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Abstract— The use of integer tree-based search and mixed-
integer programming is investigated for the purpose of control
of multi-item multi-echelon distribution chains. A discrete-time
model is considered to describe the dynamics of a generic
distribution chain. The decisions on the amounts of goods to
transfer are made by referring to a performance index that
accounts for transportation, storage, and backlog costs at two
levels, i.e., strategic and tactical. As to the strategic level, a
worst-case stock replenishment policy is adopted to exploit
the uncertain information available on long-term predictions
of the customers’ demand. The solution of such a problem is
obtained by using a top-down tree-based algorithm to select
policy parameters such as the delivery cycle times of goods.
At the tactical level, the on-line decisions on the transportation
of goods are taken basing on model predictive control, which
allows one to take into account recent, reliable, short-term
predictions of the demand. The tactical optimal decisions
are obtained by solving mixed-integer programming problems
with fewer variables as compared with the strategic setting.
Simulation results are presented to show the effectiveness of
the proposed approach.

I. INTRODUCTION

In this paper, we focus on integer programming problems
that arise when dealing with the management of distribution
chains (DCs), where the uncertainty on the customers’ de-
mand varies over time, i.e., it is large at first and much lower
during on-line operations, when some (but not all) decisions
can be somehow refined to improve the performances.

A DC is a complex system that is driven by the external
demand and depends on a large number of decision vari-
ables. Such decisions concern the delivery of goods up to
destination throughout the network and are made on the basis
of the information available on the customers’ requests. The
management of a DC consists in planning the flows of goods
while trading between transportation/inventory costs and sat-
isfying the customers’ demand. As the degree of uncertainty
on the demand predictions may be large at first but becomes
lower when the decisions are taken during operations, a two-
level hierarchical approach is proposed in [1]. In the first
level, off-line strategic decisions are taken basing on the
uncertainty on the available long-term information. In the
second level, tactical decisions are determined on line during
operations at each time instant when more precise, short-
term predictions of the customers’ demand become available.
Basing on the findings of [1], in this paper we focus on the
use of integer tree-based and mixed-integer optimal control
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that are conveniently combined to solve the strategic and
tactical problems.

At the strategic level, the information on the customers’
demand is of long-term type and so quite poor, thus entailing
a conservative design, for which a min-max approach is
proposed. At the tactical level, the decisions that can be
changed during operations are tuned by using the new, short-
term, and more precise predictions of the demands that
become available. This task is accomplished by using model
predictive control (MPC), which allows one to take advan-
tage of the information available on the future behavior of the
system [2]–[6]. In our context, as we shall see, there exists
the need of dealing with both real and integer variables and
hence of addressing mixed-integer optimal control problems.
Clearly, the main difficulty to deal with is the computational
complexity, as such problems are in general NP-hard [7].
Efficient solution methods based on continuous relaxation are
available for quadratic programming (see, e.g., [8], [9] and
the references therein). Unfortunately, such approaches are
not applicable here since we need to account for nonquadratic
cost functions. However, heuristic relaxation techniques were
successfully proposed in [1].

In this paper, novel contributions in terms of algorithmic
improvements are proposed as compared with [1]. Both in
the strategic and tactical settings, the discontinuous, step-
increasing nature of the cost function to be optimized is taken
into account via binary variables corresponding to the various
steps. Thus, mixed-integer programming techniques have to
be used to compute the optimal policies. In the strategic
setting, besides such binary variables, additional integer
variables are introduced that correspond to the delivery cycle
times of goods. In order to deal with such variables, here a
new tree-based approach is presented to solve the strategic
control problem that allows one to determine the optimal
values of safety stocks, delivery cycle times, and forecast
flows of goods to transfer in such a way to minimize a
given performance index and satisfy exactly the external
demand. More specifically, a top-down tree-based algorithm
is adopted to deal with the selection of the integer variables
that represent the delivery cycle times. The tree is constructed
by means of a branching on the choice of such variables. The
nodes are associated with potential instances of subproblems
that are solved only at the leaves, where the solutions of
min-max mixed-integer optimization problems are explicitly
computed. Likewise in a branch-and-bound setting, the cur-
rent best result obtained in solving such problems is used
to discriminate among the new solutions that are generated
step by step in the construction of the tree. Moreover, one
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can prune the nodes that correspond to problems that are
evaluated as infeasible on the basis of previous infeasibility
results, thus reducing the computational burden.

The rest of the paper is organized as follows. Section
II provides a brief account of the DC model presented in
[1]. The novel contributions are reported in Sections III
and IV for the strategic and tactical control methodologies,
respectively. Simulation results are shown in Section V.

Throughout the paper, we shall denote the real numbers
equal to or greater than zero by R+ and the positive integer
numbers equal to or greater than one by N. Given the real
vectors ei, ei+1, . . . , ei+j , we shall adopt the notation ei+j

i

to denote an ordered collection of such vectors given by
col

(
ei, ei+1, . . . ei+j

)
, i ∈ N ∪ {0}, j ∈ N.

II. DYNAMIC MODEL OF DISTRIBUTION CHAINS

Let us focus on a state-space dynamic model of the various
flows of goods inside a given DC. In line with [1], we
refer to a generic DC composed of production units (PUs),
distribution units (DUs), and sales units (SUs). Each unit is
represented by a node of a directed graph. A node is equipped
with a set of buffers that are filled up with quantities of goods
of various types among M possible ones. Given a graph with
N − 1 nodes, we denote the set of the indexes of the types
of goods available at node i by K(i), i = 1, 2, . . . , N − 1,
and by I(i) and O(i) the sets of the incoming and outgoing
neighbors of node i, respectively. Moreover, τijk ∈ N is the
delay required to transfer goods of type k from node i to
node j; Ik(i) , {j ∈ I(i) : k ∈ K(i) ∩K(j)} is the set of
the indexes of the types of goods that can be transferred to
node i; Ok(i) , {j ∈ O(i) : k ∈ −K(i) ∩K(j)} is the set
of the indexes of the types of goods that can be transferred
from node i. For the sake of brevity, let P , D, and S be
the sets of the indexes of the nodes corresponding to PUs,
DUs, and SUs, respectively. We denote the initial source at
the PUs and final sink for the SUs by the fictitious nodes 0
and N , respectively.

According to [1], a DC state-space model can be derived
by balancing the stock levels in all the buffers and backlogs
at the SU nodes, all regarded as continuous state variables
of the following discrete-time dynamic equations:

zik(t+ 1) = zik(t) + u0ik (t− τ0ik)−
∑

j∈Ok(i)

uijk(t),

i ∈ P, k ∈ K(i) (1a)

zik(t+ 1) = zik(t) +
∑

j∈Ik(i)

ujik (t− τjik)−
∑

j∈Ok(i)

uijk(t),

i ∈ D, k ∈ K(i) (1b)

zik(t+ 1) = zik(t) +
∑

j∈Ik(i)

ujik (t− τjik)− uiNk(t),

i ∈ S, k ∈ K(i) (1c)
bik(t+ 1) = bik(t)− uiNk(t) + dik(t),

i ∈ S, k ∈ K(i) (1d)

where t = 0, 1, . . .; zik(t) ∈ R is the stock level of the
buffer that contains quantities of goods of type k at node i,

i = 1, 2, . . . , N − 1, k ∈ K(i) (such variables will be called
z-variables); uijk(t) ∈ R is the amount of goods of type k
transferred from node i to node j, i ∈ I(j), j = 1, 2, . . . , N ,
k ∈ K(i) ∩ K(j); bik(t) ∈ R is the backlog level of the
buffer that contains quantities of goods of type k at node i,
i ∈ S , k ∈ K(i) (such variables will be called b-variables);
dik(t) ∈ R is the external demand of goods of type k at
node i, i ∈ S, k ∈ K(i).

For the sake of brevity, let us define the state, control, and
demand vectors of the overall DC as follows:

xt , col [zik(t), ujil(t− 1), . . . , ujil (t− τjil) ,

brk(t), i = 1, 2, . . . , N − 1, j ∈ I(i),

k ∈ K(i), l ∈ K(i) ∩K(j), r ∈ S] ∈ Rn

ut , col [uijk(t), i ∈ I(j), j = 1, 2, . . . , N,

k ∈ K(i) ∩K(j)] ∈ Rm

dt , col [dik(t), i ∈ S, k ∈ K(i)] ∈ Rp .

In order to complete such a model, we need to introduce
various types of constraints that stem from both boundedness
of the state variables and other limitations concerning the
control inputs.

More specifically, first let us consider the state variables.
We constrain the stock levels as follows:

0 ≤ zik(t) ≤ zmax
ik , i = 1, 2, . . . , N − 1, k ∈ K(i) (2)

where t = 0, 1, . . . and zmax
ik is a positive constant represent-

ing the maximum quantity of goods of type k that can be
stored at node i, i = 1, 2, . . . , N − 1, k ∈ K(i). As regards
the backlogs, we impose the following constraints:

bik(t) ≥ 0, i ∈ S, k ∈ K(i) (3)

where t = 0, 1, . . .. Let bt , col [bik(t), i ∈ S, k ∈ K(i)] ∈
Rp. In order to prevent from the occurrence of stockouts,
a safety stock may be kept to satisfy unexpected requests.
Thus, let sik ≥ 0 be the safety stock level at node i for goods
of type k. From a strategic point of view, we constrain each
stock level to be higher than the corresponding safety stock:

zik(t) ≥ sik, i = 1, 2, . . . , N − 1, k ∈ K(i) (4)

where t = 0, 1, . . .. As we shall see in the following, during
on-line operations the constraints (4) can be relaxed, as such
stocks are employed on demand to avoid stockouts. Let s ,
col [sik , i = 1, 2, . . . , N − 1, k ∈ K(i)] ∈ Rq .

The control inputs are constrained to satisfy limitations
that vary over time. More specifically, since the transporta-
tion of goods of type k from node i to node j can be made
only with a delivery cycle time denoted by Ωijk ∈ N, the
following constraints hold:

umin
ijk (t) ≤ uijk(t) ≤ umax

ijk (t),

i ∈ I(j), j = 1, 2, . . . , N − 1, k ∈ K(i) ∩K(j) (5a)

where t = lΩijk, l ∈ N; umin
ijk (t) and umax

ijk (t) are positive
numbers representing the minimum and maximum amounts
of goods of type k that can be transferred at time t from
node i to node j, respectively. Note that we do not explicitly
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constrain the controls uiNk(t), i ∈ S , k ∈ K(i), t = 0, 1, . . .,
as they model the quantities of goods that leave the SU nodes
upon the demands dik(t). Let umin,t , col

[
umin
ijk (t), i ∈

I(j), j = 1, 2, . . . , N − 1, k ∈ K(i) ∩ K(j)
]

∈ Rm′

and umax,t , col
[
umax
ijk (t), i ∈ I(j), j = 1, 2, . . . , N − 1,

k ∈ K(i) ∩K(j)
]
∈ Rm′

.
In order to model the impossibility of transferring goods

of type k from node i to node j in time instants that are not
multiples of the delivery cycle time Ωijk, we impose

uijk(t) = 0,

i ∈ I(j), j = 1, 2, . . . , N − 1, k ∈ K(i) ∩K(j) (5b)

where t ̸= lΩijk, l ∈ N. In other words, if
t̄ = lΩijk, l ∈ N, we constrain uijk(t) = 0 for
all t = t̄ + 1, t̄ + 2, . . . , t̄ + Ωijk − 1. Let Ω ,
col [Ωijk, i ∈ I(j), j = 1, 2, . . . , N − 1, k ∈ K(i) ∩K(j)] ∈
Nm′

be the vector of all the delivery cycle times.

III. STRATEGIC CONTROL OF DCS VIA TREE-BASED
MIN-MAX MIXED-INTEGER PROGRAMMING

In this section, we address the problem that consists in
choosing the values of safety stocks, delivery cycle times,
and forecast flows of goods to transfer according to a worst-
case criterion and satisfying exactly the external demands.
We shall consider a long time horizon T and a suitable cost
function that measures the performance of the DC over such
a period of time.

If the initial state x0 is assigned, the future behavior of
the DC up to the time T is determined via the state equation
(1), demands dT−1

0 , control inputs uT−1
0 , safety stocks s, and

delivery cycle times Ω. Since satisfying exactly the external
demands is equivalent to keep the backlogs at the zero level,
we impose the following constraint:

bt = 0, t = 1, 2, . . . , T. (6)

We assume to know a prediction d̂t ∈ Rp of dt, i.e.,
dt = d̂t + d̃t, t = 0, 1, . . . , T − 1, where d̃t ∈ Rp is
the vector of prediction errors: it represents the amount of
uncertainty in the prediction of dt. We suppose to be able
to predict the behavior of the demand over time within
a given uncertainty band described by known lower and
upper bounds, i.e., d̃min,t ∈ Rp and d̃max,t ∈ Rp such that
d̃min,t ≤ d̃t ≤ d̃max,t, t = 0, 1, . . . , T − 1.

Moreover, one may constrain the stock levels at the final
time instant to belong to an assigned subset of values:

zdown
ik ≤ zik(T ) ≤ zupik , i = 1, 2, . . . , N − 1, k ∈ K(i) (7)

where zdown
ik and zupik are the lower and upper bounds of the

corresponding z-variable at time T , respectively.
Generally speaking, the goal of the strategic control is to

minimize the inventory and transportation costs and satisfy
the customers’ demands as well. As to the inventory, the
higher the amounts of goods stocked at the various nodes,
the higher the storage costs. As to the transportation, once
fixed the types of carriers, the transportation costs grow if
the quantities of transferred goods increase. In [1], the costs

related to the transportation of goods from node to node
were modeled by a step-increasing function gijk : R → R,
i ∈ I(j), j = 1, 2, . . . , N − 1, k ∈ K(i)∩K(j), as follows:

gijk [uijk(t)]=


w0

ijk , 0 if uijk(t) = u0
ijk , 0

w1
ijk if u0

ijk < uijk(t) ≤ u1
ijk

...
wr

ijk if uijk(t) > ur−1
ijk

i ∈ I(j), j = 1, 2, . . . , N − 1, k ∈ K(i) ∩K(j) (8)

where w0
ijk ≤ w1

ijk ≤ w2
ijk ≤ · · · ≤ wr

ijk, u0
ijk ≤ u1

ijk ≤
u2
ijk ≤ · · · ≤ ur−1

ijk (see Fig. 1), and t = 0, 1, . . . , T−1. Such
a function is motivated by the fact that, in general, there ex-
ists no perfect proportionality between costs and transferred
quantities, as the transportation is usually accomplished by
lot-sized carriers.

u
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u
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Fig. 1. Pictorial representation of a transportation cost function.

In this paper, instead of (8), the transportation costs are
taken into account via a function hijk : {0, 1}r → R and
binary variables ylijk(t) ∈ {0, 1}, i ∈ I(j), j = 1, 2, . . . , N−
1, k ∈ K(i) ∩ K(j), l = 1, 2, . . . , r, that are used to
represent the various steps described for the function gijk(·).
In other words, we consider the following transportation cost
function:

hijk

[
y1,rijk(t)

]
=

r∑
l=1

(wl
ijk − wl−1

ijk )y
l
ijk(t),

i ∈ I(j), j = 1, 2, . . . , N − 1, k ∈ K(i) ∩K(j) (9)

where t = 0, 1, . . . , T − 1 and y1,rijk(t) , col
[
y1ijk(t) ,

y2ijk(t), . . . , yrijk(t)
]
∈ {0, 1}r. Let y

t , col
[
ylijk(t), i ∈

I(j), j = 1, 2, . . . , N − 1, k ∈ K(i) ∩ K(j), l =

1, 2, . . . , r
]

∈ {0, 1}rm′
. Such variables take their values

according to the following equation:

ylijk(t) =

{
1 if uijk > ul−1

ijk (t)

0 otherwise
i ∈ I(j), j = 1, 2, . . . , N − 1, k ∈ K(i) ∩K(j),

l = 1, 2, . . . , r (10)
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where t = 0, 1, . . . , T − 1. Equation (10) can be taken into
account by means of the following constraints:

uijk(t) ≤ Mylijk(t) + ul−1
ijk (11a)

uijk(t) > M
[
ylijk(t)− 1

]
+ ul−1

ijk (11b)

i∈I(j), j=1, 2, . . . , N − 1, k∈K(i) ∩K(j), l=1, 2, . . . , r

where t = 0, 1, . . . , T − 1 and M is a very large positive
constant. Constraint (11a) is equivalent to uijk(t) ≤ ul−1

ijk if
ylijk(t) = 0, whereas it is trivially satisfied if ylijk(t) = 1.
Constraint (11b) is equivalent to uijk(t) > ul−1

ijk if ylijk(t) =
1, whereas it is trivially satisfied if ylijk(t) = 0.

To sum up, we consider the following cost function as
tradeoff between inventory and transportation costs:

J
(
xT
0 , u

T−1
0 , yT−1

0

)
= c1

T∑
t=1

αt
N−1∑
i=1

∑
k∈K(i)

zik(t)

+ c2

T−1∑
t=0

βt
N−1∑
j=1

∑
i∈I(j)

∑
k∈K(i)∩K(j)

hijk

[
y1,rijk(t)

]
(12)

where α ∈ (0, 1] and β ∈ (0, 1] are discount coefficients;
c1 > 0 and c2 > 0 are weighting constants.

Given x0 and d̂t for t = 0, 1, . . . , T − 1, we shall address
the problem of minimizing the cost function (12) when the
uncertainties on the external demands lead the system to the
least favorable case, i.e., we state the following problem.
Problem 1. Find xT

1 ∈ RnT
+ , uT−1

0 ∈ RmT
+ , s ∈ Rq

+, Ω ∈
{1, 2, . . . , T − 1}m

′
, and yT−1

0 ∈ {0, 1}rm′T such that

max
d̃
T−1

min,0
≤d̃

T−1

0
≤d̃

T−1

max,0

J
(
xT
0 , u

T−1
0 , yT−1

0

)
is minimized under the constraints given by (1), the r.h.s. of
(2), (4), (5a), (5b), (6), (7), (11a), and (11b).

Problem 1 is of min-max mixed-integer type and involves
constraints with both real and integer unknowns. Concerning
integer unknowns, they can be divided into two subsets,
corresponding to delivery cycle times Ω and binary vector
yT−1
0 related to transportation costs. Constraints (5a) and

(5b) structurally depend on the integer variables that are the
components of Ω, which define both number and structure of
such constraints. The solution of Problem 1 can be obtained
by using a top-down tree-based search that allows one to
split the original problem into subproblems organized in a
tree until a leaf node is reached. Each branching is made on
the specific choice of Ω. The leaves of the tree are made up
of min-max mixed-integer problems with linear constraints
and minimization variables that include the components of
the binary vector yT−1

0 , whereas Ω is fixed. No problems to
be solved are associated with the intermediate nodes, which
are used only to select the values of the components of Ω.
Each of such problems can be cast as follows.

Problem 1′. Given Ω ∈ {1, 2, . . . , T − 1}m
′
, find xT

1 ∈
RnT

+ , uT−1
0 ∈ RmT

+ , s ∈ Rq
+, and yT−1

0 ∈ {0, 1}rm′T such
that

max
d̃
T−1

min,0
≤d̃

T−1

0
≤d̃

T−1

max,0

J
(
xT
0 , u

T−1
0 , yT−1

0

)

is minimized under the constraints given by (1), the r.h.s. of
(2), (4), (5a), (5b), (6), (7), (11a), and (11b).

The tree that is obtained by solving the various Problems
1′ is composed of nodes generated on the basis of the
selection of each component of Ω among the possible values
from 1 to T − 1 (see Fig. 2). The number of the leaves
of such a tree is equal to (T − 1)m

′
. In order to reduce

the computational burden, a pruning strategy can be applied
that consists in eliminating the leaves corresponding to larger
values of a delivery cycle time for which the infeasibility of
the related min-max problem has been already tested.

Pr. 1

Pr. 1′Pr. 1′Pr. 1′Pr. 1′ Pr. 1′ Pr. 1′Pr. 1′ Pr. 1′

Ω1=1 Ω1=T−1

Ω2=1 Ω2=T−1

Ωm
′ =1 Ωm

′ =T−1

Fig. 2. Tree structure for the solution of Problem 1.

IV. TACTICAL CONTROL OF DCS VIA MPC
Since the actual customers’ demands may be quite dif-

ferent from their corresponding forecasts available in the
strategic planning, the resulting strategic policy can turn
out to be inadequate to satisfy the demands during on-line
operations. Thus, an adjustment of the control inputs during
operations is well-suited to increasing the performances of
the DC according to a tactical management strategy. Among
the various alternatives to address the design of such a
strategy, here we focus on the MPC paradigm, which consists
in finding at each time step the control inputs that solve
a receding-horizon optimal control problem of length Tp

(with Tp < T ) and in applying only the first control action.
The prediction and optimization steps are repeated at the
successive time instants with an one-step forward shift of
the sliding window and by using new (and possibly more
precise) forecasts of the demands. In this case, the external
demands have to be predicted only from time t to time
t + Tp − 1, and not for all t = 0, 1, . . . , T − 1 as in the
strategic case. Thus, now the predictions are assumed to be
without uncertainty.

At each time t = 0, 1, . . . , T − 1, an open-loop finite-
horizon optimal control problem is solved and the first
optimal control input is applied instantaneously, thus turning
into a closed-loop control action. Safety stocks and delivery
cycle times are chosen to be equal to the corresponding
optimal values obtained by solving Problem 1 in the strategic
setting, denoted by s̄◦ and Ω̄

◦, respectively. The goal of the
tactical approach is to find the control inputs that minimize,
at each time t = 0, 1, . . . , T −1, the following cost function:

Jt

(
x
t+Tp

t ,u
t+Tp−1
t ,y

t+Tp−1
t

)
=

t+Tp∑
τ=t+1

c1ατ−t−1
N−1∑
i=1

∑
k∈K(i)

zik(τ)
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+c3γ
τ−t−1

N−1∑
i=1

∑
k∈K(i)

θikPik[zik(τ)]+c4δ
τ−t−1

∑
i∈S

∑
k∈K(i)

bik(τ)


+

t+Tp−1∑
τ=t

c2β
τ−t

N−1∑
j=1

∑
i∈I(j)

∑
k∈K(i)∩K(j)

hijk

[
y1,rijk(τ)

]
(13)

where α ∈ (0, 1], β ∈ (0, 1], γ ∈ (0, 1], and δ ∈ (0, 1] are
discount coefficients; c1, c2, c3, and c4 are positive weighting
constants; hijk : {0, 1}r → R is the function that accounts
for the transportation costs as in (9); Pik : R → R is a
penalization function for the z-variable zik(t), whose aim is
to penalize the consumption of the safety stocks fixed in the
strategic planning, and θik > 0 is the corresponding weight.
A possible choice for the function Pik(·) is the following:

Pik (zik) =

{
(−zik + s̄◦ik)

v if 0 ≤ zik ≤ s̄◦ik
0 if zik > s̄◦ik.

(14)

where v > 0 is chosen basing on the required degree of
smoothness for zik = s̄◦ik.

Once fixed the safety stocks s̄◦ and delivery cycle times
Ω̄

◦, given the state vector xt and demand predictions
d̂
t+Tp−1

t at each time t = 0, 1, . . . , T − 1, we deal with
the following problem.

Problem 2. Find x
t+Tp

t+1 ∈ RnTp

+ , u
t+Tp−1
t ∈ RmTp

+ , and
yt+Tp−1
t ∈ {0, 1}rm′Tp such that

Jt

(
x
t+Tp

t , u
t+Tp−1
t , y

t+Tp−1
t

)
is minimized under the constraints given by (1), the r.h.s. of
(2), (5a), (5b), (11a), and (11b).

In this case, d̂t is assumed to be a perfect prediction of
dt, and thus in general different from that available in the
strategic setting. Problem 2 is of mixed-integer program-
ming type because of the presence of the binary variables
yt+Tp−1
t . As previously noted, such binary variables are not

required in [1] since, instead of the function hijk(·), the
step-increasing function gijk(·) reported in (8) is used to
account for the transportation costs. Clearly, this makes the
cost (13) nondifferentiable, thus turning into the necessity
of employing only nonderivative optimization methods. By
contrast, the approach proposed here does not suffer from
such a limitation, but at the price of dealing with binary
variables.

Problem 2 differs from Problem 1 for various reasons.
First of all, it has to be solved on line with fixed safety
stocks and delivery cycle times. Since the delivery cycle
times are given, Problem 2 does not require the previously
described tree search. Thus, the computational effort required
on line is reduced as compared with that of Problem 1.
Another remarkable difference between the strategic and
tactical levels concerns the safety stock violation constraints
(4) of Problem 1, which are removed in Problem 2 and
replaced by terms that penalize the use of safety stocks in the
cost function. During on-line operations, such quantities of
goods are available upon request to deal with unpredictable
demands, thus possibly preventing from stockouts. Finally,

in the MPC tactical setting we assume to have at disposal
very precise demand predictions and deal with optimization
problems of much smaller dimensions than those of Problems
1′.

V. SIMULATION RESULTS

As an example of application, let us consider the single-
item DC made up of 4 nodes depicted in Fig. 3. Since such
a DC is only with a single item, in the following we shall
drop the subscript k from all the variables and functions. We
evaluated the DC performance over one year, where each
bucket corresponds to one week (i.e., we chose T = 52).
All the simulations were performed in Matlab using also the
Tomlab optimization software [10].

The considered DC turns out to be governed by a dynamic
equation with xt ∈ R15, t = 0, 1, . . . , T , ut ∈ R7, t =
0, 1, . . . , T − 1, yt ∈ R15, t = 0, 1, . . . , T − 1, and dt ∈ R2,
t = 0, 1, . . . , T − 1.

u01 u12

u13

u23

u24

u35

u45

1 2

3

4

d3

d4

Fig. 3. Graph of the single-item DC considered in the simulations.

Concerning the strategic level, in order to reduce the com-
putational complexity of the tree generation, the maximum
value of the delivery cycle times was chosen to be equal
to 4. Basing on such a tree structure, the solution of the
related Problem 1 was found by searching for the optimal
amounts of goods to transfer from node to node, safety
stocks, and delivery cycle times using the information on
long-term forecasts of the external demands given only by
the uncertainty bands of the predictions of the demands
d3(t), and d4(t) for t = 0, 1, . . . , T − 1 (see the dashed
lines in Fig. 4, whereas the continuous lines represent the
actual demands used at the tactical level). As regards the
cost function, we chose all the coefficients α, β, c1, and c2
equal to 1 and the same function h : {0, 1}r → R for all
i ∈ I(j), j = 1, 2, . . . , 4, with r = 3, w1

ij = 10, w2
ij = 20,

w3
ij = 30, u1

ij = 100, and u2
ij = 200. Other details are

briefly summarized in Table I. The solution of Problem 1
provided the optimal delivery cycle times and safety stocks
Ω̄

◦ = col (4, 2, 2, 1, 1) and s̄◦ = col (1861, 742, 10, 113),
respectively.

As for the tactical level, we solved Problem 2 to compute
the optimal control inputs ut at each time bucket t =
0, 1, . . . , T−1 with MPC during on-line operations basing on
the values s̄◦ and Ω̄

◦ obtained in the strategic setting. The
transportation delays, as well as the initial and maximum
stock levels of all the buffers were chosen to be equal to
those reported in Table I. We chose umin,t = 0 for all
t = 0, 1, . . . , T − 1 and the components of umax,t equal to
the corresponding forecast flows determined in the strategic
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Fig. 4. External demands used at the tactical level and demand prediction
bands of the strategic planning.

TABLE I
PARAMETERS AND VARIABLES OF THE SIMULATIONS.

Node i Node j τij umin
ij (t) umax

ij (t)

0 1 2 1700 3200
1 2 2 600 1200
1 3 3 200 800
2 3 1 100 300
2 4 1 100 300

Node i zi(0) zmax
i zdown

i zupi

1 10000 10000 2000 5000
2 5000 10000 1000 3000
3 200 3000 10 500
4 200 3000 10 500

case plus 15%. In the cost function, we chose θi = 1 for
all i = 1, 2, . . . , 4, all the coefficients α, β, c1, c2, and c3
equal to 1, c4 = 100, and v = 2. Such a choice of the
coefficients allows one to satisfy more promptly the demands
by penalizing much more the backlogs rather than the other
terms.

The evaluation of the effectiveness of the considered
approach was performed by means of a key performance
index (KPI) defined as follows:

KPI , c1

T∑
t=0

4∑
i=1

zi(t) + c2h
[
y1,rij (t)

]
+ c4

T∑
t=0

4∑
i=3

bi(t)

where the weights c1, c2, and c4 are the same coefficients
used in the cost function (13). Such an index is made up
of the weighted sum of the costs related to the inventory
levels, the transportation costs, and the costs of unsatisfied
demands.

We compared the results obtained by solving Problem 2
with the approach presented in [1], where the step-increasing
expression (8) was used for the transportation cost function
without introducing the binary variables yt, t = 0, 1, . . . , T−
1. Different lengths of the sliding window were considered,
i.e., we chose Tp equal to 1, 2, and 3. The use of larger values
of Tp may be critical since it would entail on-line predictions
of the external demands over a too long horizon, for which
the assumption of having at disposal exact forecasts may be
difficult to hold. The KPIs obtained in the various cases are
reported in Table II.

The simulation results show that, as the control horizon Tp

increases, the KPI decreases since more effective control ac-

TABLE II
KPIS OBTAINED WITH DIFFERENT PREDICTIVE CONTROL HORIZONS.

Tp mixed-integer relaxed

1 4.78 · 105 4.80 · 105
2 4.76 · 105 4.79 · 105
3 2.83 · 105 2.99 · 105

tions are computed because of higher amount of information
about the future is taken into account. As compared with the
approach of [1], here the obtained results in terms of values
of the KPI are better; however, an increased computational
effort is needed to perform the optimization since we deal
with mixed-integer programming problems rather than with
real programming ones.

The main drawback of the approach presented in this paper
is the fact that the number of binary variables increases
with the number of links, the number of levels of the
transportation cost function hijk(·), and the length of the
control horizon Tp in Problem 2. Thus, even if the approach
presented here allows one to obtain better results with respect
to the relaxation-based approach adopted in [1], it may
turn out to be unfeasible, especially for DCs with many
nodes and links, as well as a high number of levels in the
transportation cost function and a large length of the control
horizon Tp. In this simple example, the instances of Problem
2 corresponding to Tp = 1, Tp = 2, and Tp = 3 were
characterized by 15, 30, and 45 binary variables, respectively.
In order to tackle the computational difficulties, heuristic
techniques will be the subject of future works with the goal
of dealing with problems of higher dimensionality.
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