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Abstract— A control feedback system with saturation non-
linearities is said to have robustness preserving characteristics
if the constrained system is as robust as its linear counterpart.
Such characteristics can be desirable. It has been proved for
some special cases that the anti-windup version of the Inter-
nal Model Control architecture can offer such characteristics
for first-order plants with delays against norm-bounded (not
only LTI) uncertainty. This paper provides general conditions
expressed in the frequency domain which allow to test for the
preservation of robustness for plants of any order. In addition,
a class of robustness preserving controllers is characterised in
terms of the Zames-Falb conditions. The test is shown to be
easily implementable and exploited for anti-windup tuning.

I. INTRODUCTION
Saturation non-linearities are very common in feedback

control systems and they can cause significant degradation
in performance and stability. Usually, anti-windup loops are
constructed after a linear controller to offer performance
compensation against saturation degradations [16]. Early
successful works on anti-windup date back to [2] and [7]. A
plethora of design approaches have been proposed since then,
and most of them are constructed upon nominal Linear-Time-
Invariant (LTI) representations of the plant [5], [3], [21]. A
popular synthesis approach exploits the sector-bound con-
ditions on the saturation elements [10] for the construction
of Linear Matrix Inequalities [18], [22], [6], [20]. Recent
research explores however anti-windup design whereby ex-
plicit uncertainty representations are also considered. In this
area, a major design approach is proposed by [19] and the
theory of Integral Quadratic Constraints (IQCs) [12] offers
a natural framework for analysis on robustness [14].

The authors in [19] introduce the concept of robustness
preservation. A control system is said to preserve the ro-
bustness of the unconstrained loop if the constrained system
retains the robustness properties of the corresponding linear
uncertain loop. Such a characteristic could be ideal in an
anti-windup scheme. In this work, the conventional Internal
Model Control (IMC) structure (see Fig. 1) is shown to
have such characteristics against any additive uncertainty,
and hence in the SISO case against any multiplicative LTI
uncertainty also. On the other hand, [14] argues that if the
uncertainty is norm-bounded but not necessarily LTI, then
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Fig. 1. Conventional IMC structure.

Fig. 2. IMC anti-windup structure.

IMC need not be a robustness preserving anti-windup for
output multiplicative uncertainty. In addition, [8] illustrates
with examples other anti-windup schemes where robustness
is preserved for a specific class of SISO first order plants
with delay.

The motivation behind this paper is to extend the results
in [8] and find conditions that guarantee robustness preserv-
ing anti-windup which can be applied for SISO systems of
any order. The treatment is constructed on the anti-windup
version of the IMC structure, see Fig. 2. Two conditions are
obtained using the IQC framework of [12] – we consider
robustness preservation against LTI uncertainty and norm-
bounded uncertainty and how they are exploited for the sake
of anti-windup tuning.

The paper is structured as follows: Section II introduces
briefly the IMC anti-windup structure and some preliminaries
on its robustness. Sections III and IV present the main results
of this work – it discusses the sufficient conditions for
robustness preservation against LTI uncertainty and norm-
bounded uncertainty, respectively. Section V shows how to
combine the obtained conditions for the purpose of anti-
windup tuning. The main outcomes are illustrated through
some examples in section VI and finally, some concluding
remarks are provided in section VII.

A. Notation

This work is developed on the space of square integrable
signals L2 with support on [0,∞) and its associated extended
space [10] is denoted by L2e. The inner product of x,y ∈ L2
is defined in the frequency domain as shown below

〈x,y〉= 1
2π

∫
∞

−∞

x( jω)∗y( jω)dω
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where x( jω) and y( jω) denote the Fourier transforms of x
and y, respectively.

An operator1 ∆ : L2e → L2e is said to have finite gain or
called bounded if

‖∆‖ := sup
p∈L2,p6=0

‖∆(p)‖
‖p‖

< ∞

‖∆‖ is referred to as the gain or norm of the operator, see [9].
Two sets of uncertainty operators are distinguished in this

work. They are:
• Norm-bounded uncertainty: This refers to the uncer-

tainty elements with norm less than γ
−1
∆

which are
possibly non-linear and time-varying.

UNB = {∆ : ‖∆‖ ≤ γ
−1
∆
}

Such an uncertainty set can also be described by means
of the following IQC〈[

p
∆(p)

]
,

[
α 0
0 −αγ2

∆

][
p

∆(p)

]〉
≥ 0, ∀ω ∈ R (1)

where α ≥ 0 is a constant.
• LTI uncertainty: This corresponds to the subset of UNB

with LTI stable elements with norm less than γ
−1
∆

ULT I = {∆ : ‖∆‖∞ ≤ γ
−1
∆
}

where
‖∆‖∞ := max

ω∈R
|∆( jω)|

Within the IQC framework, such a set is described by〈[
p

∆(p)

]
,

[
α( jω) 0

0 −γ2
∆

α( jω)

][
p

∆(p)

]〉
≥ 0, ∀ω ∈R

(2)
where α( jω)≥ 0 is a bounded measurable function. For
more details refer to [12].

II. IMC ANTI-WINDUP

The conventional IMC structure illustrated in Fig. 1 is a
useful control technique for stable plants and is often taught
in control textbooks (e.g. [17]). The controller is indicated by
Q and G denotes the plant model. Its structure corresponds
to the Youla parametrisation for stable plants and a robust
treatment is found in [15].

IMC anti-windup has also proved a fruitful structure for
the design of anti-windup control. Zheng et al. [24] introduce
the structure illustrated in Fig. 2 with Q f and Qb as the
anti-windup elements. Input constraints are indicated by the
saturation function sat(.). To retain the behaviour of the IMC
linear controller, the following relation should hold

(I +Qb)
−1Q f = Q (3)

Two anti-windup choices stand out:
Case 1:

Set Q f = Q and Qb = 0. This is the conventional

1The development applies to operators acting upon the extended function
space L2e since boundedness of an operator acting on L2 implies bounded-
ness on the extended space L2e, see [9].

Fig. 3. IMC anti-windup expressed in the standard feedback connection.

IMC structure which is known to provide nice
stability properties, but the system performance can
be sluggish – see [24].

Case 2:
Set Q f = Q(∞) and Qb = Q(∞)Q−1 − I as pro-
posed in [5]. This choice was shown to improve
performance but nothing was said on its robustness
properties [24].

The relation between IMC anti-windup and other anti-
windup structures is well-understood (e.g. [11]). For multi-
variable plants it is common to replace the saturation function
with a constrained optimiser: see [1] for an overview and [13]
for a particular application.

A. Preliminaries on Robustness

We model our plant with uncertainty as

y = (G+W1∆W2)u+d (4)

with G the nominal model used in the controller, W1 and
W2 known frequency weighting functions, ∆ representing
uncertain dynamics and d some exogenous disturbance. We
will consider the following special cases:

Additive uncertainty:
W1 = I, W2 = I.

Input multiplicative uncertainty:
W1 = G, W2 = I.

Output multiplicative uncertainty:
W1 = I, W2 = G.

Standard application of the small gain theorem gives
robustness of the linear loop provided

γ
−1
∆

<
1

‖W2QW1‖∞

(5)

where γ
−1
∆

is an indication of the “size” of the uncertainty
which the linear loop is known to tolerate.

For robustness analysis purposes, the IMC anti-windup
structure is expressed in terms of the standard feedback
connection – see Fig. 3. Let our saturation operator sat(.)
be defined in terms of IQCs as〈[

u
sat(up)

]
,

[
0 Z∗

Z −Z−Z∗

][
u

sat(up)

]〉
≥ 0 (6)

where Z( jω) satisfies conditions for Zames-Falb multipliers
[23].
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It follows from the IQC theorem [12] that the loop in
Fig 3 is robust to LTI uncertainty provided there is some
α( jω)≥ 0 such that

0 W2
−Q fW1 −Qb

I 0
0 I


∗

Π


0 W2

−Q fW1 −Qb
I 0
0 I

< 0 (7)

evaluated at all frequencies ω , with

Π =


α 0 0 0
0 0 0 Z∗

0 0 −αγ2
∆

0
0 Z 0 −Z−Z∗

 (8)

This reduces to the condition that there exists some α( jω)≥
0 such that

α
2−2

Re{ZQ f Q−1}
|W2|2

α +
|ZQ fW1|2

γ2
∆
|W2|2

< 0 (9)

is evaluated at all frequencies ω with α,Z,Q,Q f ,W1 and W2
being frequency dependent.

III. ROBUSTNESS PRESERVATION AGAINST LTI
UNCERTAINTY

A sufficient condition for the preservation of robustness
is provided below. We consider first robustness preservation
against LTI uncertainty.

Result 1. IMC anti-windup is guaranteed to preserve the
robustness of the linear loop against LTI uncertainty if

|X |
‖X‖∞

≤
Re{Q f Q−1Z}
|Q f Q−1Z|

, ∀ω ∈ R (10)

with
X( jω) :=W1( jω)Q( jω)W2( jω) (11)

Proof. The robustness of the constrained loop with respect to
ULT I is guaranteed if there exists an α( jω)≥ 0 such that (9)
holds. We first demonstrate that (9) is equivalent to

γ
−1
∆
≤
|W2|Re{Q f Q−1Z}
|ZQ fW1||W2|2

=
cos(∠Q f Q−1Z)
|W2QW1|

, ∀ω ∈R (12)

First, choose

α( jω) =
Re{ZQ f Q−1}
|W2|2

then (12) is sufficient for (9) . To show (12) is necessary,
assume it does not hold. In this case (9) is only satisfied for
α( jω)< 0.

Now compare (12) and (5). Ensuring the constrained
system to be as robust as the unconstrained counterpart
demands that

1
‖W2QW1‖∞

≤
cos(∠Q f Q−1Z)
|W2QW1|

, ∀ω ∈ R

Hence Result 1. �

Corollary 1. The condition in Result 1 can also be expressed
as

|X |
‖X‖∞

≤ Re{(I +Qb)Z}
|(I +Qb)Z|

, ∀ω ∈ R (13)

or
|X |
‖X‖∞

≤ cos(∠Q f +∠Z−∠Q), ∀ω ∈ R (14)

�

Remarks:
• The task of searching for a valid IQC multiplier α( jω)

is not required in the condition for robustness preserva-
tion making the computation of the test greatly simpler.

• Choose Z = I. If Q f = Q (conventional IMC) then ro-
bustness is preserved for any valid choice of W1, W2 and
Q. This result agrees with the discussion on robustness
preservation of [19] and [14].

• For robustness preservation against LTI multiplicative
uncertainty choose W2 = G without loss of generalisa-
tion.

• Result 1 states that the gain of the product W2QW1 is
penalised when the product Q f Z deviates in direction
from Q.

• Notice that the robustness condition of the constrained
system requires

Re{Q f Q−1Z}= Re{(Qb + I)Z} ≥ 0, ∀ω ∈ R (15)

This is equivalent to the stability result for the nominal
constrained loop by means of valid multipliers Z( jω)
to reduce conservatism, see [23].

• The phase difference between (Q f + Z) and Q cannot
be greater than 90◦.

Finally, note that if the product Q f Z is in the same
direction of Q at all frequencies then robustness is preserved.
Hence, a class of robustness-preserving anti-windup con-
trollers against LTI uncertainty is expressed in terms of the
Zames-Falb multipliers [23]

Z = I +H (16)

where the impulse response of H, denoted by h(t), satisfies∫
∞

−∞

|h(t)|dt < 1 (17)

Corollary 2. If

Q f =
Q

I +H

Qb =
Q f

Q
− I (18)

with h(t) satisfying (17), then preservation of robustness is
guaranteed.
Proof. Since Q f = Q/Z, the condition in Result 1 is auto-
matically satisfied because

|X | ≤ ‖X‖∞,∀ω ∈ R

�
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Fig. 4. Parabola involved in the robustness preservation condition against
UNB.

IV. ROBUSTNESS PRESERVATION AGAINST
NORM-BOUNDED UNCERTAINTY

If ∆ is a norm-bounded uncertainty (possibly non-linear
and/or time-varying) with size γ

−1
∆

, then a stronger condition
must be satisfied to guarantee robustness preservation.

Result 2. Robustness is preserved against UNB if

max
ω

α1( jω)≤min
ω

α2( jω) (19)

with

α1( jω) :=
1
|W2|2

(
Re{ZQ f Q−1}− ε

)
(20)

α2( jω) :=
1
|W2|2

(
Re{ZQ f Q−1}+ ε

)
(21)

and

ε( jω) :=

√(
Re{ZQ f Q−1}

)2−
|ZW2Q fW1|2
‖W2QW1‖2

∞

�

Proof. Robustness of the constrained loop for this type of
uncertainty is guaranteed provided there exists a constant
α > 0 such that (9) is satisfied for all frequencies. In addition,
robustness is preserved if the constrained loop is as robust
as the linear system. This is enforced by setting

γ
−1
∆

= ‖W2QW1‖−1
∞

in the robustness condition of the constrained loop. It fol-
lows then that robustness is preserved against norm-bounded
uncertainty if (19) holds where α1( jω) and α2( jω) are
respectively the smaller and greater non-negative roots of
the polynomial

α
2−2

Re{ZQ f Q−1}
|W2|2

α +
|ZQ fW1|2

‖W1QW2‖2
∞|W2|2

See Fig. 4. �

Remarks:

• Note that Result 1 is necessary for Result 2. Should
Result 1 not be satisfied at a certain frequency then
ε( jω) /∈ R; hence Result 2 is not satisfied either.

• The ordering of W1 and W2 with respect to the uncer-
tainty ∆ is significant as they need not commute when
∆ is nonlinear.

• For the conventional IMC structure and choosing Z = I,
Result 2 becomes

α1( jω) :=
1
|W2|2

−

√
1− |W2QW1|2
‖W2QW1‖2

∞

α2( jω) :=
1
|W2|2

+

√
1− |W2QW1|2
‖W2QW1‖2

∞

If W2 is constant, then robustness of the unconstrained
loop is preserved against norm-bounded uncertainty
provided it is preserved against LTI uncertainty. This is
not necessarily true for the case where W2 is a function
of the frequency – there can exist a W2 for which
preservation of robustness is not guaranteed against UNB
but it does for ULT I . This agrees with the results in [14]
in the sense that conventional IMC is known to preserve
the robustness for input multiplicative uncertainty (W2 =
1) but not otherwise.

V. TUNING

The linear controller Q is usually designed by the stan-
dard methodology proposed in [4]. Assume the plant G is
decomposed as

G = G−G+

where G+ is the transfer function that collects all stable poles
and zeros. Then the linear controller is chosen as

Q = G−1
+ F

with F selected so the controller Q is realisable and to set
an specific closed-loop performance, see the complementary
sensitivity function

T = GQ = G−F

A suitable form for tuning the anti-windup elements is

Q f = Qλ +(1−λ )Q(∞) (22)

with 0 ≤ λ ≤ 1, see [11]. The choices λ = 1 and λ = 0
corresponds to Case 1 and Case 2, respectively, as discussed
in section II.

If Z = I and the choice of anti-windup elements is dic-
tated by the rule (22), robustness against LTI uncertainty is
preserved provided

|X |
‖X‖∞

≤ cos(∠Q f −∠Q), ∀ω ∈ R (23)

with

∠Q f −∠Q = arctan
(

−Im{Q}(1−λ )Q(∞)

λ |Q|2 +(1−λ )Q(∞)Re{Q}

)
and X( jω) defined in (11).
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Results 1 and 2 can be exploited for tuning the anti-windup
scheme in such a way that the system aims at performance
while guaranteeing robustness preservation. A line search
can be carried out by means of (22) for tuning the anti-
antiwindup architecture according to the uncertainty set for
which robustness is desired to be preserved. We propose:
• Robust anti-windup against UNB:

min
λ∈[0,1]

λ

s.t.
max

ω
α1( jω)≤min

ω
α2( jω), ∀ω ∈ R

with α1( jω) and α2( jω) given by (20) and (21),
respectively.

• Robust anti-windup against ULT I :

min
λ∈[0,1]

λ

s.t.
|X |
‖X‖∞

≤
Re{Q f Q−1Z}
|Q f Q−1Z|

, ∀ω ∈ R

with X( jω) expressed in (11).
Obviously, if the conditions for robustness preservation

are not satisfied even with λ = 1, then robustness preserving
anti-windup can not be guaranteed. The multiplier Z( jω) is
chosen to reduce conservatism.

VI. EXAMPLES

The following examples consider a second order plant

G(s) =
w2

n

s2 +2ζ wns+w2
n

A. Example 1

This example illustrates that robustness can be preserved
against norm-bounded uncertainty for Case 2. With this aim,
we consider wn = 10,ζ = 0.5 and a linear controller in the
form

Q(s) =
s2 +2ζ wns+w2

n

w2
n

c2

(s+ c)2

with c = 5. In addition, assume W1 = W2 = Z = I for
simplicity. We observe from the simulations that by choosing
λ = 0

Q f = Q(∞) = 0.25

Qb =
75

s2 +10s+100

Robustness preservation is guaranteed against norm-bounded
uncertainty since the condition in Result 2 is satisfied - see
Fig. 5. Observe that in this case

max
ω

α1( jω) = min
ω

α2( jω) = Re{Q f Q−1( j0)}= 0.25

Note also from Fig. 6 that robustness preservation is
ensured against ULT I . As expected, |∠Q f −∠Q| ≤ 90◦ for
all frequencies and (Qb +1) is positive real.
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Fig. 5. Example 1 – Robustness preservation test against UNB.
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Fig. 6. Example 1 – Robustness preservation test against ULT I .

B. Example 2
This example is taken from [19] and the second-order plant

is considered to have wn =
√

10 and ζ = 1. The damping in
the perturbed plant is reduced significantly

Ĝ(s) =
10

s2 +0.01s+10
In [19], it is shown that a static anti-windup design leads
to instability. A dynamic anti-windup scheme is synthesised
with the method proposed therein and the obtained controller
is essentially the conventional IMC structure. In this Exam-
ple, we exploit Corollary 2 and find an anti-windup controller
with the same robustness preservation guarantees as that of
the conventional IMC structure but with slightly improved
performance.

To account for this uncertainty in the LTI case, the
following uncertainty weights are chosen

W1(s) =
−7.176×10−15s2 +100.9s

s4 +10.01s3 +20.1s2 +100.1s+100
and W2(s) = 1. The corresponding linear IMC controller is
obtained from the feedback controller in [19]

Q(s) =
135(s+8.873)(s+5)2(s+1.127)

(s+55.56)(s+25.8)(s2 +8.639s+23.54)
The anti-windup elements are chosen as indicated in Corol-
lary 2 (see (18)) with a corresponding dynamic multiplier

Z(s) =
s+5

s+10
(24)
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Fig. 7. Example 2 – Performance comparison

Hence the above anti-windup controller is guaranteed to
preserve robustness against LTI uncertainty. Furthermore,
since W2 is constant, then robustness is also guaranteed
against norm-bounded uncertainty. Notice that (24) is a valid
multiplier since

H(s) = Z(s)− I =
−5

s+10
and ∫

∞

0
|−5e−10t |dt =

1
2
< 1

Figure 7 shows the performance among the different
scenarios. We observe that when the constraints become
active, the closed-loop becomes unstable if no anti-windup
is included. In addition, we behold that the IMC anti-windup
controller offer a slight improvement with respect to the
conventional IMC in the sense that no undershoot is present
for reference tracking and the settling and rising times have
been decreased.

VII. CONCLUSIONS

This paper has presented two conditions for robustness
preserving anti-windup against LTI and norm-bounded un-
certainty. Such characteristics can be ideal for anti-windup
structures. The conditions have been developed within the
framework of IQCs and it has been expressed in terms
of multipliers for descriptions of the saturation operator to
improve conservatism. This work also characterises a set
of robustness-preserving anti-windup controllers expressed
in terms of the Zames-Falb conditions. The conditions have
been exploited for the sake of anti-windup design.

Although the treatment has been limited for the SISO
scenario, the work herein is believed to provide a neat
insight sometimes difficult to achieve for MIMO systems.
Conditions for the preservation of robustness are expressed
in [14] for the MIMO case. However, the selection of the IQC
multiplier for the uncertainty is required in the conditions
hence increasing the complexity in the implementation.

The reliability of the different inequality tests depends on
the resolution and range of the frequency variable ω . For
high-order cases, the resolution must be increased adequately
at the cost of an increased computational time to minimise
the risk of missing crucial frequencies.
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