k))
]

· 1e−KF,LO(k)∈S(k) + [λ+ tr(MN)] 1e−KF,LO(k)/∈S(k). (3)

So finding {S(k)}∞k=0 to minimize J({S(k)}∞k=0) in (2)
subject to the communication requirement (1) is equivalent
to finding {S(k)}∞k=0 to minimize Ja({S(k)}∞k=0) with (1)
satisfied, and the optimal cost of Ja({S(k)}∞k=0) is denoted
by J∗

a . The problem stated above is an optimal average cost
problem, and a method for solving it was given in [7].

A. The optimal cost and upper and lower bounds on it

This subsection states the optimal average cost and the
corresponding optimal triggering sets in Lemma 3.1. Then,
an upper bound on the cost of any triggering sets {S(k)}∞k=0

is given in Lemma 3.4. Finally, Lemma 3.5 presents a lower
bound on the optimal cost. The triggering sets discussed in this
subsection can be any subsets of Rn, and the next subsection
will focus explicitly on quadratic ones.

Lemma 3.1: If there exist two sequences of bounded func-
tions {Jk : Rn → R} and {hk : Rn → R} such that

Jk+1(e
−
KF,LO(k))+hk(e

−
KF,LO(k)) = G

(
hk+1(e

−
KF,LO(k))

)
for all k ∈ Z+, where

G (h(θ)) =min
S(k)

{
E(h(e−KF,LO(k + 1))|eKF,LO(k) = θ)

+ca(θ, S(k))} ,

then the optimal cost is

J∗
a = lim

N→∞

1

N

N−1∑
k=0

E(Jk+1(e
−
KF,LO(k))), (4)

and the optimal triggering set

S∗(k) =
{
θ : E(hk+1(e

−
KF,LO(k + 1))|eKF,LO(k) = θ)

+ ∥θ∥2M + tr(MU−
LO,RO(k)) ≤ λ+ tr(MN)

+E(hk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = 0)

}
. (5)

Proof: Given any S(k),

Jk+1(e
−
KF,LO(k)) + hk(e

−
KF,LO(k))

≤E
(
hk+1(e

−
KF,LO(k + 1))|e−KF,LO(k)

)
+ ca(e

−
KF,LO(k)).

Taking the expectation of both sides, we have

E(Jk+1(e
−
KF,LO(k)) + E

(
hk(e

−
KF,LO(k))

)
≤E(ca(e

−
KF,LO(k))) + E

(
hk+1(e

−
KF,LO(k + 1))

)
.

Then adding the inequalities from step 0 to N − 1 and taking
the limit of N as it goes to infinity, we have

lim
N→∞

1

N

N−1∑
k=0

E(Jk+1(e
−
KF,LO(k))) ≤ Ja(S(k)).

We know that the equality holds if S(k) = S∗(k), so equation
(4) holds and the optimal triggering set is (5).

Remark 3.2: The sensor only has two choices: transmit
information or not, and the optimal triggering sets reflect very
simple logic which says the sensor should choose the one
incurring less cost. If you pay close attention on the form
of the optimal triggering set, you will find that the left hand
side of the inequality in (5) is the cost introduced by the
decision of not transmitting while the right hand side is the
cost introduced by the decision of transmitting. If e−KF,LO lies
in the optimal triggering set S∗

s (k), or in other words if the cost
of not transmitting information is less, then the filtered state
xKF (k) should not be transmitted. Otherwise, transmission
from sensor to remote observer occurs.

Remark 3.3: If the optimal strategy exists, it must be time
varying, because the cost function ca is a time varying
function. If there is no communication noise, i.e. N = 0, the
optimal strategy is the same as the strategy in [5] with time
invariant function hk and time invariant constant Jk.

It is difficult to calculate the optimal triggering sets
{S∗(k)}∞k=0 described in (5). There is, therefore, great interest
in identifying computable approximations {S(k)}∞k=0 of the
optimal triggering sets . To characterize the performance of
{S(k)}∞k=0, an upper bound on the cost of {S(k)}∞k=0 and
the difference between the cost and the optimal cost should
be derived. Lemma 3.4 and 3.5 derive an upper bound on the
cost of {S(k)}∞k=0 and a lower bound on the optimal cost,
respectively. These two bounds can be used to characterize
the performance of {S(k)}∞k=0.

Lemma 3.4: Given the triggering set {S(k)}∞k=0, if there
exists a sequence of bounded function {fk : Rn → R} and a
sequence of finite constants {Jk} such that

E
(
fk+1(e

−
KF,LO(k + 1))|e−KF,LO(k) = θ, S(k)

)
+ ca (θ, S(k)) ≤ Jk+1 + fk(θ), ∀k ∈ Z+ (6)

then

Ja({S(k)}∞k=0) ≤ lim
N→∞

1

N

N∑
k=1

Jk < ∞ (7)

Lemma 3.5: If there exists a sequence of bounded function
{gk : Rn → R} and a sequence of nonnegative constants {Jk}
such that

Jk+1 + gk(e
−
KF,LO(k)) ≤ G

(
gk+1(e

−
KF,LO(k))

)
, (8)
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for any k ∈ Z+, then

Ja({S(k)}∞k=0) ≥ J∗
a ≥ lim

N→∞

1

N

N∑
k=1

Jk ≥ 0

Proof: We can follow the same steps in the proof of
Lemma 3.1 to get the two lemmas above.

Lemma 3.4 and 3.5 are very similar to Lemma 4 and 5
in [6]. One of the differences is that we allow time varying
functions fk, gk and time varying constants Jk and Jk. If there
is no communication noise, then the cost function ca becomes
time invariant and all the time varying parameters fk, Jk, gk
and Jk should be time invariant, too. The other difference is
that the functions fk and gk need to be bounded from both
below and above while [6] only required that fk was bounded
from below and gk was bounded from above. It seems that we
have a more strict assumption, but in fact the property of being
bounded from both below and above is an intrinsic property
of the cost function, ca ∈ [0, λ + tr(MU−

LO,RO)]. Since fk
and gk are approximations of the cost function, they should
be bounded, too.

Lemma 3.4 and 3.5 can be used for any triggering sets
{S(k)}∞k=0. The next subsection makes use of these two
lemmas, and considers the case where these sets are defined by
quadratic forms. We are interested in quadratic sets, because
they are easy to compute.

B. Quadratic sets, their average period and performance

The quadratic sets are analyzed in this subsection. Theorem
3.6 first states how to design quadratic sets such that the
communication requirement (1) is satisfied, and then give the
upper bounds of the cost of the quadratic sets and its difference
from the optimal cost. Please see Section VI for the proof.

Theorem 3.6: Given a quadratic triggering set

S(k) = {e−KF,LO : ∥e−KF,LO∥
2
H ≤ λ+ tr(MN)− ζ(k)},

(9)

where matrix H ≥ 0 ∈ Rn×n satisfies the Lyapunov inequality

ATHA

1 + δ2
−H +

M

1 + δ2
≤ 0, (10)

for some δ2 ≥ 0, and

ζ(k) =
δ2(λ+ tr(MN)) + tr(MU−

LO,RO(k)) + tr(HR)

1 + δ2
(11)

where R = L(CAQATCT + CWCT + V )LT and

λ ≥ max
t=1,··· ,Tr−1

[
(1 + δ2)

t∑
i=1

tr(HAt−iR(AT )t−i)

−tr(MN) + tr(MAtR(AT )t) + tr(HR)
]
, (12)

the statements below are true.

1) the communication requirement (1) is guaranteed;

2) Ja({S(k)}∞k=0) is bounded above by

Ja({S(k)}∞k=0) (13)

= lim
N→∞

1

N

N∑
k=1

E(fk(e
−
KF,LO(k))|eKF,LO(k − 1) = 0)

≤ lim
N→∞

1

N

N∑
k=1

min{tr(HR) + ζ(k), λ+ tr(MN)}

where fk(θ) = min{∥θ∥2H + ζ(k), λ+ tr(MN)};
3) The difference between the cost of {S(k)}∞k=0 and the

optimal cost Ja({S(k)}∞k=0)− J∗
a is bounded above by

D = min{tr(Y R) +D1, λ+ tr(MN)−D2},

where

D1 = lim
N→∞

1

N

N∑
k=1

max{ζ(k)− tr(MU−
LO,RO(k)), 0},

with Y ≥ 0, the matrix which has the smallest trace
such that Y ≥ H −M ,

D2 = lim
N→∞

1

N

N∑
k=1

min{tr(MU−
LO,RO(k)), λ+ tr(MN)}.

Remark 3.7: For any A and M > 0, there always exists an
H ≥ 0 and a δ2 ≥ 0 such that the Lyapunov inequality (10)
holds. We should notice that the greatest singular value of A,
σ(A), is always greater than or equal to the absolute value
of any eigenvalue of A. So if we set δ2 to be the value such
that σ(A) ≤

√
1 + δ2, A/

√
1 + δ2 is always stable, and there

always exists H ≥ 0 such that (10) holds for any semi-positive
definite matrix M .

The lower bound on communication price λ in (12) is
calculated numerically. Basically, the value in the bracket of
(12) is calculated from step 1 to step Tr − 1, and λ is chosen
to be the greatest one. But as Tr grows, one may want to find
a more efficient way to calculate λ. Corollary 3.8 gives an
explicit description of λ.

Proposition 3.8: Let PT
HPH = H , PRP

T
R = R, PT

MPM =
M and PNPT

N = N . If

λ = tr(HR)− tr(MN)

+

{
(1 + δ2)nσ2(PH)σ2(PR)

1−σ2(Pr−1)(A)
1−σ2(A)

, if σ(A) ̸= 1;
(1 + δ2)nσ2(PH)σ2(PR)(Pr − 1)σ2(A) otherwise,

+

{
nσ(PM )σ(PN ), if σ(A) ≤ 1;

nσ(PM )σ(PN )σ2(Tr−1)(A), otherwise,
(14)

then the inequality (12) holds.
Proof: Equation (14) can be derived by finding the

upper bound of the right side of inequality (12). From
the fact that tr(HAiR(AT )i) = tr(PHAiPR(A

T )iPT
H) ≤

nσ2(PHAiPR) ≤ nσ2(PH)σ2(PR)σ
2i(A), it can be shown

that (14) is an upper bound on the right hand side of (12), and
Corollary 3.8 is true.
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IV. SIMULATION RESULTS

An example is used to demonstrate that the proposed
quadratic triggering sets can guarantee the communication
requirement (1) and that the average cost triggered by the
quadratic sets is bounded by the upper and lower bound
derived in Theorem 3.6. We then compare the average cost
of the quadratic sets in this paper against the average cost of
the quadratic sets used in [6].

Let’s consider the system with A to be

[
0.95 1

0 1.01

]
,

and C to be
[
0.1 1

]
. The variances of the system noises

are W =

[
0.2 0

0 0.2

]
, V = 0.3, and N =

[
0.02 0

0 0.02

]
.

The weight matrix M is chosen to be an identity matrix.
Given δ to be the greatest singular value of A, we calculate

the quadratic triggering sets, and run the state estimation
system with the quadratic triggering sets. In Figure 2, Tsim

and Jsim are the average sampling period and the average cost
of quadratic triggering set. Jup and Dup are upper bounds
of the average cost and difference from the optimal cost,
respectively. In the top plot of Figure 2, the x-axis is the
required least average sampling period Tr, and the y-axis is the
average sampling period in our experiment. We can find that
the average sampling period Tsim (solid line) is always greater
than or equal to the required least average sampling period Tr

(dashed line). In the bottom plot of Figure 2, the x-axis denotes
the required least average sampling period, and y-axis denotes
the average cost. It shows that the average cost Jsim (solid
line) is always bounded from below by Jup − Dup (dotted
line), and bounded from above by Jup (dot-dashed line). The
simulation results confirm the statements in Theorem 3.6.

Comparing against the result in [6] is of interest since they
also approximated the optimal triggering set with a quadratic
form. Since their results can only be applied to stable systems

without communication noise, we let A be

[
0.95 1

0 0.95

]
,

and N be 0. Because there is no result in [6] showing how λ is
related with communication requirement Tr, the comparison
is made given the same communication price, λ. To derive our
quadratic triggering set, we let δ2 = 1.5. Figure 3 shows the
average costs of both quadratic triggering sets in this paper and
[6]. The x-axis is the communication price λ, and the y-axis is
the average cost. The average cost of the quadratic triggering
set in this paper is indicated by the solid line, and the average
cost of the quadratic triggering set in [6] is indicated by the
dashed line. Figure 3 shows that these two costs are almost the
same. Our quadratic triggering set, however, can be applied to
unstable linear time invariant systems while the results in [6]
can not.

V. CONCLUSION

This paper explicitly states the relationship between the
performance of the state estimation system and the least
average sampling period when communication is triggered by
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Fig. 3. Comparison of the average costs of the triggering sets in this paper
and [2]

quadratic events. Upper and lower bounds on the cost of the
quadratic triggering sets are derived. The simulation results
agree on the theoretic results, and indicate that the quadratic
set in this paper is comparable with the quadratic set used in
[6] for stable systems while our triggering sets can be applied
to unstable systems.

VI. PROOF OF THEOREM 3.6

A. Proof of part 1)

To prove the first part, the communication requirement (1)
needs to be rewritten as

E(∥e−KF,LO(k)∥
2
H) ≤ λ+ tr(MN)− ζ(k),

for any k = τ ℓ + 1, · · · , τ ℓ + Tr − 1 and any ℓ ∈ Z+. By
applying ζ(k) into the inequality above, we can conclude that
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as long as

λ ≥(1 + δ2)tr(HU−
KF,LO(k)) + tr(MU−

LO,RO(k)) + tr(HR)

− tr(MN), ∀k = τ ℓ + 1, · · · , τ ℓ + Tr − 1,

the communication requirement (1) can be guaranteed. Be-
cause during the inter sample interval, no transmission occurs,
U−
KF,LO(k) and U−

LO,RO(k) is iteratively calculated under
the condition that there is no transmission from τ ℓ + 1 to

τ ℓ+Tr−1. Let t = k−τ ℓ. U−
KF,LO(k) =

t−1∑
i=1

At−iR(AT )t−i,

and U−
LR,RO(k) = AtN(AT )t. Therefore, if the inequality

(12) holds, the communication requirement (1) can be satis-
fied.

B. Proof of part 2)

To prove part 2), it is sufficient to show that the inequality
(6) holds for any k with fk defined in Theorem 3.6 and

Jk = E(fk(e
−
KF,LO(k + 1))|eKF,LO(k) = 0).

In the case of ∥e−KF,LO(k)∥2H ≤ λ + tr(MN) − ζ(k), no
transmission occurs at step k, so the right hand side of (6)

≤∥e−KF,LO(k)∥
2
H + ∥e−KF,LO(k)∥

2
ATHA−H+M + ζ(k + 1)

+ tr(HR) + tr(MU−
LO,RO(k))

≤∥e−KF,LO(k)∥
2
H + δ2(λ+ tr(MN)− ζ(k))

+ tr(HR) + tr(MU−
LO,RO(k)) + ζ(k + 1)

≤fk(e
−
KF,LO(k) + Jk+1.

The first step is taken from (3) and the fact that
E(min(f, g)) ≤ min(E(f), E(g)), the second step is derived
from the fact that ∥e−KF,LO(k)∥2H ≤ λ+ tr(MN)− ζ(k), and
the third step is derived from how we define the ζ(k).

In the case of ∥e−KF,LO(k)∥2H > λ + tr(MN) − ζ(k),
transmission occurs. It is obvious to see that the right side
of inequality (6) is less or equal to fk(e

−
KF,LO(k) + Jk+1.

Since the inequality (6) holds in any condition, from Lemma
3.4, we know that Ja({S(k)}∞k=0) is bounded above by
Ja({S(k)}∞k=0) defined in (13).

C. Proof of part 3)

If a lower bound on the optimal cost is found, an upper
bound of the difference between the cost of quadratic sets
and the optimal sets can be derived. The lower bound on the
optimal cost is given in Lemma 6.1.

Lemma 6.1: The optimal cost J∗
a is bounded below by

lim
N→∞

1

N

N∑
k=1

E(gk(e
−
KF,LO(k))|eKF,LO(k − 1) = 0),

where gk(θ) = min{∥θ∥2M+tr(MU−
LO,RO(k)), λ+tr(MN)}.

Proof: Let’s define

Jk+1 = E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = 0).

By Lemma 3.5, Lemma 6.1 is true if

Jk+1(e
−
KF,LO(k))+gk(e

−
KF,LO(k)) ≤ G

(
gk+1(e

−
KF,LO(k))

)
.

The left side of the inequality equals to

min{∥e−KF,LO(k)∥
2
M + tr(MU−

LO,RO(k))

+ E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = 0),

λ+ tr(MN) + E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = 0)},

and the right side of the inequality equals

min{∥e−KF,LO(k)∥
2
M + tr(MU−

LO,RO(k))

+ E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = e−KF,LO(k)),

λ+ tr(MN) + E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = 0)}.

With the fact that

p(Z +
β1 + β2

2
b2ε2 + ρε2) = −p(Z +

β1 + β2

2
b2ε2 − ρε2),

where ZTR+ε2 = 0 , b2 = (Ad2)
T ε2 ≥ 0 and ρ ≥ 0. Let

Ad2 =
n∑

i=1

biεi, we can show that

E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = 0)

≤E(gk+1(e
−
KF,LO(k + 1))|eKF,LO(k) = e−KF,LO(k)),

the inequality (8) holds, and hence Lemma 6.1 is true.
Now that both the upper and lower bounds are given, the

difference between them can be shown to be bounded by
min{D1, D2}, where D1 and D2 are defined in Theorem 3.6.

First, we know from part 2) of Theorem 3.6 and Lemma
6.1 that

Ja({S(k)}∞k=0)− J∗
a ≤ Ja({S(k)}∞k=0)− J∗

a

≤tr(Y R) + lim
N→∞

1

N

N∑
k=1

max{ζ(k)− tr(MU−
LO,RO(k)), 0}.

Next, noticing that J({S(k)}∞k=0) ≤ λ + tr(MN), and
J∗ ≥ min{tr(MU−

LO,RO(k)), λ+tr(MN)}, J({S(k)}∞k=0)−
J∗ is bounded above by D2.

Therefore, part 3) is proven.
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