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Abstract— The replicator dynamics model is an evolutionary
game concept that describes the state of a population in a
process inspired by natural selection. This model is used to
analyze a resource allocation problem in distributed networked
systems. The main properties of the replicator equation are
analyzed to propose a novel technique based only on the
available information of a system modeled as a connected graph.
Likewise, we analyze the stability of the equilibrium points as
a function of a certain class of fitness. Finally, an economic
dispatch in distributed generation systems is presented in order
to illustrate the theoretical results.

Index Terms— Distributed control, economic dispatch, evolu-
tionary game theory, replicator dynamics, resource allocation.

I. INTRODUCTION

Population dynamical methods (e.g., selection and mu-

tation) can be defined with the concepts of evolutionary

game theory (EGT) to model the behavior of a population

of players, all of them using some strategy whose success

depends on a certain payoff. In this sense, better strategies

tend to spread within the population while the payoffs depend

on others’ decisions. The replicator equation [1] is a dynamic

model where the individuals tend to switch to more success-

ful strategies, and where at equilibrium, all individuals earn

the same payoff (i.e., the same fitness). Given the simplicity

and adaptability of this model, replicator dynamics have been

widely studied in biology and economics [2], [3], [4]; as well

as in specific engineering problems such as power systems

[5] and control [6], [7], [8].

Dynamic resource allocation is one of the problems where

the principles of EGT can be applied more naturally. This

problem deals with the distribution of a fixed amount of

resources to a given number of activities or agents to achieve

an optimal result according to a certain criterion. For this

reason, several techniques and algorithms have been studied

for the solution of this problem in each application. For

instance, the authors in [9] summarize the most common

approaches to solve static problems, some extensions to

nonlinear optimization are presented in [10], and different

solutions for cases of utility maximization in networks are

shown in [11].
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When the number of agents increases and the information

flow is limited, centralized (or even hierarchical) architec-

tures may be infeasible, non-scalable, or too expensive [11].

This is the case of power distribution systems with the

inclusion of small scale generators connected directly to

the distribution network (i.e., distributed generators (DGs)).

These elements introduce new variables in the system that

may affect the adequate performance of the grid if the

constraints for power and performance of the units are

not satisfied. For this reason, one of the challenges to the

projected increase of distributed generation in electrical net-

works is the power dispatch of these units using economical

and technical information of each generator [12]. To solve

this problem, in [13], [14] a multi-agent system (MAS)

where each agent has specific tasks is proposed. These tasks

define the agent-coordination method, which is the more

important field in the study of MAS and its applications.

Although most of the control strategies for the coordination

of agents accomplish their objective in specific situations,

some of them (essentially based on heuristics) do not have

the necessary elements to analyze the effects of the network

topology and the convergence to desired steady states of the

agents.

The main contribution of this work is to propose a novel

agent-coordination method that we refer to as the local

replicator equation. This approach uses the basic properties

of replicator dynamics (i.e., the invariance of the population

size and the final common payoff for all individuals) to deal

only with local information in a MAS. For this purpose,

we consider the multi-agent system as an undirected graph,

where the agents are represented by the nodes and the

information links by arcs. This allows the model to be

implemented in systems with a large number of nodes, and

facilitates the addition of new agents by means of single

links to any node in the graph and specific dynamics includ-

ing only the neighbors’ states. In this way, the scalability

property required in many applications of networked MAS

is satisfied by the local replicator equation.

To summarize our work, first we define the resource

allocation problem by means of replicator dynamics and

the local replicator equation. In addition, we show that the

equilibrium points achieved by means of the local replicator

equation are asymptotically stable for a generic class of

fitness. Finally, we solve a problem of dispatch in a defined

network topology to show the applicability of the proposed

technique.
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II. REPLICATOR DYNAMICS

The replicator dynamics can be seen as an appropriate

mechanism to model the behavior of a population whose

individuals while in constant interaction seek habitats with

different conditions (e.g., different density of food or mates)

to feed or reproduce. The fundamental principle of this

concept is that the animal population, after an evolutionary

process, tends to reach an equilibrium point where all indi-

viduals achieve the same fitness (e.g., the same food intake

rate). This process can be related easily with the resource

allocation problem, where the fixed amount of resources is

given by the total population, the agents among which the

resources must be split are the patches in the environment,

and the resources flow can be modeled by the population

behavior in each habitat.

In order to mathematically model the replicator equation

as an evolutionary game, let H = {1, 2, . . . , N} be the set

of pure strategies, and xi(t) ≥ 0 be the relative amount of

individuals playing the strategy i ∈ H. Let the vector x(t) =
[x1(t), . . . , xN (t)]⊤ be the population state, where xi is also

called frequency (or population share) of the ith strategy,

which is a normalized state variable. Therefore, x(t) ∈ ∆
for all t, where

∆ =

{

x ∈ R
N
+ :

N
∑

i=1

xi = 1

}

. (1)

If we assume that the number of players in the population is

large enough in order to approximate the amount of individ-

uals playing a certain strategy as a continuous variable, the

replicator equation is given by [1]

ẋi = xi

(

fi(xi)− f̄(x)
)

, for all i = 1, . . . , N, (2)

where fi : ∆ → R represents the fitness function that the

individuals perceive in the ith habitat and f̄(x) is the average

fitness defined as

f̄(x) ,

N
∑

j=1

xjfj(xj). (3)

Therefore, under the replicator dynamics, the population

share playing a strategy more (less) profitable than the

average will increase (decrease). Moreover, with the selection

of the average fitness (3), the set ∆ is invariant under (2) [3],

[4]. Hence, if the initial population state x(0) ∈ ∆, all trajec-

tories of the system remain in ∆, for all t ≥ 0. Besides, the

steady state of (2) is achieved when x∗
i

(

fi(x
∗
i )− f̄(x∗)

)

=
0, where x∗ = [x∗

1 x∗
2 . . . x∗

N ]⊤ ∈ ∆ is the equilibrium

point. If x∗
i > 0, for all i, the equilibrium is satisfied by the

condition

fi(x
∗
i ) = f̄(x∗) = f̄∗, for all i = 1, . . . , N, (4)

where f̄∗ is the average fitness in equilibrium. The invariance

of ∆ and the definition of the equilibrium point of (2) are

desirable properties when the replicator dynamics model is

applied to resource allocation problems. In this case, the

fixed amount of resources is held for all time while it is

split dynamically among the agents to achieve a common

fitness such as the set point in a distributed control system.

However, the implementation of the replicator dynamics

requires full information to calculate the average fitness (3),

and when the number of agents in the process increases, this

centralized technique may be inefficient since the process

may require a high amount of information of different

sources, possible synchronization among all agents, and high

performance (and expensive) communication channels. To

solve this problem, next we describe how to apply the

advantageous properties of the replicator dynamics with only

local information.

III. LOCAL REPLICATOR EQUATION

In order for a resource allocation problem to model the

local-information exchange between agents, we describe the

environment as a connected graph G , (H,A), where H ,

{1, . . . , N} is the set of nodes, and A ⊂ H×H denotes the

set of interconnections between nodes. Therefore, strategies,

habitats, or agents are referred to the nodes in the graph, and

the individuals of the population are referred to resources. To

describe the interaction topology, we define that if (i, j) ∈ A,

node i has information about node j. Moreover, we consider

that the pair (i, j) ∈ A is equal to the pair (j, i) ∈ A,

so the graph G is undirected. Additionally, each node must

be connected to the graph to participate in the allocation

process. Hence, for every i ∈ H, there exists some j ∈ H,

such that (i, j) ∈ A. In words, there exists a path between

any two nodes in G.

An important concept in the local-information applications

is the neighborhood of each node. To define this concept, let

Ni be the set of adjacent nodes to the node i (the so-called

neighborhood of i). Formally, Ni = {j : (i, j) ∈ A} (note

that i /∈ Ni). To obtain the local-information model for the

resource allocation problem, the replicator dynamics with

full information defined by (2) and (3) can be expressed as

ẋi = xi



fi(xi)
N
∑

j=1

xj −
N
∑

j=1

fj(xj)xj



 . (5)

Taking into account the summations in (5) only over the

neighborhood of node i, we obtain the model for the local

replication equation given by

ẋi = xi



fi(xi)
∑

j∈Ni

xj −
∑

j∈Ni

fj(xj)xj



 , (6)

for all i ∈ H, where fi is still the fitness function that

describes the payoff for the ith node.

In order to keep the most important characteristics of the

original replicator dynamics in the local replication equation,

we must show that: i) the simplex ∆ is invariant under

(6); ii) choosing appropriately the fitness functions, all

individuals achieve the same payoff at equilibrium; and iii)
the equilibrium point of (6) is asymptotically stable in ∆. The

first condition guarantees that limited resources are preserved

over time so that the local replicator equation is also an
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appropriate strategy for dynamic resource allocation. The

accomplishment of the second condition allows the system

to achieve different distributed control goals (e.g., equal

agents’ welfare). Finally, the stability of the equilibrium point

guarantees the convergence of the proposed strategy.

A. Invariance of ∆ Under the Local Replicator Equation

The next result shows that the invariance of the simplex

holds for the local-information case.

Proposition 3.1: If x(0) ∈ ∆, the set ∆ is invariant under

the local replicator equation given by Equation (6).

Proof: Let us define the adjacency matrix of the graph G as

A = [aij ] ∈ {0, 1}N×N , where aij =

{

1 if (i, j) ∈ A,
0 otherwise.

Note that given two vectors x, y ∈ R
N ,

y⊤Ax =
∑

i∈H



yi
∑

j∈Ni

xj



 =
∑

i∈H



xi

∑

j∈Ni

yj



 = x⊤Ay,

(7)

since A = A⊤ when the graph is undirected. Now, the sum

over all i ∈ H in Equation (6) is given by1

∑

i∈H

ẋi =
∑

i∈H



xifi
∑

j∈Ni

xj



−
∑

i∈H



xi

∑

j∈Ni

xjfj



 .

If we define the vector Xf , [x1f1 x2f2 . . . xNfN ]⊤,

the previous equation can be expressed as
∑

i∈H
ẋi =

X⊤
f Ax − x⊤AXf , and by the property in Equation (7),

∑

i∈H
ẋi = 0. Given that by assumption

∑

i∈H
xi(0) = 1,

the set ∆ is invariant under (6). �

B. Fitness Selection and Equilibrium Points

The choice of the fitness function is one of the most

important issues in the behavior of the trajectories of (6). In

evolutionary game theory, as well as in behavioral ecology

[15], the fitness of the individuals depends on the frequencies

of the strategies (number of individuals sharing some patch).

In general, the more individuals sharing the same strategy,

the smaller the fitness (which can be associated to the amount

of resources in a habitat). In this way, the definition of

fi : ∆ 7→ R as a Lipschitz continuous mapping in ∆,

strictly decreasing, and fi(0) > 0, for all i, allows us to

make some analogies between the dynamics described by

the replicator equation, and some natural processes as the

population distribution along different habitats. For instance,

the “truncation” behavior in nature is related to some habitats

which become uninhabited since the supplies or mates in

other habitats are large enough to provide a higher fitness to

all individuals in the population. Thus in the local replicator

equation, and since the unit simplex ∆ is invariant (its

interior (int(∆)) and boundary (bd(∆)) are also invariant),

if x(0) ∈ int(∆), some population shares may tend to

zero only if t → ∞. Then, in the limit some population

1In this proof, we omit the argument of fi(xi) for simplicity in the
notation.

shares may become extinct (i.e., limt→∞ x(t) ∈ bd(∆),
or limt→∞ xi(t) = 0, for some i ∈ H). This truncation

is related to the behavior of the strategies whose associate

fitnesses are smaller than the average fitness at equilibrium.

This situation may affect the connectivity of the graph

in the local-information model due to the reduced number

of connections. In this sense, the local replication model

has a less robust topology (from the point of view of

information interchange) than the ordinary replicator dy-

namics, especially in cases where there is truncation in

nodes that may affect the connectivity of the graph. To

analyze the connectivity, we define a component of G as a

maximal connected subgraph of G. Since we assume that G
is connected (i.e., every pair of nodes are joined by a path),

it has only one component. A disconnected graph has at least

two components. A cutpoint of G is a node whose removal

increases the number of components of the graph.

In the context of dynamic resource allocation, we con-

sider a node removed from the graph when the associated

population share is zero (i.e., a truncated node). Although

physical communication channels may remain in the graph

topology, when a node is truncated, no individuals inhabit

this patch and the information flow is performed through

the other nodes and their own paths. For this reason, the

location of the truncated nodes may turn the connected graph

into several components that can be seen as independent

graphs with different resource allocation processes. Hence, to

determine the equilibrium points of the system we consider

three cases: i) when there is no truncation in the system, ii)
when truncation is given in nodes which are not cutpoints,

and iii) when there is truncation in cutpoints.

1) Equilibrium Points without Truncation: When there is

no truncation in the local replicator equation, an equilibrium

point must satisfy x∗ ∈ int(∆) since x∗
i > 0, for all i ∈ H.

Hence, a stationary point is achieved in (6) when

fi(x
∗
i )

∑

j∈Ni

x∗
j =

∑

j∈Ni

fj(x
∗
j )x

∗
j , for all i ∈ H. (8)

Condition (8) is satisfied if fi(x
∗
i ) = fj(x

∗
j ), for all j ∈ Ni

and all i ∈ H. Given that the graph G = (H,A) is assumed

connected,

fi(x
∗
i ) = fj(x

∗
j ) = f̄∗, for all i, j ∈ H, (9)

where f̄∗ is the same equilibrium average fitness in (4). Then,

at equilibrium all fitnesses are equal and all individuals earn

the same payoff. Note that (9) is only a possible condition

to satisfy (8). For this reason, the stability analysis of this

equilibrium point is required to show the convergence from

any x(0) ∈ int(∆) to the point of equal social welfare.

2) Equilibrium Points with Truncation in Non-cutpoints:

To better define the truncation states, we assume fi(0) = Bi,

Bi > 0, for all i. Given that fi(xi) is assumed strictly

decreasing, and that xi ≥ 0, Bi is the maximum value of

the ith fitness. The strategies in the set H = {1, 2, . . . , N}
may be ordered such that B1 ≥ B2 ≥ . . . ≥ Bm > Bm+1 ≥
. . . ≥ BN , for any m ≤ N − 1. If the fitness functions

conditions are such that the equilibrium average fitness
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satisfies Bm ≥ f̄∗ > Bm+1, then the strategies m+1, . . . , N
will be extinct (i.e., x∗

k = 0, for k = m+ 1, . . . , N ).

When the truncated nodes are not cutpoints, connectivity

of the graph is preserved with their elimination. Therefore,

the condition in Equation (8) for the m untruncated nodes

can be expressed as

fi(x
∗
i )

∑

j∈Ni

x∗
j =

∑

j∈Ni

fj(x
∗
j )x

∗
j , for i = 1, . . . ,m. (10)

Notice that if a truncated node k ∈ Ni, for some i =
1, . . . ,m, Equation (10) is not altered since x∗

k = 0. Then,

to satisfy condition (10) the equilibrium point is given by

fi(x
∗
i ) = f̄∗, for i = 1, . . . ,m

fk(x
∗
k) = Bk, for k = m+ 1, . . . , N.

(11)

Recall that
∑m

i=1
x∗
i = 1 by invariance of ∆, and hence, all

the individuals of the population also obtain the same fitness

in equilibrium (as in the no truncation case).

3) Equilibrium Points with Truncated Cutpoints: Suppose

that the removal of the N−m truncated nodes splits the graph

G into n different components. The resultant components

noted as Cl , (HCl
,ACl

), for l = 1, . . . , n, are connected

subgraphs with a set HCl
of nodes and a set of arcs ACl

.

Hence, there are no paths between nodes i, j if i ∈ HCk
, and

j ∈ HCl
. At equilibrium, each node of a certain component

will achieve the same fitness, but in general, this value may

differ between components, and it depends on the initial

conditions and system transients. Given that individuals may

achieve different equilibrium payoffs, this case could be

unacceptable in applications such as in the maximization of

a common utility for all agents [5], or in the achievement of

a set point in a distributed system [7], [8].

C. Stability Analysis

In order to analyze the stability of the equilibrium points

found in previous section, we use a Lipschitz continuous Lya-

punov function. To establish the fitness functions conditions,

we define Ci ∈ R+, for all i ∈ H, as the point in which

fi(Ci) = 0. This value is called the carriying capacity [16],

and it is used to determine the positiveness of the payoffs.

Then, the conditions for the fitness functions are summarized

as: i) fi(xi) is a scalar Lipschitz continuous mapping in ∆;

ii) fi(xi) is strictly decreasing; iii) fi(0) = Bi, Bi > 0, for

all i ∈ H; and iv)
∑

i∈H
Ci ≥ 1. The next result shows that

the equilibrium points where all individuals achieve the same

fitness (i.e., no truncation and truncation in non-cutpoints

cases) are asymptotically stable.

Theorem 3.2: Given the above conditions for fi, and if

x(0) ∈ int(∆), the equilibrium point x∗ ∈ ∆ that satisfy

(9) or (11) is asymptotically stable under the local replicator

equation (6).

Proof: Note that given the conditions for fi the vector field

φ(x) = ẋ in Equation (6) is locally Lipschitz, and then the

Lyapunov function defined by

V (x) = max
i∈H

fi(xi) (12)

is a locally Lipschitz continuous function in x, and contin-

uous in t. In order to show that (12) is a valid Lyapunov

function (i.e., V (x) ≥ 0, for all x ∈ ∆, and x∗ is the global

minimum of V (x) in ∆), we use the carrying capacities

constraint and the invariance of ∆ when x(0) ∈ int(∆).

In the worst case (i.e.,
∑

i∈H
Ci = 1), the equilibrium

point is given by x∗
i = Ci, and V (x) = 0 since fi(Ci) =

fj(Cj) = f̄∗ = 0, for all i, j ∈ H (using condition (9)).

However, any deviation of this equilibrium point, which may

be represented for an increment in the ith population share

(i.e., xi > Ci), is compensated by the reduction in another

population (i.e., xj < Cj , for some j 6= i). Therefore, in this

case fj(xj) > 0, and V (x) > 0 since all fitness functions

are strictly decreasing by assumption. When
∑

i∈H
Ci > 1,

f̄∗ > 0, and any deviation of the equilibrium point increases

some of the fitnesses. Then, x∗ the minimum point of V (x)
in ∆.

Now, Equation (12) is differentiable almost everywhere (in

the sense of Lebesgue measure), since it is locally Lipschitz

[17]. However, there are points where the derivatives do

not exist. In order to calculate V̇ (x), let Hf = {j :
fj(xj) = V (x)} be the set of indices for which there exists

a point where the differentiability of V (x) fails. Since the

trajectories of (6) are continuous, and according to [16], [17],

V̇ (x) is given by

V̇ (x) =





∑

j∈Hf

λj∇f⊤
j (x)



 ẋ =
∑

j∈Hf

λj

∂fj(xj)

∂xj

ẋj , (13)

for all λj > 0 such that
∑

j∈Hf
λj = 1. Using the local

replicator equation (6), Equation (13) can be expressed as

V̇ (x) =
∑

j∈Hf







λj

∂fj(xj)

∂xj

xj



fj(xj)
∑

l∈Nj

xl −

∑

l∈Nj

fl(xl)xl











(14)

In this equation, fj(xj) ≥ fl(xl) for all l ∈ Nj since

j ∈ Hf , and by the definition of Hf , fj(xj) = V (x) =
maxi∈H fi(xi). Therefore, the expression inside the square

brackets in (14) is greater or equal to zero. Moreover, λj > 0,

xj > 0, and ∂fj(xj)/∂xj < 0 for all j ∈ Hf . Hence,

V̇ (x) ≤ 0. Additionally, V̇ (x) = 0 only when fj(xj) =
fl(xl), for all j ∈ Hf = H, which corresponds to the

equilibrium point. Finally, with these results, the equilibrium

point (9) achieved by means of the local replicator equation

(6) is asymptotically stable.

Given that truncation is a steady state concept, the non-

positivity analysis of V̇ (x) above holds for the truncation

case. In addition, if x∗
j > 0, for j = 1, . . . ,m, and

x∗
k = 0, for k = m + 1, . . . , N , then, k /∈ Hf since

fk(x
∗
k) < fj(x

∗
j ). Therefore, by using Equation (14),

V̇ (x) = 0 only at equilibrium. With these conditions, the

truncation equilibrium point (11) is also asymptotically

stable under the local replicator equation. �
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IV. APPLICATION TO ECONOMIC DISPATCH OF

DISTRIBUTED GENERATORS

The dispatch of distributed generators (DGs) is basically a

resource allocation problem, where a total amount of power

must be split among the available units according to technical

and commercial aspects of each generator. In addition, the

final goal of this process is the maximization of the general

utility of all generators by providing periodic and planned

supply of power to the system [18]. The basic optimization

problem in a dispatch with N DGs can be specified by

max utot(p) =
N
∑

j=1

uj(pj)

s.t.
N
∑

j=1

pj = Pd

0 ≤ pi ≤ Pnomi
, for i = 1, . . .N,

(15)

where p , [p1 p2 . . . pN ]⊤ is the vector of dispatched

powers to the N generators, ui(pi) and utot(p) are the

utility functions for the ith DG and for the whole system,

respectively; Pd is the desired (total) power to be dispatched;

and Pnomi
is the nominal power of each unit. Note that the

constraints define the interval of possible generation of each

DG and the complete distribution of the total power among

the DGs. If we define the utility ui : R+ 7→ R+ to be a

strictly concave function, the problem (15) is separable and

has a unique optimal solution. This optimal point is obtained

when all the marginal utilities are equal, i.e.,

∂u1

∂p1

∣

∣

∣

∣

p1=p∗

1

= . . .
∂ui

∂pi

∣

∣

∣

∣

pi=p∗

i

= . . .
∂uN

∂pN

∣

∣

∣

∣

pN=p∗

N

= d (16)

for some d > 0 such that
∑N

j=1
p∗j = Pd. This prob-

lem may be solved by market based techniques [14], cen-

tralized Lagrange optimization methods, or decomposition

techniques with heuristic or iterative algorithmic procedures

[11]. However, when the number of generators increases and

the information about all nodes is not available, centralized

algorithms are not effective, and decomposition techniques

may not converge since they need some type of coordination

between decentralized subsystems. For these reasons, and

given that distributed generation dispatches must be per-

formed in short intervals of time due to the changing demand

[13], reliable and fast methods must be used to calculate the

optimal power for each DG.

In order to solve the dispatch process using replicator

dynamics and the local replicator equation, let pi = Pdxi

be the dispatched power to the ith generator, where Pd is

the total power to be allocated. With this definition, and

replacing xi = pi/Pd in Equations (2), (3), and (6), we

obtain the dynamic equations to solve the dispatch problem

with full and partial information. On the other hand, by using

condition (16), appropriate fitness functions can be specified

by

fi(pi) = β
∂ui

∂pi
, for all i ∈ H, (17)

where β ∈ R+ does not affect the equilibrium or the stability

1 2

3

4 5

6

(a) Connected graph.

1 2

3

4 5

6

(b) Complete graph.

Fig. 1. Example of graph structures for dispatch processes with (a) local
and (b) full information.

of the replicator equations [4]. Hence, given that fi(p
∗
i ) =

fj(p
∗
j ), for all i, j (when there is no truncation), condition

(16) is satisfied at equilibrium for full and local informa-

tion techniques. In the truncation case, the non-negativity

constraints are active for some generators, and therefore, the

equilibrium point (11) solves optimally the dispatch problem.

In the next example, we show the application of the replicator

equations for a simple system with a specified topology.

Let us consider a system as the one shown in Figure 1

(i.e., N = 6), formed by DGs with different characteristics

defined by a relative generation cost factor (ci), and the

nominal power (Pnomi
) of each unit. With these economic

and technical parameters, we can define a general utility

function of the form

ui(pi) =
−pi

ciPnomi

(pi − 2Pnomi
) , for i = 1, . . . , N,

where the possible maximum utility is achieved when

each unit generates its nominal power (i.e., ui(Pnomi
) =

Pnomi
/ci). This is a valid utility function since quadratic

expressions are generally used to describe the profit in gener-

ation units, and ui(Pnomi
) satisfies the expected relationship

between an economic utility, the nominal power, and the

costs of generation of the DGs. According to (17), the fitness

of each DG in the replicator equations process can be given

by

fi(pi) =
1

ci

(

1−
pi

Pnomi

)

, for i = 1, . . . , N. (18)

In the dispatch process, in every negotiation period a desired

power Pd ≤
∑N

i=1
Pnomi

is programmed to be distributed

among the generators in the topologies shown in Figure 1

for the full and local information techniques. In this example,

we propose two cases for different parameters to illustrate

the theoretical results: i) truncation of a non-cutpoint (i.e.,

node 2); and ii) truncation of cutpoints (i.e., nodes 1 and 2).

Figure 2 shows the simulation results for both of the cases

with the full and local information replicator equations with

the parameter β = 0.5 and β = 7.5, respectively, for the

fitness functions in (17). Although the transient behavior is

different, in the first case the equilibrium points are the same

for both techniques and correspond to the optimal resource

allocation. Moreover, convergence time depends mainly on

the complexity of the system and on β. Hence, this parameter

can be adjusted to obtain a fast enough response according to

the length of each negotiation period. In the second case with

local information, the rightmost figure shows the formation

of the two components. Here, the fitnesses of each node of
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Fig. 2. Results of the dispatch process for a negotiation period with full and local information techniques with β = 0.5 and β = 7.5, respectively. Power
(upper graphics) and fitnesses (lower graphics) are shown for each of the two cases. The power graphics show the behavior of the six dispatched powers
(solid lines) and the theoretical optimal values (dashed line). The fitness of the truncated nodes are shown in dashed lines in the bottom figures.

the two components are equal, but the equilibrium point is

different from the optimal. This deviation depends on the

initial conditions and on the convergence time of the trun-

cated nodes. Although non-optimal results are obtained with

the formation of separate components, generally the network

structure of the power distribution systems allows the more

suitable nodes (the more active generators) to be connected

with a larger number of weak nodes (possible truncated

generators). Hence, the connectedness of the graph is strong

and the possible deviations from the optimal equilibrium due

to truncated cutpoints are avoided.

V. CONCLUSIONS

We present a novel technique based on evolutionary game

theory for the solution of resource allocation problems

in distributed systems with defined topologies. The local

replicator equation uses the main concepts of the replicator

dynamics model to reach a common fitness in a multi-

agent system, where the dynamics of each component are

related only with the information of the neighborhood in a

connected graph. The analysis of the stability of the achieved

equilibrium points and the simplicity of the model allow

the local-information technique to be applied in a general

distributed environment with an appropriate choice of the

fitness function. For instance, the application to an economic

dispatch of DGs shows that the optimal equilibrium point is

obtained with certain constraints in the connectivity of the

system.
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