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Abstract— We study the detection error probability associ-
ated with a balanced binary relay tree, where the leaves of
the tree correspond to N identical and independent sensors.
The root of the tree represents a fusion center that makes the
overall detection decision. Each of the other nodes in the tree are
relay nodes that combine two binary messages to form a single
output binary message. Only the leaves of the tree are sensors.
In this way, the information from the sensors is aggregated
into the fusion center via the intermediate relay nodes. In this
context, we describe the evolution of Type I and Type II error
probabilities of the binary data as it propagates from the leaves
towards the root. Tight upper and lower bounds for the total
error probability at the fusion center as functions of N are
derived. These characterize how fast the total error probability
converges to 0 with respect to N .

I. INTRODUCTION

Consider a hypothesis testing problem under two sce-

narios: centralized and decentralized. Under the centralized

network scenario, all sensors send their raw measurements

to the fusion center which makes a decision based on

these measurements. In the decentralized network introduced

in [1], sensors send summaries of their measurements and

observations to the fusion center. The fusion center then

makes a decision. In a decentralized network, information

is summarized into smaller messages. Evidently, the decen-

tralized network cannot perform better than the centralized

network. It gains because of its limited use of resources and

bandwidth; through transmission of summarized information

it is more practical and efficient.

The decentralized network in [1] involves a parallel ar-

chitecture, also known as a star architecture [1]–[15],[31],

in which all sensors directly connect to the fusion center. A

typical result is that under the assumption of (conditionally)

independence of the sensor observations, the decay rate of

the error probability in a parallel network is exponential [6].

Several different sensor topologies have been studied

under the assumption of conditional independence. The first

configuration for such a fusion network considered was the

tandem network [16]–[20],[31]. In such a network, each non-

leaf node combines the information from its own sensor with

the message it has received from the node at one level down,
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which is then transmitted to the node at the next level up.

The decay rate of the error probability in this case is sub-

exponential [20]. This sensor network represents a situation

where the length of the network is the longest possible among

all networks with N leaf nodes.

The asymptotic performance of single-rooted tree net-

works with bounded height is discussed in [21]–[29],[31].

Even though error probabilities in the parallel configuration

decrease exponentially, in a practical implementation, the

resources consumed in having each sensor transmit directly

to the fusion center might be regarded as excessive. Energy

consumption can be reduced by setting up a directed tree,

rooted at the fusion center. In this tree structure, measure-

ments are summarized by leaf sensor nodes and sent to their

parent nodes, each of which fuses all the messages it receives

with its own measurement (if any) and then forwards the new

message to its parent node at the next level. This process

takes place throughout the tree culminating in the fusion

center, where a final decision is made. For a bounded-height

tree, the error exponent is as good as that of the parallel

configuration under certain conditions. For example, for a

bounded-height tree network with limτN→∞ ℓN/τN = 1,

where τN denotes the total number of nodes and ℓN denotes

the number of leaf nodes, the optimum error exponent is the

same as that of the parallel configuration [22].

The variation of detection performance with increasing

tree height is still largely unexplored. If only the leaf nodes

have sensors making observations, and all other nodes simply

fuse the messages received and forward the new messages

to their parents, the tree network is known as a relay tree.

The balanced binary relay tree has been addressed in [30],

in which it is assumed that the leaf nodes are independent

sensors with identical Type I error probability (also known

as probability of false alarm, denoted by α0) and identical

Type II error probability (also known as probability of

missed detection, denoted by β0). It is shown there that if

sensor error probabilities satisfy the condition α0 + β0 < 1,

then both the Type I and Type II error probabilities at the

fusion center both converge to 0 as the number of sensors

N goes to infinity. If α0 + β0 > 1, then both Type I

and Type II error probabilities converge to 1, which means

that if we flip the decision at the fusion center, then the

error probabilities converge to 0. Therefore, because of this

symmetry, it suffices to consider the case where α0+β0 < 1.

If α0 + β0 = 1, then αk + βk = 1 for all k. Therefore, this

case is not of interest.

We consider the balanced binary relay tree configuration

in this paper and describe the precise evolution of Type I

and Type II error probabilities in this case. In addition, we

provide upper and lower bounds for the total error proba-
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bility at the fusion center as functions of N . These bounds

characterize the decay rate of the total error probability.

II. PROBLEM FORMULATION

We consider the problem of binary hypothesis testing

between H0 and H1 in a balanced binary relay tree. Leaf

nodes are sensors undertaking initial and independent detec-

tions of the same event in a scene. These measurements are

summarized into binary messages and forwarded to nodes

at the next level. Each non-leaf node with the exception of

the root, the fusion center, is a relay node, which fuses two

binary messages into one new binary message and forwards

the new binary message to its parent node. This process takes

place at each intermediate node culminating in the fusion

center, at which the final decision is made based on the

information received. Only the leaves are sensors in this tree

architecture.
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Fig. 1. A balanced binary relay tree with height k. Circles represent sensors
making measurements. Diamonds represent relay nodes which fuse binary
messages. The rectangle at the root represents the fusion center making an
overall decision.

In this configuration, as shown in Fig. 1, the closest sensor

to the fusion center is as far as it could be, in terms of

the number of arcs in the path to the root. In this sense,

this configuration is the worst case among all N sensor

relay trees. Moreover, in contrast to the configuration in

[22] discussed earlier, in our balanced binary tree we have

limτN→∞ ℓN/τN = 1/2 (as opposed to 1 in [22]). Hence,

the number of times that information is aggregated here is

essentially as large as the number of measurements (cf., [22],

in which the number of measurements dominates the number

of fusions). In addition, the height of the tree is log N , which

grows as the number of sensors increases. (Throughout this

paper, log stands for the binary logarithm.)

We assume that all sensors are independent given each

hypothesis, and that all sensors have identical Type I error

probability α0 and identical Type II error probability β0.

We apply the likelihood-ratio test [32] with threshold 1 as

the fusion rule at the intermediate relay nodes and at the

fusion center. This fusion rule is locally (but not necessarily

globally) optimal in the case of equally likely hypotheses

H0 and H1: it minimizes the total error probability locally

at each fusion node. In the case where the hypotheses are not

equally likely, the locally optimal fusion rule has a different

threshold value, which is the ratio of the two hypothesis

probabilities. However, this complicates the analysis without

any additional insights. Therefore, for simplicity, we hence-

forth assume equally likely hypotheses in our analysis. We

are interested in following questions:

• What are these Type I and Type II error probabilities as

functions of N?

• Will they converge to 0 at the fusion center?

• If yes, how fast will they converge with respect to N?

Fusion at a single node receiving information from the

two immediate child nodes where these have identical Type

I error probabilities α and identical Type II error probabilities

β provides a detection with Type I and Type II error

probabilities denoted by (α′, β′), and given by [30]:

(α′, β′) = f(α, β) :=







(1 − (1 − α)2, β2), α ≤ β,

(α2, 1 − (1 − β)2), α > β.
(1)

Evidently, as all sensors have the same error probability

pair (α0, β0), all relay nodes at level 1 will have the same

error probability pair (α1, β1) = f(α0, β0), and by recursion,

(αk+1, βk+1) = f(αk, βk), k = 0, 1, . . . , (2)

where (αk, βk) is the error probability pair of nodes at the

kth level of the tree.

The recursive relation (2) allows us to consider the pair

of Type I and II error probabilities as a discrete dynamic

system. In [30], which focuses on the convergence issues

for the total error probability, convergence was proved using

Lyapunov methods. The analysis of the precise evolution of

the sequence {(αk, βk)} and the total error probability decay

rate remain open. In this paper, we will establish upper and

lower bounds for the total error probability and deduce the

precise decay rate of the total error probability.

To illustrate the ideas, consider first a single trajectory for

the dynamic system given by equation (1), and starting at

the initial state (α0, β0). This trajectory is shown in Fig. 2.

It exhibits different behaviors depending on its distance from

the β = α line. The trajectory approaches β = α very

fast initially, but when (αk, βk) approaches within a certain

neighborhood of the line β = α, the next pair (αk+1, βk+1)
will appear on the other side of that line. In the next section,

we will establish theorems that characterize the precise step-

by-step behavior of the dynamic system (2).

III. EVOLUTION OF ERROR PROBABILITIES

The relation (1) is symmetric about both of the lines α +
β = 1 and β = α. Thus, it suffices to study the evolution of

the dynamic system only in the region bounded by α+β < 1
and β ≥ α. We denote

U := {(α, β) ≥ 0|α + β < 1 and β ≥ α}
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Fig. 2. A trajectory of the sequence {(αk, βk)} in the (α, β) plane.

to be this triangular region. Similarly, define the complemen-

tary triangular region

L := {(α, β) ≥ 0|α + β < 1 and β < α}.

We denote the following region by B1:

B1 := {(α, β) ∈ U|(1 − α)2 + β2 ≤ 1}.

If (αk, βk) ∈ B1, then the next pair (αk+1, βk+1) =
f(αk, βk) crosses the line β = α to the opposite side from

(αk, βk). More precisely, if (αk, βk) ∈ U , then (αk, βk) ∈
B1 if and only if (αk+1, βk+1) = f(αk, βk) ∈ L. In other

words, B1 is the inverse image of L under f in U . The set

B1 is shown in Fig. 3(a). Fig. 3(b) illustrates this behavior

of the trajectory for the example in Fig. 2. For instance, as

shown in Fig. 3(b), if the state is at point 1 in B1, then it

jumps to the next state point 2, on the other side of β = α.

Denote the following region by B2:

B2 := {(α, β) ∈ U|(1 − α)2 + β2 ≥ 1

and (1 − α)4 + β4 ≤ 1}.

It is easy to show that if (αk, βk) ∈ U , then (αk, βk) ∈ B2 if

and only if (αk+1, βk+1) = f(αk, βk) ∈ B1. In other words,

B2 is the inverse image of B1 in U under f . The regions

and the behavior of f is illustrated in the movement from 0
to point 1 in Fig. 3(b). The set B2 is identified in Fig. 3(a),

lying directly above B1.

Now for an integer m > 1, recursively define Bm to be

the inverse image of Bm−1 under f , denoted by Bm. It is

easy to see that

Bm := {(α, β) ∈ U|(1 − α)2
(m−1)

+ β2(m−1) ≥ 1

and (1 − α)2
m

+ β2m ≤ 1}.

Notice that U =
⋃∞

m=1 Bm. Hence, for any (α0, β0) ∈ U ,

there exists m such that (α0, β0) ∈ Bm. This gives a

complete description of how the dynamics of the system

behaves in the upper triangular region U . For instance, if

the initial pair (α0, β0) lies in Bm, then the system evolves

in the order

Bm → Bm−1 → · · · → B2 → B1.
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Fig. 3. (a) Regions B1, B2, and RL in the (α, β) plane. (b) The trajectory
in Fig. 2 superimposed on (a), where solid lines represent boundaries of Bm

and dashed lines represent boundaries of R.

Therefore, the system will enter B1 after m − 1 levels of

fusion, i.e., (αm−1, βm−1) ∈ B1.

As the next stage, we consider the behavior of the system

after it enters B1. The image of B1 under f , denoted by RL,

is (see Fig. 3(a))

RL := {(α, β) ∈ L|
√

1 − α +
√

β ≥ 1}.

We can define the reflection of Bm about the line β = α
in the similar way for all m. Similarly, we denote by RU the

reflection of RL about the line β = α; i.e.,

RU := {(α, β) ∈ U|
√

1 − β +
√

α ≥ 1}.

We denote the region RU ∪ RL by R. Below R is shown

to be an invariant region in the sense that once the system

enters R, it stays there. For example, as shown in Fig. 3(b),

the system after point 1 stays inside R.

Proposition 1: If (αk0
, βk0

) ∈ R for some k0, then

(αk, βk) ∈ R for all k ≥ k0.

Proof: First we show that B1 ⊂ RU ⊂ B1 ∪ B2.

Notice that B1, RU , and B1 ∪ B2 share the same lower

boundary β = α. It suffices to show that the upper boundary

of RU lies between the upper boundary of B2 and that of

B1 (see Fig. 4).
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Fig. 4. Upper boundaries for B1, B2, and RU .

First, we show that the upper boundary of RU lies above

the upper boundary of B1. We have

1 − (1 −
√

α)2 ≥
√

1 − (1 − α)2

⇐⇒ 2
√

α − α ≥
√

2α − α2

⇐⇒ α2 + α − 2α
3
2 ≥ 0,

which holds for all α in [0, 1). Thus, B1 ⊂ RU .

Now we prove that the upper boundary of RU lies below

that of B2. We have

(1 − (1 − α)4)
1
4 ≥ 1 − (1 −

√
α)2

⇐⇒ 1 − (1 − α)4 ≥ (2
√

α − α)4

⇐⇒ −2(
√

α − 1)2α(−α
3
2 + α(

√
α − 1)

+ 4
√

α(
√

α − 1) + α − 2) ≥ 0,

which holds for all α in [0, 1) as well. Hence, RU ⊂ B1∪B2.

Without loss of generality, we assume that (αk0
, βk0

) ∈
RU . That means (αk0

, βk0
) ∈ B1 or (αk0

, βk0
) ∈ B2∩RU . If

(αk0
, βk0

) ∈ B1, then the next pair (αk0+1, βk0+1) is in RL.

If (αk0
, βk0

) ∈ B2 ∩ RU , then (αk0+1, βk0+1) ∈ B1 ⊂ RU
and (αk0+2, βk0+2) ∈ RL. By symmetry considerations, it

follows that the system stays inside R for all k ≥ k0.

So far we have studied the precise evolution of the

sequence {(αk, βk)} in the (α, β) plane. In the next section,

we will consider the step-wise reduction in the total error

probability while the system lies inside the invariant region

and deduce upper and lower bounds for it.

IV. ERROR PROBABILITY BOUNDS

Because of our assumption that the hypotheses are equally

likely, the total error probability for a node with (αk, βk) is

(αk + βk)/2. Let Lk = αk + βk, namely, twice the total

error probability. Analysis of the total error probability will

result from consideration of the sequence {Lk}. In fact, we

will derive bounds on log L−1
k , whose growth rate is related

to the rate of convergence of Lk to 0.

If (α0, β0) ∈ Bm for some m 6= 1, then (αm−1, βm−1) ∈
B1. The system afterward stays inside the invariant region

R (but not necessarily inside B1). Hence, the decay rate

of the total error probability in the invariant region R

determines the asymptotic decay rate. We have the following

proposition.

Proposition 2: Suppose that (αk, βk) ∈ R. Then,

1 ≤ Lk+2

L2
k

≤ 2.

Proof: Because of symmetry, we only have to prove

the case where (αk, βk) lies in RU . We consider two cases:

(αk, βk) ∈ B1 and (αk, βk) ∈ B2 ∩ RU .

In the first case,

Lk+2

L2
k

=
(1 − (1 − αk)2)2 + 1 − (1 − β2

k)2

(αk + βk)2
.

To prove the lower bound of the ratio, it suffices to show

that

Lk+2 − L2
k = (αk + βk − 1)(−(αk − βk)2 − 2α2

k

+(αk − βk)3 + 2αkβk(αk − βk)) ≥ 0.

We have αk + βk < 1 and αk ≤ βk for all (αk, βk) ∈ B1.

Therefore, the above inequality holds.

To prove the upper bound of the ratio, it suffices to show

that

Lk+2 − 2L2
k = α4

k − 4α3
k + 2α2

k − 4αkβk − β4
k ≤ 0.

The partial derivative with respect to βk is

∂(Lk+2 − 2L2
k)

∂βk
= −4αk − 4β3

k ≤ 0

which is non-positive. Therefore, it suffices to consider its

values on the curve βk = αk, on which Lk+2−2L2
k is clearly

non-positive. See Fig. 5(a) for a plot of values of Lk+2/L2
k

in B1.

Now we consider the second case, namely (αk, βk) ∈ B2∩
RU , which gives

Lk+2

L2
k

=
1 − (1 − αk)4 + β4

k

(αk + βk)2
.

To prove the lower bound of the ratio, it suffices to show

that

Lk+2 − L2
k = (1 − (1 − αk)4) + β4

k − (αk + βk)2

= (1 − αk − βk)(α3
k − α2

kβk − 3α2
k

+αkβ2
k + 2αkβk − β3

k − β2
k + 4αk) ≥ 0.

Therefore, it suffices to show that

φ(αk, βk) =α3
k − α2

kβk − 3α2
k + αkβ2

k

+ 2αkβk − β3
k − β2

k + 4αk ≥ 0.

The partial derivative with respect to βk is

∂φ

∂βk
= −(αk − βk)2 − 2β2

k + 2(αk − βk) ≤ 0.

Thus, it is enough to consider the values on the upper

boundaries
√

1 − βk +
√

αk = 1 and αk + βk = 1.

If αk + βk = 1, then the inequality is trivial, and if√
1 − βk +

√
αk = 1,

Lk+2 − L2
k = 2α2

k(1 − 2
√

αk)(2αk − 6
√

αk + 5)
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and the inequality holds because αk ≤ 1
4 in region B2∩RU .

The claimed upper bound for the ratio Lk+2/L2
k can be

written as

Lk+2 − 2L2
k = −α4

k + 4α3
k − 8α2

k + 4αk

−4αkβk + β4
k − 2β2

k ≤ 0.

The partial derivative with respect to βk is

∂(Lk+2 − 2L2
k)

∂βk
= −4αk + 4β3

k − 4βk ≤ 0.

Again, it is sufficient to consider values on the upper

boundary of B1. Therefore,

Lk+2 − 2L2
k = 2β2

k − 2(αk + βk)2 ≤ 0.

The reader is referred to Fig. 5(b) for a plot of values of

Lk+2/L2
k in B2 ∩ RU .
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Fig. 5. (a) Ratio Lk+2/L2
k

in region B1. (b) Ratio Lk+2/L2
k

in region
B2 ∩ RU . Each line depicts the ratio versus αk for a fixed βk .

Suppose that the balanced binary relay tree has N leaf

nodes. Then, the height of the fusion center is log N . For

convenience, let PN = Llog N be (twice) the total error

probability at the fusion center. Proposition 2 gives bounds

on the relationship between Lk and Lk+2 in the invariant

region R. Hence, in the special case of trees with even height,

that is, when log N is an even integer, it is easy to bound

PN in terms of L0. In fact, we will bound log P−1
N which

in turn provides bounds for PN .

Theorem 1: If (α0, β0) is in the invariant region R and

log N is even, then
√

N
(

log L−1
0 − 1

)

≤ log P−1
N ≤

√
N log L−1

0 .
Proof: If (α0, β0) ∈ R, then we have (αk, βk) ∈ R for

k = 0, 1, . . . , log N − 2. From Proposition 2, we have

Lk+2 = akL2
k

for k = 0, 1, . . . , log N − 2 and some ak ∈ [1, 2]. Therefore,

for k = 2, 4, . . . , log N , we have

Lk = a(k−2)/2 · a2
(k−4)/2 . . . a2(k−2)/2

0 L2k/2

0 ,

where ai ∈ [1, 2]. Substituting k = log N , we have

PN = a(k−2)/2 · a2
(k−4)/2 . . . a2(k−2)/2

0 L2log
√

N

0

= a(k−2)/2 · a2
(k−4)/2 . . . a

√
N/2

0 L
√

N
0 .

Hence,

log P−1
N = − log a(k−2)/2 − 2 log a(k−4)/2

− . . . −
√

N

2
log a0 +

√
N log L−1

0 .

Notice that log L−1
0 > 0 and, for each i, 0 ≤ log ai ≤ 1.

Thus,

log P−1
N ≤

√
N log L−1

0 .

Finally,

log P−1
N ≥ −1 − 2 − . . . −

√
N

4
−

√
N

2
+
√

N log L−1
0

≥ −
√

N +
√

N log L−1
0

=
√

N
(

log L−1
0 − 1

)

.

We have derived error probability bounds for balanced

binary relay trees with even height. See [33] for error

probability bounds for trees with odd height. In the next

section, we will use these bounds to study the asymptotic

rate of convergence.

V. ASYMPTOTIC RATES

In this section, we will use the following notation. Suppose

that f(N) > 0 and g(N) > 0 are two functions defined on

positive integers N . If c1g(N) ≤ f(N) ≤ c2g(N) for some

positive c1 and c2 for sufficiently large N , then we write

f(N) = Θ(g(N)).
Notice that as N becomes large, the sequence {(αk, βk)}

will eventually move into the invariant region R at some

level and stays inside from that point. Therefore, it suffices

to consider the decay rate in the invariant region R.

Proposition 3: If L0 = α0 + β0 is fixed, then

log P−1
N = Θ(

√
N).

Proof: The convergence of PN has been proved in [30].

Therefore, for fixed L0, we have Lk < 1/2 for sufficiently

large k. Hence, without loss of generality, we may assume

that L0 < 1/2. In this case, the bounds in Theorem 1 imply

that
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log P−1
N = Θ(

√
N).

This implies that the convergence of the total error probabil-

ity is sub-exponential; more precisely, the decay exponent is

essentially
√

N .

Suppose that we wish to determine how many sensors we

need to have so that PN ≤ ε. Without loss of generality,

we assume that L0 is fixed (L0 < 1/2) and ε ∈ (0, 1). The

solution is simply to find an N (e.g., the smallest) satisfying

the inequality
√

N
(

log L−1
0 − 1

)

≥ − log ε.

The smallest N grows like Θ((log ε)2) (cf., [30], in which

the smallest N has a larger growth rate).

VI. CONCLUSION

We have studied the detection performance of balanced

binary relay trees. We precisely describe the evolution of

error probabilities in the (α, β) plane as we move up the

tree. This allows us to deduce error probability bounds at

the fusion center as functions of N . These bounds imply that

the total error probability converges to 0 sub-exponentially,

with a decay exponent that is essentially
√

N . All our results

apply not only to the fusion center, but also to any other node

in the tree network. In other words, we can similarly analyze

a sub-tree inside the original tree network.

Needless to say, our conclusions are subject to our partic-

ular architecture and assumptions. Several questions follow:

Considering balanced binary relay trees with sensor and/or

connection failures, how would the error probability behave?

More generally, what can we say about unbalanced relay

trees? In addition, how would the performance change if all

the relay nodes make their own measurements?
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