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Abstract— We prove that the fidelity between the quantum
state governed by a continuous time stochastic master equation
driven by a Wiener process and its associated quantum-filter
state is a sub-martingale. This result is a generalization to non-
pure quantum states where fidelity does not coincide in general
with a simple Frobenius inner product. This result implies the
stability of such filtering process but does not necessarily ensure
the asymptotic convergence of such quantum-filters.

I. INTRODUCTION

The quantum filtering theory provides a foundation of
statistical inference inspired in e.g. quantum optical sys-
tems. These systems are described by continuous-time quan-
tum stochastic differential equations. These stochastic mas-
ter equations include the measurement back-action on the
quantum-state. The quantum filtering theory has been devel-
oped by Davies in the 1960s [10], [11] and in its modern
form by Belavkin in the 1980s [4], [5], [3].

To these stochastic master equations are attached so-called
quantum filters providing, from the real-time measurements,
estimations of the quantum states. Robustness and conver-
gence of such estimation process has been investigated in
many papers. For example, sufficient convergence conditions,
related to observability issues, are given in [20] and [19].
As far as we know, general and verifiable necessary and
sufficient convergence conditions do not exist yet. For links
between quantum filtering and observers design on cones
see [6]. In this paper, we generalize a stability result for
pure states (see, e.g., [12]) to arbitrary mixed quantum
states. More precisely, we prove that the fidelity between the
quantum state (that could be a mixed state) and its associated
quantum-filter state is a sub-martingale: this means that
in average, the estimated state tends to be closer to the
system state. This does not imply its asymptotic convergence
for large times. To prove such convergence, more specific
analysis depending on the precise structure of the Hamilto-
nian, Lindbladian and measurement operators defining the
system model is required. This paper can also be seen as an
extension to continuous-time evolution of [18].
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This paper is organized as follows. In section II, we
introduce the non linear stochastic master equations driven
by Wiener processes and providing the evolutions of the
quantum state and of the quantum-filter state and we state
the main result (Theorem 2.1). Section III is devoted to
the proof of this result: firstly we consider an approxi-
mation via stochastic master equations driven by Poisson
processes (diffusion approximation); secondly, we prove the
sub-martingale property via a time discretization. In final
section, we suggest some possible extensions of this work.

II. MAIN RESULT

We will consider quantum systems of finite dimensions
1 < N < ∞. The state space of such a system is given by
the set of density matrices

D := {ρ ∈ CN×N | ρ = ρ†, Tr (ρ) = 1, ρ ≥ 0}.

Formally the evolution of the real state ρ ∈ D is described
by the following stochastic master equation (cf. [3], [7],
[22])

dρt = − i
~ [H, ρt] dt+ L(ρt) dt+ Λ(ρt) dWt , (1)

where
• the notation [A,B] refers to AB −BA;
• H = H† is a Hermitian operator which describes the

action of external forces on the system ;
• dWt is the Wiener process which is the following

innovation

dWt = dyt − Tr
(
(L+ L†) ρt

)
dt , (2)

where yt is a continuous semi-martingale with quadratic
variation 〈y, y〉t = t (which is the observation process
obtained from the system) and L is an arbitrary matrix
which determines the measurement process (typically
the coupling to the probe field for quantum optic
systems) ;

• the super-operator L is the Lindblad operator,

L(ρ) := − 1

2
{L†L, ρ}+ LρL†,

where the notation {A,B} refers to AB +BA;
• the super-operator Λ is defined by

Λ(ρ) := Lρ+ ρL† − Tr
(
(L+ L†)ρ

)
ρ.

All the developments remain valid when H and L are
deterministic time-varying matrices. For clarity sake, we do
not recall below such possible time dependence.
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The evolution of the quantum filter of state ρ̂t ∈ D is
described by the following stochastic master equation which
depends on the time-continuous measurement yt depending
on the true quantum state ρt via (2) (see, e.g., [1]):

dρ̂t = − i
~ [H, ρ̂t]dt+ L(ρ̂t) dt

+ Λ(ρ̂t)
(
dyt − Tr

(
(L+ L†)ρ̂t

)
dt
)
.
(3)

Replacing dyt by its value given in (2), we obtain

dρ̂t =− i
~ [H, ρ̂t]dt+ L(ρ̂t)dt+ Λ(ρ̂t) dWt

+ Λ(ρ̂t)
(

Tr
(
(L+ L†)ρt

)
− Tr

(
(L+ L†)ρ̂t

) )
dt.

A usual measurement of the difference between two quan-
tum states ρ and σ, is given by the fidelity, a real number
between 0 and 1. More precisely, the fidelity between ρ and
σ in D is given by (see [16, chapter 9] for more details)

F (ρ, σ) = Tr2
(√√

ρσ
√
ρ

)
. (4)

Here F (ρ, σ) = 1 means ρ = σ, and F (ρ, σ) = 0 means that
the support of ρ and σ are orthogonal. F (ρ, σ) coincides with
their inner product Tr (ρσ) when at least one of the states
ρ or σ is pure (i.e., orthogonal projector of rank one). It is
well known that the stochastic master equations (1) and (3)
leave the domain D positively invariant. This results form
the fact that, using Ito rules, we have

ρt+dt =(
I− iH~ dt− 1

2L
†Ldt+Ldyt

)
ρt
(
I− iH~ dt− 1

2L
†Ldt+Ldyt

)†

Tr
((

I− iH~ dt− 1
2L

†Ldt+Ldyt
)
ρt
(
I− iH~ dt− 1

2L
†Ldt+Ldyt

)†
)

(5)

and

ρ̂t+dt =(
I− iH~ dt− 1

2L
†Ldt+Ldyt

)
ρ̂t
(
I− iH~ dt− 1

2L
†Ldt+Ldyt

)†

Tr
((

I− iH~ dt− 1
2L

†Ldt+Ldyt
)
ρ̂t
(
I− iH~ dt− 1

2L
†Ldt+Ldyt

)†
)

(6)

where dyt = Tr
(
(L+ L†) ρt

)
dt+ dWt.

These alternative formulations imply then directly that, as
soon as, ρ0 and ρ̂0 belong to D, ρt and ρ̂t remain in D for
all t ≥ 0. Therefore the expression of fidelity given by (4)
is well defined.

We are now in position to state the main result of this paper.

Theorem 2.1: Consider the Markov processes (ρt, ρ̂t) sat-
isfying the stochastic master Equations (1) and (3) respec-
tively with ρ0, ρ̂0 in D. Then the fidelity F (ρt, ρ̂t), defined in
Equation (4), is a submartingale, i.e. E (F (ρt, ρ̂t)|(ρs, ρ̂s)) ≥
F (ρs, ρ̂s), for all t ≥ s.

We recall that the above theorem generalize the results
of [12] to arbitrary purity of the real states and quantum
filter. If ρ0 is pure, then ρt remains pure for all t > 0. In

this case, F (ρt, ρ̂t) coincides with Tr (ρtρ̂t). It is proved in
[12] that this Frobenius inner product is a sub-martingale for
any initial value of ρ̂t: d

dt E (Tr (ρtρ̂t)) ≥ 0. The main idea of
the proof in [12] consists in using Itô’s formula to reduce the
theorem to showing that E (Tr (dρtρ̂t + ρtdρ̂t + dρtdρ̂t)) ≥
0, and then using the shift invariance of the operator L in
the dynamics (1) and (3) and choosing an appropriate value.

In the absence of any information on the purity of the
real states and the quantum filter, the fidelity is given by (4),
and the application of Itô’s formula for the above expression
becomes much more involved. In particular, the calculation
of the cross derivatives was so complicated that it became
hopeless to proceed this way. As the proof presented in the
next section shows, we had to choose an undirect way to
approach the theorem which allowed us to avoid the heavy
calculations based on second order derivative of F .

III. PROOF OF THEOREM 2.1

We proceed in two steps.

• In the first step, we describe briefly how we obtain the
stochastic master equations (1) and (3) as the limits of
the stochastic master equations with Poisson processes
using the diffusive limits inspired from the physical
homodyne detection model [2], [23].

• In the second step, we show that the fidelity between the
real state and the quantum filter which are the solutions
of stochastic master equations with Poisson processes
is a submartingale.

Step 1. Take α > 0 a large real number and consider the
evolution of the quantum state ραt described by the following
stochastic master equation derived from homodyne detection
scheme (see section 6.4 of [8] or [2], [23]) for more physical
details):

dραt =− i
~ [H, ραt ]dt− 1

4Λα(ραt )dt+ Υα(ραt )dN1 (7)
− 1

4Λ−α(ραt )dt+ Υ−α(ραt )dN2 ,

where the super-operators Υα is defined as follows

Υα(ρ) :=
(L+ α)ρ(L† + α)

Tr ((L+ α)ρ(L† + α))
− ρ,

and the super-operator Λα is defined by

Λα(ρ) := (L+ α)ρ+ ρ(L† + α)− Tr
(
(L+ L† + 2α)ρ

)
ρ.

The super-operators Λ−α and Υ−α are just obtained with
replacing α by −α in the expressions given in above.

The two processes dN1 and dN2 are defined by

dN1 := N1
t+dt −N1

t and dN2 := N2
t+dt −N2

t

where N1 and N2 are two Poisson processes. dN1 and dN2

take value 1 by probabilities 1
2 Tr

(
(L† + α)(L+ α)ραt

)
dt and

1
2 Tr

(
(L† − α)(L− α)ραt

)
dt, respectively, and take value 0 by

the complementary probabilities.

6243



Similarly, the following stochastic master equation de-
scribes the infinitesimal evolution of associated quantum
filter of state ρ̂αt (see [1]):

dρ̂t
α =− i

~ [H, ρ̂t
α]dt− 1

4Λα(ρ̂t
α)dt+ Υα(ρ̂t

α)dN1 (8)
− 1

4Λ−α(ρ̂t
α)dt+ Υ−α(ρ̂t

α)dN2.

The following diffusive limit is obtained by the central
limit theorem when α tends to +∞ for the semi-martingale
processes applied to dNq , q = 1, 2, (see [15] or [14] for
more details)

dNq
law−→ 〈dNqdt 〉 dt+

√
〈dNqdt 〉 dWq , (9)

where the notation 〈A〉 refers to the mean value of A.
Here 〈dN1〉 = 1

2Tr
(
(L† + α)(L+ α)ραt

)
dt and 〈dN2〉 =

1
2Tr
(
(L† − α)(L− α)ραt

)
dt and dW1 and dW2 are two

independent Wiener processes and the convergence in (9)
is in law.

The stochastic master Equations (1) and (3) are obtained
by replacing the processes dNq for q ∈ {1, 2} by their limits
given in (9) in the master equations (7) and (8) and taking
the limit when α goes to +∞ and keeping only the lowest
ordered terms in α−1. Such a result is usually called diffusion
approximation (see e.g [9]).

Notice that dW appearing in the stochastic master equa-
tions (1) and (3) is given in terms of its independent
constituents by

dW =
√

1

2

(
dW1 + dW2

)
,

and is thus itself a standard Wiener process.
The following theorem from [17] justifies the diffusion

approximation described above.

Theorem 3.1 (Pellegrini-Petruccione [17]): The solutions
of the stochastic master Equations (7) and (8) converge in
law, when α→ +∞, to the solutions of the stochastic master
Equations (1) and (3), respectively.

Step 2. We now prove that the fidelity between two
arbitrary solutions of the stochastic master Equations (7)
and (8) is a submartingale.

Proposition 3.1: Consider the Markov process (ρα, ρ̂α)
which satisfy the stochastic master Equations (7) and (8).
Then the fidelity defined in Equation (4) is a submartingale,
i.e., for all t ≥ s, we have

E (F (ραt , ρ̂
α
t )|(ραs , ρ̂αs )) ≥ F (ραs , ρ̂

α
s ).

Proof: We consider approximations of the time-
continuous Markov processes (7) and (8) by discrete-time
Markov processes ξk and ξ̂k:

ξk+1 =
Mµk

ξkM
†
µk

Tr(Mµk
ξkM

†
µk)

and ξ̂k+1 =
Mµk

ξ̂kM
†
µk

Tr(Mµk
ξ̂kM

†
µk)

, (10)

where
• k ∈ {0, · · · , n} for a fixed large n;

• initial condition ξ0 = ραs and ξ̂0 = ρ̂αs ;
• µk is a random variable taking values µ ∈ {0, 1, 2} with

probability Pµ,k = Tr
(
MµξkM

†
µ

)
;

• The operators M0, M1 and M2 are defined as follows

M0 := 1− 1
4 (L† + α)(L+ α)εn

− 1
4 (L† − α)(L− α)εn − i

~Hεn;

M1 := (L+ α)
√

1

2
εn;

and
M2 := (L− α)

√
1

2
εn;

with εn = t−s
n .

In the following lemma, we show that ξn and ξ̂n corre-
spond to the Euler-Maruyama time discretization. Since (7)
and (8) depend smoothly on ραt and ρ̂αt , ξn and ξ̂n converge
in law towards ραt and ρ̂αt when n 7→ +∞.

Lemma 3.1: The processes ξk and ξ̂k correspond up to
second order terms in εn, to the Euler-Maruyama discretiza-
tion scheme of (7) and (8) on [s, t].

Proof: we regard the three following possible cases
which arrive in according to the different values of µk .
In each case, we show that ξk and ξ̂k for k ∈ {0, · · · , n}
are the numerical solutions of the dynamics (7) and (8)
respectively, with the following partition s ≤ s+ εn ≤ · · · ≤
s+ (n− 1)εn ≤ t, where the uniform step length εn is t−s

n .

Case 1. We first consider the case where µk = 0 which
arrives with probability P0,k = Tr

(
M0ξkM

†
0

)
. Note that

M0ξkM
†
0 = ξk − 1

4{(L
† + α)(L+ α), ξk} εn

− 1
4{(L

† − α)(L− α), ξk} εn
− i

~ [H, ξk] εn +O(ε2n).

Therefore

Tr
(
M0ξkM

†
0

)
= 1− 1

2
Tr
(
(L† + α)(L+ α)ξk

)
εn

− 1

2
Tr
(
(L† − α)(L− α)ξk

)
εn +O((εn)2)

and

(
Tr
(
M0ξkM

†
0

) )−1 ≈ 1 +
1

2
Tr
(
(L† + α)(L+ α)ξk

)
εn+

1

2
Tr
(
(L† − α)(L− α)ξk

)
εn +O((εn)2).

Therefore, we find the following dynamics

ξk+1 ≈ ξk − 1
4{(L

† + α)(L+ α), ξk} εn
− 1

4{(L
† − α)(L− α), ξk} εn

+
1

2
Tr
(
(L† + α)(L+ α)ξk

)
ξk εn

+
1

2
Tr
(
(L† − α)(L− α)ξk

)
ξk εn +O(ε2n).
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This can also be written as follows

ξk+1 − ξk ≈− 1
4Λα(ξk) εn − 1

4Λ−α(ξk) εn +O(ε2n). (11)

Obviously, this dynamics in the first order of εn is
equivalent to the dynamics of the numerical solution of the
stochastic master Equation (7) with the partition s ≤ s+εn ≤
· · · ≤ s+ (n− 1)εn ≤ t, when

N1
s+(k+1)εn

−N1
s+kεn = 0 and N2

s+(k+1)εn
−N2

s+kεn = 0,

which arrives with probability

(
1− 1

2
Tr
(
(L+ α)(L† + α) ξk

)
εn
)
· · ·

· · ·
(
1− 1

2
Tr
(
(L− α)(L† − α) ξk

)
εn
)
.

This probability, in the first order of εn is equal to
Tr
(
M0ξkM

†
0

)
.

Case 2. The second case corresponds to µk = 1 which ar-
rives with probability Tr

(
M1ξkM

†
1

)
. We find the following

dynamics

ξk+1 = (L+α)ξk(L
†+α)

Tr((L+α)ξk(L†+α))
= Υ[L+ α] ξk + ξk.

We observe that the numerical solution of the stochastic
master Equation (7) follows also the same dynamics when

N1
s+(k+1)εn

−N1
s+kεn = 1 and N2

s+(k+1)εn
−N2

s+kεn = 0,

which arrives with probability

( 1
2

Tr
(
(L+ α)(L† + α) ξk

)
εn
)
· · ·

· · ·
(
1− 1

2
Tr
(
(L− α)(L† − α) ξk

)
εn
)
.

This is equal to Tr
(
M1ξkM

†
1

)
, in the first order of εn.

Case 3. Now we consider the last case µk = 2 which
arrives with probability Tr

(
M2ξkM

†
2

)
. Therefore, we have

ξk+1 = (L−α)ξk(L†−α)
Tr((L−α)ξk(L†−α)) = Υ−α(ξk) + ξk.

Which can also be written by the stochastic master equa-
tion (7) with taking ξk as the numerical solution and

N1
s+(k+1)εn

−N1
s+kεn = 0 and N2

s+(k+1)εn
−N2

s+kεn = 1,

which arrives with probability(
1− 1

2
Tr
(
(L+ α)(L† + α) ξk

)
εn
)
· · ·

· · ·
( 1
2

Tr
(
(L− α)(L† − α) ξk

)
εN
)
.

Where in the first order of εn, this probability is equal to
Tr
(
M2ξkM

†
2

)
.

Remark that, if we neglect the terms in the order of
ε2n, The probability of N1

s+(k+1)εn
− N1

s+kεn
= 1 and

N2
s+(k+1)εn

−N2
s+kεn

= 1 is negligible. Now it is clear that
ξk and similarly ξ̂k are respectively the numerical solutions

of the stochastic master Equations (7) and (8) obtained by
Euler-Maruyama method. As the right hand side of the
stochastic master Equations (7) and (8) are smooth with
respect to ρ and ρ̂, we can use the result of [13, Theorem 1]
to conclude the convergence in law of ξn and ξ̂n to ραt and
ρ̂αt for large n.

Now we notice that

M†0M0 +M†1M1 +M†2M2 = I +O(ε2n) := A,

Take M̃r := (
√
A)−1Mr for r = 0, 1, 2 which satisfy

necessarily

M̃0

†
M̃0 + M̃1

†
M̃1 + M̃2

†
M̃2 = I. (12)

Now we define the following Markov processes χk and
χ̂k by

χk+1 =
M̃µk

χkM̃µk

†

Tr
(
M̃µk

χkM̃µk

†) (13)

and
χ̂k+1 =

M̃µk
χ̂kM̃µk

†

Tr
(
M̃µk

χ̂kM̃µk

†) , (14)

where
• k ∈ {0, · · · , n} for a fixed large n;
• χ0 = ραs and χ̂0 = ρ̂αs ;
• µk is a random variable taking values µ ∈ {0, 1, 2} with

probability Pµ,k = Tr
(
M̃µχkM̃

†
µ

)
.

Clearly χk and χ̂k can also be seen as the numerical
solutions of the stochastic master Equations (7) and (8), since
(
√
A)−1 = I−O(ε2n), therefore in the first order of εn, the

solutions ξk and ξ̂k are equal to χk and χ̂k, respectively. But,
the advantage of using χk and χ̂k instead of ξk and ξ̂k is
that the operators M̃r are Kraus operators since they satisfy
Equality (12). Thus we can apply Theorem 1 in [18], which
proves that F (χk, χ̂k) is a sub-martingale.

Theorem 3.2 ([18]): Consider the Markov chain (χk, χ̂k)
satisfying (13) and (14). Then F (χk, χ̂k) is a sub-martingale:
E (F (χk+1, χ̂k+1)|(χk, χ̂k)) ≥ F (χk, χ̂k).

Thus we have

E (F (χn, χ̂n) | χ0, χ̂0) ≥ F (χ0, χ̂0) = F (ραs , ρ̂
α
s )

Therefore by Lemma 3.1, we have necessarily

E (F (ραt , ρ̂
α
t )|ραs , ρ̂αs )) ≥ F (ραs , ρ̂

α
s ),

for all t ≥ s, since we have (convergence in law) ραt =
limn−→∞ χn, ρ̂

α
t = limn−→∞ χ̂n, χ0 = ραs and χ̂0 = ρ̂αs .

We now apply Theorem 3.1 and we use the fact that the
function F is bounded by one and continuous with respect
to ρ and ρ̂:

E (F (ρt, ρ̂t)|(ρs, ρ̂s)) ≥ F (ρs, ρ̂s),

for all t ≥ s, which ends the proof of Theorem 2.1.
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Fig. 1. The average fidelity between the Markov processes ρ and ρ̂, over
500 realizations, time t from 0 to T = 3 with discretization time step
dt = 10−4.

IV. NUMERICAL TEST

In this section, we test the result of Theorem 2.1 through
numerical simulations. Considering the two-level system
of [21], we take the following Hamiltonian and measurement
operators:

H = σy =

(
0 −i
i 0

)
L = σz =

(
1 0
0 −1

)
.

The simulations of figure 1 illustrates the fidelity for 500
random trajectories starting at

ρ0 =

(
1
2

1
4

1
4

1
2

)
and ρ̂0 =

(
1
3 0
0 2

3

)
.

In particular, we note that both initial states are mixed ones.
As it can be seen the average fidelity is monotonically
increasing. Here, the fidelity converges to one indicating
the convergence of the filter towards the physical state. An
interesting direction here is to characterize the situations
where this convergence is ensured.

Here in order to simulate the Equations (1) and (3), we
have considered the alternative formulations (5) and (6) and
the resulting discretization scheme (k ∈ N and time step
0 < dt� 1)

ρ(k+1)dt =
Mkρ(kdt)M†

k

Tr(Mkρ(kdt)M†
k)
, ρ̂(k+1)dt =

Mkρ̂(kdt)M†
k

Tr(Mkρ̂(kdt)M†
k)
,

where Mk = I− iH
~ dt− 1

2L
†Ldt+Ldy(kdt) and dy(kdt) =

Tr
(
(L+ L†) ρ(kdt)

)
dt + dW(kdt). For each k, the Wiener

increment dW(kdt) is a centered Gaussian random variable
of standard deviation

√
dt. The major interest of such dis-

cretization is to guaranty that, if ρ0, ρ̂0 ∈ D, then ρk and ρ̂k
also remain in D for any k ≥ 0.

V. CONCLUDING REMARKS

The fact that the fidelity between the real quantum state
and the quantum-filter state increases in average remains

valid for more general stochastic master equations where
other Lindbald terms are added to L(ρ) appearing in (1).
In this case the dynamics (1) and (3) become

dρt = − i
~ [H, ρt] dt+

m′∑
ν=1

L′ν(ρt) dt

+

m∑
µ=1

Lµ(ρt) dt+

m∑
µ=1

Λµ(ρt)dW
µ
t

and

dρ̂t = − i
~ [H, ρ̂t] dt+

m′∑
ν=1

L′ν(ρ̂t) dt+

m∑
µ=1

Lµ(ρ̂t) dt

+

m∑
µ=1

Λµ(ρ̂t)

(
dyµt − Tr

(
(Lµ + L†µ)ρ̂t

)
dt

)
.

where dWµ
t are independent Wiener processes,

Lµ(ρ) := − 1

2
{L†µLµ, ρ}+ LµρL

†
µ,

L′ν(ρ) := − 1

2
{L′ν

†
L′ν , ρ}+ L′νρL

′
ν
†
,

and Λµ(ρ) := Lµρ+ ρL†µ − Tr
(
(Lµ + L†µ)ρ

)
ρ.

Here m,m′ ≥ 1, and (L′ν)1≤ν≤m′ and (Lµ)1≤µ≤m
are arbitrary operators. The special case considered here
corresponds to m = 1 and m′ = 1 with L1 = L and L′1 = 0.
The formulations analogue to (5) and (6) read then

ρt+dt =
(I−dMt)ρt(I−dM†

t )+
∑m′
ν=1 L

′
νρtL

′
ν
†dt

Tr((I−dMt)ρt(I−dM†
t )+

∑m′
ν=1 L

′
νρtL

′
ν
†dt)

and

ρ̂t+dt =
(I−dMt)ρ̂t(I−dM†

t )+
∑m′
ν=1 L

′
ν ρ̂tL

′
ν
†dt

Tr((I−dMt)ρ̂t(I−dM†
t )+

∑m′
ν=1 L

′
ν ρ̂tL

′
ν
†dt)

where, denoting dyµt = Tr
(
(Lµ + L†µ)ρt

)
dt+ dWµ

t ,

dMt = iH
~ dt+

1

2

m′∑
ν=1

L′ν
†
L′νdt

+
1

2

m∑
µ=1

Lµ
†Lµdt−

m∑
µ=1

Lµdy
µ
t .

For this general case, the proof of Theorem 2.1 should follow
the same lines: first step still relies on Theorem 3.1; second
step relies now on [18, Theorem 2].
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