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Abstract— We investigate the transient behavior of a class
of stochastic gradient algorithms. Unlike the analysis usually
applied to stochastic approximation and simulated annealing
which focuses on the rate of convergence and the asymptotic
limit, we take a more detailed look at the transient behavior
with the goal of better understanding how the global structure
of the performance measure influences the behavior of the
algorithm. For the sake of tractability, we work with a specific
class of problems characterized by gradients with easily char-
acterized stationary points. Our prototype involves stochastic
algorithms for ordering a numerical list, a problem which is
the subject of a recent paper in the condensed matter physics
literature, focusing on hysteretic effects in annealing. These
authors raise several questions of interest in studying stochastic
dynamics which inspired this paper.

I. INTRODUCTION

Stochastic approximation is a standard tool in learning
theory that puts emphasis on getting the precise answer, even
if it takes a very long time. It works by reducing the rate
of descent over time, setting up a situation where the law of
large numbers is applicable. However, it usually happens that
at some point, time becomes more important than accuracy.
Typically this means that it is necessary to settle for an
answer that corresponds to a transient state rather than the
equilibrium state, implying that a deeper understanding of
the transients would be of value.

In condensed matter physics there are observations relating
to nonequilibrium effects that have been difficult to model
but now seem to be responding to some new methods. For
example, the recent paper by Ling-Nan Zou and Sidney
Nagel [1] studies nonequilibrium effects associated with a
stochastic sorting algorithm. Writing in reference to hys-
teretic effects in annealing they say, “We find that sorting
can display many features of a glass, even for lists as small
as N=5”.

Inspired by their numerical experiments, we look at a
similar problem, involving a continuous time gradient flow. It
shares important features with their work while lending itself
to somewhat more insightful mathematical analysis. As they
acknowledge in their work, sorting a moderately sized list
of numbers is a routine problem, scarcely meriting a new
detailed investigation. The reason for using it as an example
here is that in a stochastic context it has some analytical
aspects that seem to shed light on more difficult problems.
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In [1] the authors consider sorting a list of numbers using a
discrete time stochastic algorithm which, at each stage, picks
a pair of adjacent elements of the list and either reverses
their order or leaves it unchanged based on a probabilistic
rule. This rule involves comparing the difference in the
“energy” associated with the two states and contains a
parameter, which can be thought of as modeling temperature.
In some stages of their numerical experiments they vary the
temperature capturing some aspects of a simulated annealing
algorithm. In this paper we also study list sorting based on
extremizing an energy function. We consider several different
energy functions, including one that is essentially the same
as the one used by Zou and Nagel.

In both physics and in optimization algorithms there is
often a local vs. global issue that hinges on the availability
of short paths between states. Our model allows for different
levels of connectivity using various formulations ranging
from the Toda lattice model, which allows only nearest
neighbor interactions, to the completely connected double
bracket flows. The latter evolves in a set of symmetric
matrices with fixed eigenvalues and takes the form

Ḣ = [H, [H,φ′]]

where [A,B] = AB −BAand φ is a differentiable function
of H which is to be maximized. Nearest neighbor (Toda)
flow is a special case of this. This equation, has a natural
stochastic version which, when written as an Itô equation, is

dH = [H, [H,N ]]dt =
∑

[Ωij , H]dwij+
1

2
[Ωij , [Ωij , H]]dt

In [1] the function φ is something like

φ(H) = β tr (diag(H))
2 −

(
diag(SHST)

)2
+ tr(HN)

with S being a shift (super diagonal ones) matrix. In this
case the gradient ascent equation is

Ḣ = [H, [H,β diag (H− SHST) + N]]

and the equilibria occur when H is diagonal and when
(H − SHST ) + N ] has two or more repeated entries
on the diagonal. Stability demands that diag H and diag
(H −SHST ) be similarly ordered. A one parameter family
that captures a number of interesting features is

Ḣ = [H, [H,N + αdiag(H)]]

If α is zero this equation has n! equilibria but only one of
these is stable. When α is large it has n! stable equilibria
and many unstable equilibria as well.

After this introduction we proceed in steps.
A: We recall some properties of a well studied nonlinear
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flow having many equilibria.
B: We describe a family of particularly simple gradient
flows.
C: We introduce a stochastic version and compute
expectations, variances, etc.
D: We describe a related Markov chain model for the non
equilibrium behavior.

The author is grateful to Dr. James Phillips of Rutgers
University for calling his attention to the work of Zou and
Nagel and subsequent correspondence.

II. GRADIENT FLOWS WITH MANY LOCAL MAXIMA

To give a better understanding of the flows being discussed
it may be helpful to provide some further background ma-
terial. Define a linear operator mapping square matrices into
square matrices

adH(X) = [H,X] or adH(·) = [H, · ]

This operator has eigenvalues that are the pairwise differ-
ences of the eigenvalues of H . Its null space is the set of
matrices that commute with H . Let ad−1

H denote the Moore-
Penrose inverse of adH relative to the matrix inner product
tr(ATB).

Define Sym(Λ) to be the set of all real symmetric matrices
with eigenvalues Λ = {λ1, λ2, ..., λn}, all distinct. The so-
called normal metric on Sym(Λ) is a Riemannian metric
defined on the space of symmetric matrices with a given set
of (distinct) eigenvalues. The differential description is

(ds)2 = 〈ad−1
H (dH), ad−1

H (dH)〉

It is to be noted that adH is one-to-one and onto as a map of
the tangent space of Sym(Λ) into itself. Given a function φ
on a Riemannian manifold with metric G, the gradient ascent
equation is ẋ = G−1φ′. In our context G−1(·) = [H, [H, ·]]
so a function φ(H) gives rise to the gradient assent equation
Ḣ = [H, [H,φ′]].

One way to think about this metric involves the idea that
any two symmetric matrices with the same set of eigenvalues,
say H1 and H2, are related by H1 = ΘH2ΘT for some
orthogonal matrix Θ. If the eigenvalues of H1, and hence
those of H2, are distinct then the matrix Θ that relates them
is almost unique; it is unique to within a multiplication on
the right by a diagonal matrix with diagonals that are ±1.
Of course any orthogonal matrix can be written as Θ = eΩ

for some skew symmetric matrix Ω. Let ||Ω|| denote the
square root of the sum of the squares of the entries of Ω;
i.e., its Frobenius norm. Then if ||Ω|| is small Θ = eΩ is
close to the identity and H2 = ΘH1ΘT is close to H1. In
fact, if we define the distance between H1 and H2 to be the
smallest value of ||Ω|| consistent with eΩH1e

−Ω = H2 then
this distance is the same as the distance measure coming
from the Riemannian metric defined above.

Observe that for

H(θ) = exp

[
0 θ
−θ 0

] [
a 0
0 b

]
exp

[
0 −θ
θ 0

]

We have

H(θ) =

[
a+b

2 + a−b
2 cos 2θ b−a

2 sin 2θ
b−a

2 sin 2θ a+b
2 −

a−b
2 cos 2θ

]
with θ parametrizing the path by arc length. So, by this
measure, two diagonal matrices in Sym(Λ) which differ by
virtue of a transposition of two diagonal entries are π/

√
2

units apart.
We now observe that in certain important cases the solu-

tion of Ḣ = [H, [H,N ]] is simply a reparametrization of a
geodesic.

Lemma: If H(0) and N are symmetric and if for Ω =
[H(0), N ] we have [H(0),Ω] = k1N and [N,Ω] = k2H(0)
then there is a rescaling of time, t 7→ α(t) such that

H(t) = eΩα(t)H(0)e−Ωα(t)

satisfies the equation Ḣ = [H, [H,N ]]
Proof: Let [H(0), N ] = Ω. The derivative of H(t) is

d

dt
eΩαH(0)e−Ωα = α̇eΩα[Ω, H(0)]e−Ωα

Some manipulation shows that with this assumption about
the form of the solution, the differential equation for H is
equivalent to

α̇[Ω, H(0)] = [H(0), [H(0), e−ΩαNeΩα]]

Using the hypothesis we see that

eΩαNe−Ωα = rH(0) + sN

Thus
[H(0), e−ΩαNeΩα] = uΩ

and hence that the right-hand side is proportional to the left.
This completes the proof.

As an example, if N = diag (a,b) and H(0) = [0, 1; 1, 0]
the flow Ḣ = [H, [H,N ]] the equation for α is

α̇ =
(b− a)

2
sin 2α

which has the solution

α(t) = tan−1
(

tan (θ (0)) e(b−a)t
)

The distance between diagonal matrices related by a cyclic
permutations is also easily computed. For example, the
distance between a 0 0

0 b 0
0 0 c

 and

 b 0 0
0 c 0
0 0 a


is 2
√

2π/3, about one-third larger than the distance between
the identity and a transposition.

In an earlier paper [2] we investigated the behavior of the
solutions of the equation in symmetric matrices

Ḣ = [H, [H,N ]]

Bloch [3] developed this further and subsequently there
has developed considerable further work, e.g., [4]. Under
the assumption that the eigenvalues of H(0) and N are
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symmetric with distinct eigenvalues, It was shown that this
equation flows to the value of H that maximizes the trHN .
More generally, if φ(H) is any differentiable function of H
and if we write dφ(H)/dH = φ′, then, as we just observed,
the flow

Ḣ = [H, [H,φ′]]

is the gradient ascent equation relative to the normal metric.
In the case of the function φ(H) = tr(HN) with N

having distinct eigenvalues, there are exactly n! values of
H where the gradient vanishes but only one of these is a
local maximum and thus a global maximum. However, this
is an exceptional situation not shared by most choices of
φ. Letting diag(H) denote the diagonal of H , the function
φ(H) = tr(HN + αHdiag(H)) may have as many as n!
local maxima if α is sufficiently large. Other choices for φ
having many extrema have been explored in connection with
the assignment problem in Brockett and Wong [5] and Wong
[6].

(1,2,3)

(1,3,2)(2,1,3)

(2,3,1)

(3,2,1)10

14

11

13

(3,1,2)

Fig. 1. Let n = 3. Showing the 3! equilibria identified with the
corresponding permutations, the value of tr(HN), and some possible
trajectories joining the equilibria

A simple modification of this model allows for an ad-
justment of the levels of connectivity. Let π be a projec-
tion mapping skew-symmetric matrices into themselves; i.e.,
π(π(·)) = π(·). Then the modified equation

Ḣ = [H,π([H,φ′])]

also evolves with unchanging spectrum. It is easy to verify
that

d

dt
tr(HN) = tr ([H,N]π([H,N]) = tr

(
(π([H,N])2

)
If π is the identity map then of course we see that trHN
is weakly monotone increasing and only fails to increase if
H and N commute. For arbitrary projection trHN is still
weakly monotone but now fails to increase when π([H,N ])
is zero. If, for example, π projects onto the skew-symmetric
tridiagonal matrices then we can say that there is only nearest
neighbor connectivity; if it projects onto a skew-symmetric
band matrix of width five there is greater connectivity, etc.

III. THE TRIDIAGONAL CASE

We begin with an exploration of a special case of the
equation Ḣ = [H, [H,N ]] as treated in [7]. In the section
N is the diagonal matrix N = diag (1, 2, ...,n). In this
case the tridiagonal matrices are an invariant manifold for

Fig. 2. Showing the final value of H and the evolution of the diagonal
terms of the solution of the full double bracket equation for a particular
initial condition. Here n = 7 and

Ḣ = [H, [H,N ]]. It is common to use the notation

H =


b1 a1 0 0 0 ... 0 yn
a1 b2 a2 0 0 ... 0 0
0 b2 b3 a3 ... ... 0 0
... ... ... ... ... ... ... ...
0 0 ... 0 0 ... bn−1 an−1

an 0 ... 0 0 ... an−1 bn


The resulting equations coincide with the equations proposed
by Toda, as recast by Flascka. These equations are a special
case of the Lax form, widely studied in the theory of
integrable systems. As has been observed, this equation flows
without changing the eigenvalues of H . Except for initial
conditions corresponding to a set of measure zero, the resting
state will be the equilibrium point H = diag (λ1, λ2, ..., λn)
where λ1 > λ2 >, ..., > λn). That is to say, this equation
acts to find and sort the eigenvalues.

Fig. 3. Showing a portion of the solution of the tridiagonal situation as
a pair of transpositions are occurring. The traces show the values of the
various diagonal entries. The matrix shows the value of H at the moment
the simulation is stopped. The boxes superimposed on the matrix highlight
some of the entries taking part in a transposition.

In iteration described in [1] a pair of nearest neighbors is
picked and possibly interchanged, meaning that only nearest
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neighbors are transposed. In the tridiagonal case equations all
interactions are nearest neighbor relations as well. Figures 3
and 4 show a solution of these equations in the case n = 7.
Notice that the solution spends most of its time close to
an equilibrium point. Even more, over the interval shown
it spends most of its time close to an unstable equilibrium
point.

Using the standard identities∑
h2
ij =

∑
λ2
i ;

∑
hii =

∑
λi

we can develop a bound on how large the off-diagonal terms
can be. Minimizing the sum of the squares of the diagonal
terms of H , subject to the constraint on their sum yields∑

h2
ii ≥

1

n

(∑
λi

)2

=⇒
∑
i 6=j

h2
ij ≤

∑
λ2
i−

1

n

(∑
λi

)2

The right-hand side can be thought as being n times the
”sample variance” of the eigenvalues. By including the
constraint trHN = m we can sharpen this to∑

i6=j

h2
ij ≤ trH2 − (trH)2

trI2
− (trHN̂)2

trN̂2

where N̂ = N − (trN)I. The more closely clustered the
eigenvalues and the closer trHN is to an extreme value, the
tighter the bound on the off-diagonal terms. This bound is,
of course, valid for the full double bracket flow, not just the
tridiagonal flow.

Fig. 4. Showing trajectories of the Toda sorter with a prolonged meta stable
period. The decrease in connectivity, as compared to the simulation shown
in figure 2, results in a correspondingly slower evolution of the process.

In comparing the flow produced by a tridiagonal H with
the flow produced with a full symmetric matrix it is of
interest to recall the theorem of Cayley relating the minimum
number of transpositions t needed to generate a particular
permutation of n objects to the number of cycles c in the
permutation. It asserts that t = n − c. In the case of
the tridiagonal flow being used as an illustration here, the
number of cycles associated with permuting (7,6,5,4,3,2,1) to
(4,6,2,7,1,5,3) is 4 an so at least 3 permutations are required.
The fully connected flow illustrated in figure 2 generates just
three but the tridiagonal sorter is less efficient and uses nine.

4

6

5

7

1

5

7

6

5

4

3

2

13

Fig. 5. Showing the “braid” corresponding to the trajectories of the
diagonals of the tridiagonal flow. Time flows from left to right. There is
a total of the nine transpositions. Our convention is that when hii crosses
hjj the larger of the two passes over the smaller.

IV. STOCHASTIC GRADIENTS

The density equation is a basic tool in statistical mechan-
ics. It has a variety of names, forms and interpretations
but here we want to call attention to the way it is used
in the literature on NMR. In this setting it is used to
describe the statistical properties of a many particle quantum
system which is not completely isolated from the environ-
ment because of interactions with unmodeled dynamics. The
unmodeled dynamics interact with the system of primary
interest contributing thermal noise shaped by the natural
frequencies of the unmodeled dynamics. These stochastic
effects are modeled as additive terms in the density equation.
In the NMR literature these are often called Lindblad terms.

The density equation is written in terms of a Hermitean
matrix having trace 1. In the physics literature it is denoted
by the letter ρ but to be consistent with our earlier notation,
we use the letter H . The basic density equation takes the
form Ḣ = [H0, H] with H0 being the Hamiltonian of the
system of interest. If H has point spectrum the solutions
evolve in such a way as to keep the eigenvalues constant.
The stochastic version can be described using an Itô equation
of the form

dH = [H0, H] +
∑

[Ωi, H]dwi +
1

2

∑
[Ωi, [Ωi, H]]dt

with Ω skew-Hermitean. The last two terms on the right
model the heat bath. This solution of this equation also
evolves with unchanging eigenvalues. The corresponding
equation for the expectation of the density is

d

dt
EH = [H0, EH] +

1

2

∑
[Ωi, [Ωi, EH]]

The stochastic equation describes a flow on a manifold
of dimension n(n − 1)/2 imbedded a euclidean space of
dimension n(n+ 1)/2. The operation of taking expectations
involves taking convex combinations of paths lying in the
manifold but because the manifold is not a convex subset
of the larger space these linear combinations need not be
points in Sym(Λ). Thus the equation for the expectation of
H will not evolve in Sym(Λ) and EH need not have the
same eigenvalues as H . See figure 6. In fact, it is clear that
for typical values of Ω the equation for the expectation will
decay to (1/n)I which matches H(0) only to the extent that
it has the same trace.
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We adopt a similar model for our noisy gradient flow.
In n dimensions there are n(n − 1)/2 2-planes generated
by selecting elements two at a time from an orthonormal
basis. If we want isotropic noise, in the sense that when H
is perturbed to ΘHΘT the choice of Θ should not favor
any element of the orthogonal group over any other, then
we need this many independent noise terms, each Ωij of the
form eie

T
j − ejeTi . In this case the Lindblad terms take the

form ∑
[Ωij , H]dwij −

1

2
(nH − tr(H)I) dt

Putting these terms into the full nonlinear gradient equa-
tion, gives

dH = [H, [H,φ′]]dt+
∑

α[Ωij , H]dwij − α2nH − ItrH

2

and linearizing this about an equilibrium point for
which H = diag(λ1, λ2, ..., λn) and φ′(H) =
diag(m1,m2, ...,mn) we get a set of n(n− 1)/2 decoupled
equations for the off-diagonal elements

dhij = aijhijdt+ αbijdwij − (α2/2)hijdt

where aij = −(λi−λj)(mi−mj) and bij = (λi−λj). If all
the aij are negative, as would be the case if the equilibrium
point is a local maximum then we can compute the steady
state variances

Eh2
ij = − α2(λi − λj)2

−(λi − λj)(mi −mj) + α2/2

but if the equilibrium in question is not a local maximum
the linearized model does not have a steady state. With
the present choice of stochastic terms, the equation for the
expected value of H takes the form

d

dt
EH = E [H, [H,φ′]] + α2 (nEH − tr(H)I)

Notice that the Itô term has the effect of adding damping to
the equation for the expected value and that the equation
for the expected value does not evolve in the isospectral
manifold.

isospectral

manifold

expectation

sample path

expected value

Fig. 6. Showing a sample path in the isospectral manifold and the solution
of the equation for the expected value evolving off the isospectral manifold.

It happens that there is an explicit formula for the steady
state solution of the Fokker-Planck equation associated with
our stochastic descent equation. It takes the form

ρss(H) =
1

Z
e−2φ(H)/α2)

where Z is the constant necessary to normalize ρ. (See,
e.g., [8] where this example is treated and put in a broader

context.) This implies that in steady state the surface(s) of
constant probability coincide with surface(s) of constant φ
and, consequently, for small α the density is peaked about
the minimum value of φ(H). This argument is an essential
part of the verification that simulated annealing works in a
continuous time, continuous space setting. In particular, if
the maximum value of φ occurs when if φ′(H) is diagonal
then with high probability the solution is nearly diagonal
when α is small and the system is in steady state.

What the above analysis suggests can be summarized with
the help of figure 7. Notice that for values of α such that
α2(nEH − tr(H)I) dominates E [H, [H,φ′]] the expected
value of H is close to (tr(H)/n)I. For small values of α the
flow is close to the deterministic flow and consequently it is
close to the isospectral manifold and, when in equilibrium, is
close to being diagonal. For such α the term E [H, [H,φ′]] is
nearly diagonal as is H . Thus we see that if φ has multiple
local maxima, as we reduce α from a large value, more
equilibria will appear, consistent with the fact that at α = 0
all the equilibria associated with the gradient flow will be
present.

isospectral
manifold

high temperature
equilibrium

paths of
decreasing α

Fig. 7. Schematic showing the effect of reducing α on the creation of
additional equilibria as α goes to zero and the isospectral manifold is
approached.

V. A MARKOV PROCESS APPROXIMATION

As one sees from the simulations, the sample paths spend
relatively long periods of time near the equilibria of the
equation Ḣ = [H, [H,φ′(H)]]. This is the case even if the
equilibria are not stable. A more quantitative study of this is
partially summarized in Figure 8. The vertical lines denote
moments in time, with time advancing from left to right. On
the left of each line is shown an ordering of the integers one
through seven. On the right of each line is the numerical
value of the eigenvalue of the linearized system with each
entry being associated with the nearest neighbor transposition
that would interchange the two integers bracketing it on the
left. It may be observed that the order in which the transpo-
sitions occur is related to the relative sizes of the unstable
eigenvalues. For example, for the initial ordering, the largest
unstable eigenvalue is 5, leading to the transposition of 7 and
2. The next largest is 4, corresponding to an interchange of
5 and 1, etc.

Because, as we have seen, the trajectories spend most
of their time near equilibria, we now turn our attention to
the possibility of approximating the behavior of the system
by a continuous time Markov chain whose states are the
various equilibria, and whose transition probabilities are to be
estimated on the basis of the properties of the solutions near
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3

2

1

7

5
-1

-1

+3

+3
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After six swaps

order time 

constant

+4

Fig. 8. Diagramming the sequence of transpositions of the numbers 1,2,...,7
determined by the Toda flow of the earlier section. The numbers labeled as
time constants refer to the negative of the eigenvalue of the linearized gra-
dient flow (the Hessian) which goes along with the particular transposition
indicated. Large negative eigenvalues generate rapid transitions.

equilibrium points. A closer examination of the trajectories
generated by the Toda reinforces the intuitive idea that there
should be a relationship between the “degree of instability”
of a particular eigen-direction and the time which elapses
before the solution leaves that equilibrium point traveling
in that eigen-direction. We propose a quantitative version
defining a Markov chain whose transition probabilities are
proportional to the size of the unstable eigenvalues. We
identify the states of the Markov chain with the n! possible
diagonal forms of H . The transition rate associated with a
transition which is not a simple transposition is taken to
be zero. The transition rate associated with the interchange
of the diagonal elements i and j is take to be zero if the
interchange results in a decrease of trHN and is otherwise
taken to be

aij = (ni − nj)(hii − hjj)

A glance at Figure 4 shows that after about ten units of time
there are three unstable eigenvalues, all equal to +1, and yet
the observed transition times associated with these modes
are widely separated, reinforcing the idea that a probabilistic
description is appropriate.

Local maxima lead to stable equilibria and these need to
be treated differently from those that are unstable; for stable
equilibria the role of the noise is critical because without
noise the trajectory will never leave the equilibrium point.
In order to get a useful estimate for the transition times it
would be helpful to know the probability distribution for
the exit time associated with a suitable open set around the
equilibrium point. Recall the equation from section 2

θ̇ =
(b− a)

2
sin 2θ

which describes gradient flow leading to the transposition of
diagonal elements a and b

If a > b then the equilibrium solution θ = 0 is asymptoti-
cally stable and the equilibrium solution θ = π/2 is unstable.
Expressed in terms of θ, the stochastic equation

dhij = aijhijdt+ αbijdwij − (α2/2)hijdt

is simply

dθ =
(b− a)

2
sin 2θdt+ αdw

Assuming that θ(0) = 0, we would like to know the
probability distribution of the first time θ leaves the interval
(−π, π).

Recall that for the simpler process governed by dθ =
αdw ; x(0) = 0 the probability density for the first
exit time from (−r, r) is the Levy distribution ρ(T ) =
(r/α

√
2πT 3)er

2/2α2T , making the most likely exit time
r2/3α2. (See [9].) If we use this as a crude approximation
to our situation then we would set the rate of transition
from an stable equilibrium state to a second equilibrium state
differing only in that λi and λj have been interchanged on
the diagonal of H as

aij =
3α2

2(λi − λj)π2

The theory of large deviations, and more specifically, the
Wentzell-Freidlin theory provides a method to estimate the
expected time required to leave a region about a stable
equilibrium [10]. To interchange two diagonal elements of
H , say a and b, the corresponding value of the off diagonal
element must reach the value h = |a − b|/2. This is the
barrier that must be crossed. A basic part of this analysis
in the case of an equation such as dx = f(x)dt + g(x)dw
is to solve a minimum energy transfer for the deterministic
equation ẋ = f(x) + g(x)u.
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