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Abstract— This paper considers linear time varying control
systems with delays. Roughly speaking, a so called π-flat output
of such a system, if it exists, allows to parameterize the states
and inputs of the system using derivatives and delays of the
π-flat output. Additionally, also predictions of the π-flat output
are allowed, which are characterized by a prediction operator
π . We present a toolbox for the computer algebra system Maple,
which implements the algorithm recently been proposed in
[1] for the computation of π-flat outputputs. We also give
an equivalent description of hyper-regularity of polynomial
matrices using one-sided inverses. This allowed us to replace the
transformation to Smith-Jacobson form by the efficient method
of row-/column-reduction for checking hyper-regularity. The
implementation of the toolbox is illustrated and its application
is explained by means of examples.

I. INTRODUCTION

The concept of differential flatness [2], [3], [4] has become

a very important tool in applied linear and nonlinear control

(see e.g. [5], [6], [7] for many interesting applications).

Extensions of this concept to time delay systems have been

proposed and discussed by many authors (see e.g. [8], [9],

[1]; other approaches may be found, e.g., in [10], [11]).

In this contribution we consider linear time varying delay

systems like the following example from [1] with the states

x1, x2, the input u and the time varying coefficient s(t)

ẋ1(t)− s(t)(x2(t − τ)− x2(t − 2τ)) = 0

ẋ2(t) = u(t − τ) .

Such systems can be rewritten using matrices which are

polynomial in the differential operator d
dt

and the delay

operator δ . The above system model can be rewritten in the

form Ax = Bu with

A =

(

d
dt

−s(t)δ + s(t)δ 2

0 d
dt

)

, B =

(

0

δ

)

. (1)

We basically adopt the ideas of [1] to analyse the proper-

ties of such control systems by suitable matrix decomposi-

tions, where also fractions in the delay operator are allowed.

It has been shown that this method allows to characterize

the class of π-flat linear delay systems. An algorithm for the

determination of π-flat outputs has been derived using, as a

main concept, the hyper-regularity of matrices.

In this paper we present a toolbox for the computer

algebra system Maple, which implements the algorithm for

the determination of π-flat outputs. We discuss here in detail
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the calculation rules for the used algebra, which are not

trivial. A major difference of the implementation is the fact

that in [1] hyper-regularity of the polynomial matrices is

checked by transformation to Smith-Jacobson form. For the

considered algebra, standard algorithms for transformation

into Smith-Jacobson form are computationally costly.

In this paper we show that hyper-regularity can be checked

by investigation of the row-/column-reduced form of a poly-

nomial matrix. Thus, we can formulate an algorithm for

checking π-flatness which is based on row- (resp. column-)

reduction. It is rather straight forward to obtain a complexity

analysis for checking hyper-regularity using row-reduction.

The implementation of the algorithm is rather simple and

has therefore been incorporated into the toolbox. This tool-

box can be seen as the continuation of our work on the

implementation of computer algebra tools for the analysis of

linear time varying [12] and nonlinear [13] systems.

The remainder of this paper is organized as follows: in

Section II we will introduce the used algebraic framework,

which mainly uses Ore polynomials. We will recall the rele-

vant facts about Ore polynomials and the used ground field.

Special emphasis is put on the calculation rules, which had

to be implemented in the toolbox. Furthermore, we establish

the relation between the row-reduced form of the considered

polynomial matrices and hyper-regularity. For convenience,

we also sketch the algorithm for row-reduction. Then, in

Section III it is shown how the considered class of linear time

varying systems with delays can be modeled using matrices

over Ore polynomials. We recall the concept of differential

flatness for systems without delays and the concept of

π-flatness for systems with delays and the algorithm for

computing flat or π-flat outputs is given. The algorithm also

yields the corresponding parameterization of the states and

of the input. It is discussed how this parameterization can

be used for motion planning. As a next step we discuss,

in Section IV, the implementation of the calculation rules

for Ore polynomials with the considered ground field in

the toolbox. Finally, we apply the toolbox to a well-known

example for linear systems with delays in Section V.

II. ALGEBRAIC FRAMEWORK

A. Ore Polynomials

Ore polynomials are a generalization of the usual poly-

nomials with a (not necessarily) commutative multiplication.

They have first been studied by Øystein Ore in [14]. As will

be shown below they are a good framework for modeling

differential as well as delay operators.

Let K be a ring without zero divisors. We consider poly-

nomial expressions in the variable Z with (left-) coefficients
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from K, that is, expressions of the form f = fsZ
s + . . .+

f1Z + f0 where f0, . . . , fs ∈ K. We would like to keep the

usual polynomial addition and to retain the degree rule, that

is, we demand deg( f g) = deg f + degg for all polynomial

expressions f and g. In particular, for f = Z and g = a ∈ K

there must exist elements σ(a) and ϑ(a) such that

Za = σ(a)Z +ϑ(a). (2)

This equation uniquely defines the maps σ : K → K and

ϑ : K → K. Assuming now that multiplication is associative

and distributive, σ must be an injective endormorphism and

ϑ must be a so-called σ -derivative, that is, for all a, b ∈ K

the map ϑ fulfills ϑ(a+b)=ϑ(a)+ϑ(b) and the σ -Leibniz

rule ϑ(ab) = σ(a)ϑ(b)+ϑ(a)b. (See [14] for a proof.)

Contrarily, for any ring K with (injective) endormorphism

σ and σ -derivative ϑ , there exists a ring of polynomial

expressions with the multiplication determined by (2). See

for example [15, Section 0.10] for a rigid construction.

Following the notation of [15] the set of Ore polynomials

over K with respect to σ and ϑ will be denoted by K[Z;σ ,ϑ ].
A first example of Ore polynomials are the usual commu-

tative polynomials, since for σ = id (the identity function)

and ϑ = 0 (the zero-map) the commutation rule (2) is just

Za= aZ for all a∈K, and hence Z is a commutative variable.
Another important example are differential operators. Let

K be the field of meromorphic functions and d
dt

the usual

derivative. For f ∈ K we obtain that application of d
dt

f

to a function g is the same as application of f · d
dt
+ d f

dt
,

since ( d
dt

f )g = d
dt
( f g) = f d

dt
g + d f

dt
g = ( f d

dt
+ d f

dt
)g. But

this is exactly the commutation rule (2) for σ = id and

ϑ = d
dt

. Following common custom, we will usually denote

K[Z; id, d
dt
] just by K[ d

dt
].

The last example we give here are the delay operators

(shift operators). Here, σ is the delay operator δ that is

defined as δ ( f (t)) = f (t − τ) for a fixed τ ∈ R. The com-

mutation rule (2) becomes thus δ f (t) = f (t − τ)δ . We will

simply write K[δ ] =K[Z;δ ,0] for the ring of delay operators.

Many more examples may be found, for instance, in [16].
In the following we take Z = d

dt
or Z = δ . Let f = fsZ

s+
. . .+ f1Z + f0 ∈ R. Multiplying f by Z from the left yields

Z f =
s

∑
i=0

Z fiZ
i =

s

∑
i=0

σ( fi)Z
i+1 +

n

∑
i=0

ϑ( fi)Z
i.

If we denote the coefficient-wise application of σ and ϑ to f

by σ( f ) and ϑ( f ), then the above equation may be written

more succinctly as Z f = σ( f )Z +ϑ( f ).
This formula yields a way to compute products of Ore

polynomials. For multiplying f with g = gtZ
t + . . .+ g1Z +

g0, we first iteratively compute Zg, Z2g = Z(Zg), . . . , Zsg =
Z(Zs−1g) and then we compute the sum f g = ∑s

i=0 fi(Z
ig).

We let our operator ring R = K[Z;σ ,ϑ ] act on a space

of functions F : For each y ∈ F and p ∈ R we denote by

p • y ∈ F the application of p to y.

In the following we assume that F is a left R-module.

That is, we assume that signals may be added and that for

all p,q ∈ R and all y,z ∈ F we have:

(p+ q)• y= p • y+ q • y, p • (y+ z) = p • y+ p • z,
1 • y = y, (pq)• y = p • (q • y)

(where 1 ∈ R means the identity operator). This application

extends naturally to matrices over R and vectors over F .

Note that we drop the • , when the meaning is unambiguous.

For the description of a linear control system of the form

Ax = Bu where A ∈ Rn×n and B ∈ Rn×m (see Section III),

we can define the system module M= R1×n+m/R1×n(A,−B)
(see for example [17], [11], [1] and the references therein)

as the quotient module of the free R-module R1×n+m by the

row space of the system matrix (A,−B). This is always a

left R-module itself, and one can show that its dual space

homR(M,F ) is isomorphic via the so-called Malgrange

isomorphism to the behaviour {(x,u) ∈ F 1×n+m | Ax = Bu}
(see [11]). Further examples of signal spaces for various

kinds of operators may be found in [18], [11], and [19] and

the references therein.

B. Field of Fractions

In order to represent prediction operators, we will allow

division by elements in K[δ ]. That is, we are considering the

total ring of (left-) fractions over K[δ ] which we will denote

by K(δ ). A general theory for fractions in non-commutative

domains was given by [20]. We use the formulæ from [21],

which includes also a section about derivatives of fractions.

These are needed to extend the derivation d
dt

to K(δ ). This is

necessary in order to define the Ore polynomials K(δ )[ d
dt
],

whose coefficients in d
dt

are fractions in δ .

Fractions of elements from K[δ ] can be represented as

pairs (b,a) where a ∈ K[δ ] and b ∈ K[δ ] \ {0}. The pair

(b,a) is thought of representing the left fraction b−1a. For the

computation of sums and products of fractions we will need

to compute least common left multiples (LCLMs)—denoted

by lclm(b,d)—for any two denominators b and d. This can

be done using the methods discussed in [22].

In [21], two fractions b−1a and d−1c are called equal if

there are f ,g ∈ K[δ ] \ {0} such that f b = gd and f a = gc.
Note, that this definition allows simplifying a fraction b−1a

by extracting left divisors of a and b, that is, if a = gs

and b = gt then b−1a = t−1s. Given two fractions b−1a

and d−1c, the sum is defined as (rb)−1(ra + sc), where

rb = sd = lclm(b,d), and the product is (rb)−1(sc), where

ra = sd = lclm(a,d).
Since δ and d

dt
commute by the chain rule, we may extend

d
dt

from K to K[δ ] setting d
dt
(δ ) = 0, see for example [23].

By [21, Thm. 13], this extends to a derivation of K(δ ) by
d
dt
(b−1a) = (sb)−1(s da

dt
− ra) where rb = s db

dt
. Using this,

we may finally introduce the ring of time-varying delay

operators as K(δ )[ d
dt
]. We discuss the application of such

operators for control in Section III.

C. Hyper-Regularity and Row-Reduction

We turn now to matrices of operators. Let Z = d
dt

or Z = δ ,

and let R = K[Z]. A matrix U ∈ Rn×n is called unimodular

if it has a two-sided inverse in Rn×n. We denote the set of

all unimodular matrices by Gln(R). For A ∈ Rn×m we will

denote its ith row by Ai,∗.

As outlined in the introduction, we follow [1] by basing

our toolbox on the concept of hyper-regularity. In [24],
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matrices are called hyper-regular if their Smith-Jacobson

form is particularly simple:

Definition 1 ([24, Def. 6]): A matrix A ∈ Rn×m is hyper-

regular if there are unimodular matrices S ∈ Gln(R) and

T ∈ Glm(R) such that

SAT =

(

Im

0n−m,m

)

,

if n ≥ m, or SAT = (In,0n,m−n) if m ≥ n.

If, in the case of m≥ n, a matrix A∈Rn×m is hyper-regular,

then is possesses a right inverse, since

SAT = (In,0n,m−n) ⇐⇒ AT = (S−1,0n,m−n)

⇐⇒ A
(

T

(

S 0n,m−n

0m−n,n Im−n

)

)

= (In,0n,m−n).

Taking only the first n columns of the right factor, that is,

M = T
(

S
0m−n,n

)

we obtain AM = In. Contrarily, this implies

that column-reducing (see below) A leads to (In,0n,m−n) =
AN for N ∈ Glm(R). Analogously, if n ≥ m, then hyper-

regularity is equivalent to the existence of a left inverse.

For checking the existence of left or right inverses, we

use so-called row- or column-reduction. First mentioned

in [25] for commutative polynomials, extensions to Ore

polynomials may be found in [26]. We will limit our

description to the row-reduction. The column-reduction is

completely analogous. Abstractly, the goal is to compute

low degree generators of the row-space of a matrix using

elementary row-operations. Below, we only consider the case

σ = id. Row-reduction is still possible for other cases, but

the formulæ become more complicated. See [26] for details.

We may write any row-vector v ∈ R1×n formally as a

sum v = vsZ
s+ . . .+v1Z+v0 where v0, . . . ,vs ∈ K1×n do not

contain Z. If vs 6= 0, then we call it the leading (coefficient)

vector of v and write vs = lv(v). In this case, we also say

degv = s. We explicitly define lv(0) = 0 and deg0 =−∞.

Let A ∈ Rn×m and assume that its rows are all non-zero.

We will reduce the degrees of the rows of A one by one.

The degree of a row can be reduced, if its leading vector

is a linear combination of leading vectors of rows of lower

degree. Assume for example that we are given a relation

0 = a1 lv(A1,∗) + . . .+ an lv(An,∗) where a1, . . . ,an ∈ K. Let

j be such that a j 6= 0 and that degA j,∗ ≥ degAk,∗ for all k

where ak 6= 0. Then the degree of

a jA j,∗− ∑
k 6= j, ak 6=0

akZdegA j,∗−degAk,∗Ak,∗

will be strictly smaller than the degree of A j,∗. Note that the

above sum can be realized as a series of elementary row-

transformations on A. Iterating this process yields essentially

the algorithm that is contained in the proof of [26, Thm. 2.2].

Note, that zero rows that occur during the computations can

simply be ignored.

As a tool, we define the leading (row) coefficient matrix

of A to be that matrix LCrow(A) ∈ Kn×m whose ith row is

the leading coefficient vector of the ith row of A. That is:

LCrow(A)i,∗ = lv(Ai,∗). Row-reduction is only possible if the

non-zero rows of LCrow(A) satisfy a non-trivial relation. That

motivates the following definition:

Definition 2: A matrix A ∈ Rn×m is row-reduced if and

only if LCrow(A) has maximal row-rank.

It is possible to prove, using for example [26,

Lem. A.2 (a)], that the rows of a row-reduced matrix are

R-linearly independent, that is, they are a basis for the row-

space. Also, since row-reducing a basis yields a basis with

smaller degrees and since by [26, Lem A.2 (d)] all row-

reduced bases have the same degrees, we may conclude

that row-reduction indeed yields a basis of lowest possible

degree. See [25, Thm. 5] for the analogous result in the

commutative case.

The fact that the row space of a left invertible matrix has

the canonical basis as minimal degree basis implies now that

row-reduction of such a matrix must yield a matrix in Kn×m

of degree zero, which must of course still be left invertible

and thus of rank n. That means, that we can check hyper-

regularity simply by computing a row-reduced form and then

checking its rank.

As mentioned in the introduction it is rather straight

forward to give a result on the complexity of the used

method for checking hyper-regularity, since in every step

of the row-reduction, the degree in d
dt

is reduced by one.

Taking into acount the reduction into row-reduced form and

then to the normal form of hyper-regularity we get (based

on the results in [26]) that the total amount of necessary

operations to check hyper-regulariy of a Matrix A∈ K[ d
dt
]
n×m

does not exceed O

(

m2n(degA)
(

n+(degA)2
)

)

operations in

K. Note that there exist rather few results for determining

the complexity of algorithms that transform matrices into

Smith-Jacobson form. In future work we will, however, also

implement such algorithms and will compare them by means

of relevant examples.

III. APPLICATION TO LINEAR CONTROL SYSTEMS WITH

DELAYS

With the algebraic background, which has been recalled

in Sections II-A, II-B and our results on the properties of

row-reduced forms of hyper-regular matrices in Section II-

C, we can now analyze a suitable class of control systems.

Similar to [1], we consider control systems, which can be

modeled in the following form:

Ax = Bu, (3)

with A ∈ K[ d
dt
]n×n, B ∈ K[ d

dt
]n×m, m < n and where K is a

skew field.1

Assumption 1: The rows of (A,−B) are independent (over

K[ d
dt
]).

Assumption 2: B is hyper-regular, i.e., there exists a uni-

modular matrix M̃ ∈ Gln(K[ d
dt
]) such that

M̃B =

(

Im

0n−m,m

)

.

Remark 1: Note that both assumptions are natural: As-

sumption 1 simply assures that there are no superfluous

equations in the model. Assumption 2 assures that the inputs

1if n≤m the problem of finding a flat output is useless since x completed
by n−m components of u can be chosen as a (π-)flat output. This will
become clear in the following.
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are really independent. This will become even more clear in

the following.

If we take K =R in (3) this describes the class of linear time

invariant systems. For K = K , the field of meromorphic

functions in the time t, this describes the class of linear

time varying systems. When linear time varying systems

with delays are considered, then basically A ∈ K [δ ][ d
dt
]
n×n

and B ∈ K [δ ][ d
dt
]
n×m

. Since we will carry out, in this case,

the analysis over K (δ )[ d
dt
], with K (δ ) the skew field of

rational functions in δ with coefficients in K , we will say

in the following that, for a unified notation, A∈ K[ d
dt
]
n×n

and

B ∈ K[ d
dt
]
n×m

with K =K (δ ). For examples of the different

system classes see, e.g., [6], [1], [27], [28].
If we apply M̃ from Assumption 2 to (3), we obtain the

equivalent system model (over K[ d
dt
])

(Im,0m,n−m)M̃Ax = u, Fx = 0, (4)

where

F = (0n−m,m, In−m)M̃A. (5)

Using this reformulated system, we can give an adapted

characterization of differential flatness and π-flatness, respec-

tively [1], [8].
Definition 3: System (3) with K = R or K = K is

differentially flat, if there exist matrices P ∈ K[ d
dt
]
m×n

,

Q ∈ K[ d
dt
]
n×m

and R ∈ K[ d
dt
]
m×m

such that

y = Px, x = Qy, u = Ry. (6)
For the case of delay systems we have

Definition 4: System (3) with K = K (δ ) is π-flat, if

there exist matrices P∈K (δ )[ d
dt
]
m×m

, Q∈ K(δ )[ d
dt
]
n×m

and

R ∈ K (δ )[ d
dt
]
m×m

such that

y = Px, x = Qy, u = Ry, (7)

together with a prediction operator π ∈K [δ ] such that πP∈

K [δ ][ d
dt
]
m×m

, πQ ∈ K [δ ][ d
dt
]
n×m

and πR ∈ K [δ ][ d
dt
]
m×m

.

It is well known that the differential parameterization

(6) has very important applications in control for motion

planning and tracking controller design (see e.g. [5], [7],

[6], [29]). To mention one aspect: often the flat output is a

meaningful quantity and a desired function yd(t) is supposed

to be assigned to that variable. Then, this time function can

be planned, e.g., using polynomial interpolation, and inserted

into the last equation in (6). This yields the feedforward

control signal ud(t) = Ryd(t), which, when applied to (3),

achieves the desired trajectory yd for y.

This idea is still valid for the parameterization (7). How-

ever, also delays and predictions of y are necessary. This is

illustrated by means of the introductory example: We note

that, for system (1) it is possible to express x2 and u using x1:

from the first row in (1) we get x2 = (s(t)δ (δ − 1))−1 d
dt

x1

and with the second row we get

u =

(

(δ )−1 d

dt

)

(s(t)δ (δ − 1))−1 d

dt
x1

=

(

(δ 2(δ − 1))−1 ṡ(t)

(s(t))2

d

dt
− (δ 2(δ − 1))−1 1

(s(t))

d2

dt2

)

x1.

In order to apply the operator in the above formula, we have

to compute its Laurent series expansion. In this case we have

(1−δ )−1 = ∑∞
i=0 δ i. Thus, given a desired trajectory x1,d for

x1, the necessary feedforward signal is given by

ud(t)=
∞

∑
i=−2

(

−
ṡ(t − iτ)

s2(t − iτ)
ẋ1,d(t − iτ)−

1

s(t − iτ)
s̈(t − iτ)ẍ1,d

)

.

Although ud involves an infinite number of delayed terms,

only a finite number of terms is non zero at every point

of time if x1,d is constant outside of an interval [t0, t1].
Furthermore, the feedforward signal has to be started only a

finite time, namely 2τ , before the transition of x1 starts at t0.

A theorem, which is helpful for the computation of flat

outputs and π-flat outputs, respectively, is the following [1]:

Theorem 1: The control system (3) with K =R or K =K

(resp. K = K(δ )) is differentially flat (resp. π-flat), if and

only if B and F are hyper-regular over K[ d
dt
].

Algorithm 1 (Computation of a Parameterization):

Input: Matrices A ∈ K[ d
dt
]n×n and B ∈ K[ d

dt
]n×m with B

hyper-regular and m < n, representing (3).

Output: If the corresponding system module is free over

K[ d
dt
], a triple (P,Q,R) of matrices P ∈ K[ d

dt
]m×n, Q ∈

K[ d
dt
]n×m and R ∈ K[ d

dt
]m×m, the defining matrices from

Definitions 3/4, together with the prediction operator π .

Else, if the system module corresponding to the system

defined by A and B is not free over K[ d
dt
], then FAIL.

Procedure:

1) Compute (row-reduction) M̃ ∈ Gln(K[ d
dt
]), s.t.

M̃B =

(

Im

0n−m,m

)

.

2) Compute F = (0n−m,m, In−m)M̃A ∈ K[ d
dt
]
n−m×n

.

3) If F is hyper-regular with FQ̃ = (In−m,0n−m,m) for

some Q̃ ∈ Gln(K[ d
dt
]) (test with column-reduction),

then:

a) Note also Q̃−1, which can be computed in parallel

b) Set Q = Q̃

(

0n−m,m

Im

)

∈ K[ d
dt
]
n×m

.

c) Set P to the last m rows of Q̃−1.

d) Set R = (Im,0m,n−m)M̃AQ ∈ K[ d
dt
]
m×m

.

e) Compute πP, πQ and πR such that

πPP, πQQ and πRR are polynomial in δ .

f) Set π = LCLM(πP,πQ,πR).
g) Return (π ,P,Q,R).

4) Else, return FAIL.

In [1] it is shown that this algorithm provides a (π-)flat

output. We have only adapted the way of checking hyper-

regularity. Thus, the proof is also valid for our case.

Remark 2: If K =R or K =K , then π = 1 in Algorithm 1.

Remark 3: Algorithm 1 can be used to determine flat

and π-flat outputs. Since, for the case of π-flatness, the

used algebra is much more sophisticated, the implementation

with a computer algebra system needs also a lot more of

“administrative overhead”. We want to emphasize that the

implemented toolbox, which is described below, is also

capable of computing flat outputs of linear systems without

delays. However it is not optimized for that purpose. We

have discussed the case without delays in [12].
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IV. IMPLEMENTATION OF THE TOOLBOX

The provided toolbox is a package for Maple and can be

obtained at [30]. We give here the chosen data structures for

elements of K(δ ) and K(δ )[ d
dt
]. We restrict to the case where

K = K since all data structures and provided functions can

deal with time varying coefficients and thus calculations with

K = R are simply obtained by using constant coefficients.

A. Representation of Elements in K (δ )
The implemented toolbox uses the OreTools package,

which is included in Maple, in order to define the calcu-

lation rules for elements of K [δ ] by defining a suitable

algebra with the SetOreRing command of the OreTools

package. This definition is included in the toolbox and the

command defkd returns the corresponding data structure of

that algebra. All functions of the toolbox need this algebra

as an argument. An element a ∈ K [δ ] is represented by the

“not-defined” function2 OrePoly, whose arguments are the

coefficients of 1,δ ,δ 2, . . .. So, e.g., the polynomial c(t)−δ 2

is represented by OrePoly(c(t),0,-1).

Although it is possible to define elements of K [δ ] using

the OreTools package, it is not possible to represent fractions.

Therefore an extension to this package has been constructed:

The elements of K (δ ) are assumed to be represented by

left fractions, i.e., q ∈ K (δ ) has the form q = b−1a with

a,b ∈K [δ ] (see Section II-B). In order to remain consistent

with the OreTools package, such q have been represented in

the toolbox by the “not-defined” function FRACTION, i.e.

q = b−1a : FRACTION(a,b) . (8)

The arguments, numerator and denominator of q, can be
accessed using the op command of Maple. This allows to

implement the addition (corresponding function is called

addFractions) and multiplication (multiplyFractions) as

defined in Section II-B. For the computation of the GCRD or

LCLM and the corresponding co-factors, the functionality of

the OreTools package could be used since these operations

have to be applied to the numerator and denominator of

q, which both are elements of K (δ ) (see Section II-B).

We implemented also a, rather basic, visualization command

(VisualizeOreFrac) which displays q = b−1a in the form

[b,∧(−1),∗,a].
Matrices over K (δ ) are the usual Maple type Matrix,

whose elements are as shown in (8) and the toolbox pro-

vides the corresponding commands MatrixMultFrac and

MatrixAddFrac. Additionally, the toolbox comprises the

commands gausdel, which performs a Gaussian elimina-

tion to a triangular form using only left operations, and

redechelonfracM, which transforms a matrix over K (δ )
into reduced echelon form, again using only left operations.

The commands gaussdelrow and redechelonfracMr per-

form the same operations but using only right operations.

B. Representation of Elements in K (δ )[ d
dt
]

The representation of elements of K (δ )[ d
dt
] has been

done, again, in a consistent manner with the data structure

2that means we invoke a function which we do not define, thus, Maple

keeps the term as it is.

of the OreTools package. We use the “not-defined” function

DDT. As an example, the polynomial c(t) + δ d
dt
+ d2

dt2 is

represented by DDT(A,B,C), where

A : FRACTION(OrePoly(c(t)),OrePoly(1)) ,

B : FRACTION(OrePoly(0,1),OrePoly(1)) ,

C : FRACTION(OrePoly(1),OrePoly(1)) .

The command VisualizeOreFracddt displays elements of

K (δ )[ d
dt
] as polynomials in Dt (which represents d

dt
) whose

coefficients are represented using VisualizeOreFrac (see

above). The functions addDDT and mulDDT implement ad-

dition and multiplication of elements in K (δ )[ d
dt
]. Matrices

over K (δ )[ d
dt
] are represented by the Maple type Matrix,

with the elements being of the above shown data structure.

For such matrices the commands MatrixMultFracddt and

MatrixAddFracddt are provided by the toolbox. For the

analysis of matrices, the toolbox provides the functions

rowredkddt and colredkddt, which compute the row- and

column-reduced forms of matrices over K (δ )[ d
dt
] according

to Section II-C.

Finally, the toolbox provides the function flattest. It

performs all steps of Algorithm 1.

V. EXAMPLES

The following examples have been computed with the

toolbox. The corresponding Maple worksheets can be down-

loaded from [30].

A. Introductory Example Revisited

We consider again the example from the introduction, i.e.,

Ax = Bu with A and B from (1). We get (using rowredkddt),

M̃ such that M̃B =
(

1 0
)T

as M̃ =

(

0 δ−1

1 0

)

and thus

F = (0 1)M̃A =
(

d
dt

−s(t)δ + s(t)δ 2
)

.

Then, we get (using colredkddt) Q̃ such that FQ̃ =
(

1 0
)

to

Q̃ =





s(t)
ṡ(t)

(s(t))2

ṡ(t) (δ − δ 2)
(

−δ + δ 2
)−1

(

s̈(t)

(ṡ(t))2 −
1

ṡ(t)
d
dt

)

q̃22



 ,

where

q̃22 = (1− δ )−1
(

−s(t+τ)s̈(t+τ)+2(ṡ(t+τ))2

(ṡ(t+τ))2 (1− δ )
)

+(1− δ )−1

(

s(t+τ)
ṡ(t+τ) (1− δ )

(

d

dt

))

.

The inverse of Q̃ results to (computed using colredkddt)

Q̃−1 =

(

d
dt

s(t)(δ 2 − δ )
p21 1

)

,

where

p21 =
(

(s(t))2

ṡ(t)
(δ − δ 2)

)−1
+
(

−δ + δ 2
)−1 1

s(t)

d

dt
.

Then, P is obtained as the last row of Q̃−1 and Q is obtained

as the last column of Q̃. Finally, we get
R = (1 0)M̃AQ =
(

−δ + δ 2
)−1

(

(ṡ(t+τ))2 s̈(t+τ)+ṡ(t+τ)s(t+τ)s(3)(t+τ)−2s(t+τ)(s̈(t+τ))2

(ṡ(t+τ))3 (1− δ )
)

+
(

−δ + δ 2
)−1

(

−2s(t+τ)s̈(t+τ)+3(ṡ(t+τ))2

(ṡ(t+τ))2 (δ − 1) d
dt

)

+
(

−δ + δ 2
)−1

(

s(t+τ)
ṡ(t+τ) (δ − 1) d2

dt2

)

1954



and the prediction operator is π = δ (δ −1). The π-flat output

is y = Px = p21x1 + x2. Alternatively, this π−flat output can

be directly obtained using the flattest command.

Note that the parameterization of x1 with y is given by

x1 = (s(t))2

(ṡ(t))2 (δ − δ 2)y. Clearly, y is related to x1 via a uni-

modular “matrix” (over K (δ )[ d
dt
]). This shows again that

x1 is also a π-flat output, as has been shown in Section III.

B. Vibrating String with Interior Mass

We take the model of a vibrating string with two controls,

which can be transformed [31] into the time delay system

Ax = Bu, with x = (ψ1,φ1,ψ2,φ2), u = (u1,u2) and

A =









1 1 −1 −1
d
dt
+η1

d
dt
−η1 η2 −η2

1 δ 2 0 0

0 0 δ 4 1









, B =









0 0

0 0

δ 0

0 δ 2









.

Note that, since the toolbox can up to now only deal with a

single delay operator δ the original operators δ1 and δ2 have

been replaced by δ1 = δ and δ2 = δ 2.

The flatness algorithm (using the flattest command) di-

rectly yields P =

(

0 0 1 0

0 0 0 1

)

, i.e., a π-flat output is

given by y = (ψ2,φ2). The parameterization of x and u

(represented by Q and R) results to

Q =





(

η1−η2
2η1

)

− 1
2η1

d
dt

(

η1+η2
2η1

)

− 1
η1

d
dt

(

η1+η2
2η1

)

+ 1
2η1

d
dt

(

η1−η2
2η1

)

+ 1
2η1

d
dt





and

R =

(

R1,1 R1,2

δ 2
(

δ 2
)−1

(1)

)

,

with

R1,1 = (δ )−1
(

η1−η2
2η1

+ (η1+η2)δ
2

2η1

)

+(δ )−1
(

− 1
2η1

+ δ 2

2η1

) d

dt
,

R1,2 = (δ )−1
(

η1+η2
2η1

+ (η1−η2)δ
2

2η1

)

+(δ )−1
(

− 1
2η1

+ δ 2

2η1

) d

dt
.

The corresponding prediction operator is π = δ 2.

VI. CONCLUSIONS

A toolbox for the computer algebra system Maple has been

presented which performs the computation of differentially

flat and π-flat outputs of linear (time varying) systems with

and without delays according to the approach in [1]. We

discussed all necessary calculation rules for the used algebras

since they are rather involved and presented suitable data

structures, which allowed us to implement these calculation

rules. The application of the toolbox has been illustrated by

means of examples.
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