
  

  

Abstract—  Initialization of Riemann-Liouville and Caputo 

fractional derivatives remains an open research topic. These 

fractional derivatives are fundamentally related to fractional 

integration operators, so their initial conditions are the initial 

state vector of the associated fractional integrators. The paper is 

intended to propose an automatic initialization technique for 

practical calculation of the Caputo fractional derivative. 

Indirectly, this algorithm provides and efficient estimate of the 

initial state vector. Numerical simulations show the efficiency of 

the proposed initialization technique and provide 

interpretations of  the long range memory phenomenon which is 

the main feature of fractional systems. 

I. INTRODUCTION 

  

ractional calculus is now considered as an efficient 

mathematical tool for solving many engineering problems, 

like the modeling of diffusive Partial Differential Equations 

or the design of robust control algorithms (refer to the 

proceedings of the four IFAC Workshops on Fractional 

Differentiation and Its Applications, Bordeaux 2004, Porto 

2006, Ankara 2008 and Badajoz 2010). However, in spite of 

these renowned results, some theoretical problems have not 

yet received a satisfying solution. The mastery of initial 

conditions, either for Fractional Differential Equations 

(FDEs) or for the Caputo and Riemann-Liouville fractional 

derivatives, remains an open research domain. The solution 

of this fundamental problem, also related to the long range 

memory phenomenon, is certainly the necessary prerequisite 

for a satisfying definition of fractional systems controllability 

and observability. 

Many contributions have been proposed to solve this 

problem, see for example [5], [2], [11], [6],[14]. Among 

these contributions, we have to notice the concept of the 

initialization function which has been introduced by Lorenzo 

and Hartley and applied to different initial condition 

problems. 

Another approach is based on the infinite dimensional state 

vector of the fractional integrator which provides a 

straightforward interpretation of initial conditions. This new 

concept has been applied to the initialization of Fractional 

Differential Equations: it has been possible to estimate these 

initial conditions thanks to an observer and then to initialize 

correctly the corresponding FDE [18]. 
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In a recent paper [17] this concept has been generalized to 

the interpretation of the initial conditions of Riemann-

Liouville and Caputo fractional derivatives. A new 

formulation of the initial conditions of the Laplace 

transforms of these derivatives has been proposed. The main 

result is the presence of the infinite dimensional state vector 

of the integrator in these initial conditions. 

In this paper, our objective is to propose an automatic 

initialization technique for practical calculation of fractional 

derivatives. We also want to demonstrate that the integrator 

state vector is the right solution for the initialization of 

fractional derivatives. The main difficulty of the initialization 

problem is to estimate these initial conditions. We 

demonstrate that a feedback tracking system is able to 

provide an efficient estimate of the Caputo derivative and 

indirectly of the initialization state vector.  Numerical 

simulations show the efficiency of the proposed initialization 

technique and provide interpretations of  the long rang range 

memory phenomenon. 

After a reminder of fractional integration and the definition 

of implicit fractional differentiation in section II, we present 

the fractional integration operator in section III and the 

definition of the Riemann-Liouville and Caputo fractional 

derivatives in section IV and of their initial conditions in 

section V. The proposed initialization technique is applied to 

the Caputo derivative in section VI and numerical 

simulations are presented in section VII. 

II. FRACTIONAL INTEGRATION AND DIFFERENTIATION  

A. Fractional integration 

Consider the function )(µf  and its repeated integrals : 
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Using  integration by parts , we get [7] [13]: 
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where n  is an integer number. 

Consider now that n  is a real positive number : thus the 

factorial function )!1( −n  has to be replaced by the gamma 

function ∫
∞

−−=Γ
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1
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Then, the n
th

 fractional order Riemann-Liouville integral 

( n  real positive) of the function )(tf  is defined by the 

relation [8] [10] [12] : 
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Notice that ( ))(tfIn  is the convolution of the function 

)(tf with the impulse response 
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of the fractional integration operator whose Laplace 

transform is: 
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B. Implicit fractional differentiation 

Fractional differentiation is the dual operation of the 

fractional integration. 

Consider the fractional integration operator )(sI n  whose 

input and output are respectively )(tx  and )(ty .  

Then: 

( ))()( txIty n=    (7)             or  )(
1

)( sX
s

sY
n

=               (8) 

Reciprocally, )(tx  is the n
th

 order fractional derivative of  

)(ty  defined as: 

( ))()( tyDtx n=   (9)            or   )()( sYssX n=               (10) 

where ns  represents the Laplace transform of the 

fractional differentiation operator (for initial conditions equal 

to zero). 

Thus, this fractional derivative definition is based on the 

operator )(sI n , without analytical formulation of ( ))(tyDn : 

so it is an implicit definition of the fractional derivative. 

III. FRACTIONAL INTEGRATION OPERATOR 

A. Fractional integration operator 

The fractional order integrator is an infinite dimensional 

system [3] [9] [15] [20] [21]. Its state-space model, provided 

by the inverse Laplace transform of 
n

s

1
, is given by : 
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where: )(tv : input, )(tx : output 

),( tz ω : continuously distributed state 

)(tx  is the weighted sum of the ),( tz ω internal state 

variables of the integrator. 

B. State of the fractional integrator 

The state ),( tz ω  of the operator )(sIn  is an infinite 

dimensional distributed state. Let ),( 0tz ω be the frequency 

distributed state at the instant 0t . This state represents the 

initial condition (or initialization function) of the integrator: 

it summarizes all the past behavior for 0tt < . 

The solution of system  (11) excited by )(tv  for 0tt ≥ , with 

the initial condition ),( 0tz ω  is given by [14]: 
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Consequently, the output )(tx of the fractional integrator (11) 

is composed of a free response term caused by the initial 

condition ),( 0tz ω  and of a forced response term caused by 

)(tv , like all linear systems [4]. 

Remark : For an integer order integrator 
s

sI
1

)( = , we have 

)()(1 ωδωµ = , i.e.        )()( tztx =                                  (14)  

which means that )(tx and )(tz are the same variable and 

that the output of the integer order integrator is also the state 

variable of the integer order integrator, located in 0=ω . 

At the opposite, for )(sIn , the output )(tx , which is the 

integral of ),( tz ω weighted by the function )(ωµn , is only a 

pseudo state variable: this means that )( 0tx  is unable to 

summarize the past behavior of )(sIn  for 0tt < . Thus , the 

initialization function ),( 0tz ω  is equivalent to the initial 

state )( 0tx  of the integer order integrator )(sI . 

 

C. Discrete approximation of the operator 

The continuously distributed integrator model is not 

directly suited to practical applications, like simulation. A 

discrete frequency approximation of this operator has been 

proposed in [15] [16]. J+1 cells, ranging from 0  to J , 

provide a modal state space model of the integrator. See 

these references, particularly for the definition of the 

different modes jω  and of their weights jc . 
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This discrete model has been used to initialize successfully a 

FDE (refer to [18] for more details). 

IV. CAPUTO AND RIEMANN-LIOUVILLE FRACTIONAL 

DERIVATIVES 

A. Differentiation and convolution 

The relation  

1
1

)()( == n

nnn s
s

sDsI                                                     (18) 

corresponds in the time domain to the convolution relation : 
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where )(tdn , impulse response of the fractional 

differentiator, is the convolution inverse of )(thn [7]. 

So we get : 
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B. Explicit formulation of the fractional derivatives 

Assume that the fractional order n  is situated between the 

two integer numbers 1−N  and N  :  NnN ≤<−1                                                                   

We can write N
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where 
nNs −

1
 represents the fractional integration )(nNI −  

and Ns  the integer order differentiation 
N
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(with zero initial conditions) 

Using the inverse Laplace transform , we get two expressions 

for )( fDn  : 

The first one corresponds to : 
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and the second one to : 
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This first expression is known as the Caputo derivative [1] : 
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while the second one is the Riemann-Liouville derivative 

[13] : 
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V. INITIAL CONDITIONS OF FRACTIONAL DERIVATIVES 

A. An introductory example 

Consider the sine function ttf sin)( =                         (27) 

whose theoretical fractional derivative [ 10] is: 

)
2
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π

ntfDn +=                                                    (28) 

Practically, we calculate the Caputo derivative using (25): 
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with the distributed integrator : 
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We have performed this differentiation with no initialization 

of the ),( tz ω  state function, at two different instants, 

00 =t and  st 57.10 = . 

The corresponding graphs of )(tf  , )( fDn  and )(tx  are 

represented on figure n°1. On figure n°2, we have 

represented the difference between the exact derivative and 

)(tx for the two instants 0t , with a longer time scale. For 

00 =t , we notice that )(tx  converges to )( fDn  after a slow 

transient. For st 57.10 = , there is also convergence, but 

more slowly than previously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure n°1: Calculation of Caputo derivative beginning at 

two instants 0t  
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These two examples exhibit the influence of initial 

conditions, also known as long range memory phenomenon. 

Notice that this phenomenon depends on the initial instant 

0t . 

In this paper, our objective is to give a theoretical 

explanation of this phenomenon in the present section and to 

propose an initialization technique for the Caputo derivative 

in section  VI, in order to master the influence of initial 

conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure n°2: Differentiation error at the two instants 0t  

 

B. Initial conditions for  10 << n  

Refer to [17] for a complete presentation of the initial 

conditions problem, mainly for the general case. 

 

B.1. Implicit derivative 

Consider the integrator )(sIn , with initial condition 

)0,(ωIz . 
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the Laplace transform of  equation (11) is : 
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we get finally the Laplace transform of the implicit fractional 

derivative :  

{ } ω
ω

ωωµ
d

s

z
ssFsfDL Innn

n ∫
∞

+
−=

0

)0,()(
)()(               (34) 

where the second term is based on the distributed initial 

condition )0,(ωIz  ( with )()( tftx =  and ))(()( tfDtv n= ). 

B.2. Caputo derivative 

Expression (23) can be written as: 
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Consider the Laplace transform of the Caputo derivative, 

which is defined as : 
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Then, using the results related to the implicit derivative (34), 

and replacing n  by n−1 , we get : 
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where )0,(ωCz is the initial state of integrator )(1 sI n− . 
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where )0(f is the initial state of integer order integrator 

)(sI . 

Finally, we get the Laplace transform of the Caputo 

derivative with initial conditions )0(f  and )0,(ωCz : 
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B.3. Riemann-Liouville derivative 

Expression (24) can be written as : 
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Using the same technique as previously, it is staightforward 

to get the Lalace transform of the Riemann-Liouville 

derivative, with initial conditions 01 ))(( fI n−  and )0,(ωRLz ):  
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VI. INITIALIZATION OF  THE CAPUTO DERIVATIVE 

A. Introduction 

Our objective is to propose a general initialization technique 

for the Caputo derivative. This technique requires only the 

knowledge of the function )(tf (in a previous paper [19], we 
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had assumed the knowledge of )(tf  and )( fDn ). 

Practically, because we want to validate this algorithm, we 

will use the knowledge of the theoretical fractional 

derivative, but only to verify that we get an accurate estimate 

of )( fDn  after a short transient. Thus , we will use the sine 

function as in the introductory example of section V. A . 

Because the main cause of the long range memory 

phenomenon is the internal state function ),( tz ω , we will 

consider only the case 10 << n . 

B.  An initialization technique 

We consider two fractional integrators : 
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These two integrators are connected according to the 

fractional system : 
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with 
td

tfd
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)(1 =  and )()( 12 txtv = .                         (46) 

Because these two integrators are connected in cascade, 
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(so )(2 tx is an estimate of )(tf ) and  

)
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is an estimate of )( fDn . 

But, because we have no knowledge of the required initial 

functions ),( 01 tz ω  and ),( 02 tz ω  at 0tt = , these two 

estimates will converge slowly respectively to )( fDn  and 

)(tf . 

In order to accelerate the convergence, we propose to modify 

the input )(1 tv  to introduce a feedback component in such a 

way that : 
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Notice that when )()(2 tftx → , the feedback term decreases 

and 
dt

tfd
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)(1 →  . 

Because of (43), this feedback system is unconditionally 

stable for 0>K ; practically, we have to limit K  to a 

maximum value because of small time delays introduced by 

the numerical simulation of the two fractional integrators. 

Remark : There are two main reasons which motivate this 

tracking system.  

First, if )()(2 tftx → , then 
dt

tfd
tv
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)(1 →  and 

)()(1 fDtx n→ . 

Secondly, if )()(2 tftx → , its input )(2 tv converges 

necessarily to )( fDn , because )()( 12 txtv = is the implicit 

fractional derivative of )(tf  (refer to II. B). 

C. Convergence of the algorithm 

The objective is to analyze the tracking and disturbance 

rejection capabilities of the considered system. In this 

section, initial states )0,(1 ωz and )0,(2 ωz  are considered as 

disturbances in the context of tracking. 

Using Laplace transform, we can write: 
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The transfer function 
Ks

K

+
 is a first order system, with 

unity gain and a time constant equal to K/1 , i.e. very low if 

1>>K . 

We can conclude that )(2 tx tracks )(tf  with a fast transient. 

)(sFs n  is the Laplace transform of )( fDn , so for the same 

reasons, )(1 tx  tracks )( fDn  with a fast transient. 

On the other hand, all the other terms correspond to rejection 

of disturbances: it is important to notice that the dynamics of 

this rejection is imposed by the transfer function 
Ks +

1
. 
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We can conclude that this algorithm accelerates the 

convergence of )(1 tx and )(2 tx respectively to )( fDn and 

)(tf . Moreover, the influence of initial conditions vanishes 

quickly, compared to the long memory effect introduced by 

the terms ∫ 1  and ∫ 2 . 

VII. NUMERICAL SIMULATIONS 

A. Experiment conditions 

Remind that )(sin)( ttf =  and )
2

(sin)(
π

ntfDn += . 

The period of )(tf is sT 28.6= . 

All experiments have been performed with 5.0=n . 

According to III. C the fractional integrator has been 

frequency discretized into 211=+J cells, ranging from 

srd /10 4
1

−=ω  to srd /102
20 =ω , with srd /00 =ω . For 

time simulation, we have used the sampling period 

msTe 5.2= . 

B. Convergence of the algorithm 

We present on figure n°3 the graphs of )(1 tx  , )(2 tx , 

)(tf and )( fDn  for 5.0=K  and on figure n°4 for 50=K . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure n°3: Convergence for 5.0=K  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure n°4: Convergence for 50=K  

 

We can notice that convergence is slow for the low values of 

K , while convergence rate is increased for 1>>K , with an 

impulsive behavior for )(1 tx , according to the theoretical 

analysis of section VI. C. 

C. Initializations 

Thanks to these convergence results, we have used 50=K  

and measured the state ),( '
01 tz ω  of the )(1 sI n− integrator at 

the instant 0
'
0 tTt +=  (where '

0t  is equivalent to 0t  because 

of the periodicity of )(tf  ). 

Then, this state has been used to initialize the Caputo 

derivative at '
0t  (without the feedback initialization system). 

Two initializations have been performed (refer to figure n°5) 

for st 28.6'
0 =  and st 85.7'

0 = , corresponding to  

st 00 =  and st 57.10 =  of figures n°1 and n°2. It is obvious 

that ),( '
01 tz ω  provides a very good initialization for )(1 tx  

because there is perfect coincidence with )( fDn  for 

'
0tt ≥ as exhibited by figure n°5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure n°5: Initialization of the Caputo derivative 

 

In order to analyze  the frequency distribution of the 

components of the initial state ),( '
01 tz ω , we have 

represented figure n°6 the amplitudes of the different modes 

for thee values of '
0t  ( 1=i corresponds to 0=ω  while 21=i  

corresponds to the highest frequency).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure n°6: Evolution of the modal distribution with '
0t  
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We can notice that this modal distribution depends highly on 

the initialization instant. 

For st 28.6'
0 =  (or st 00 = ), the low modes have a non 

significant amplitude, thus the transient is relatively quick 

(compare with st 00 = of figure n°2). On the other hand, for 

st 85.7'
0 =  (or st 57.10 = ) the low modes have a dominant 

amplitude and thus there is a long range memory effect 

(compare with st 57.10 =  of figure n°2). 

Finally, in order to analyze more quantitatively this long 

range phenomenon, we have represented figure n°7 the free 

response of four of these modes ( srd /0106.07 =ω  , 

srd /0841.010 =ω , srd /6683.013 =ω , srd /3088.516 =ω ) 

for st 07.7'
0 = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure n°7: Four components of the free response of the 

fractional integrator 

 

First, we can verify that the initial amplitudes correspond to 

the values of figure n°6. Secondly, we can verify that the low 

frequency modes decrease very slowly, thus contributing 

highly to the long range memory effect, as noticed on figure 

n°2. 

VIII. CONCLUSION 

In this paper, we have demonstrated that the initial 

conditions of fractional derivatives correspond to the initial 

state vector of the associated fractional integrator )(1 sI n− . 

The validation of this concept has been possible thanks to a 

feedback tracking system able to provide an efficient 

estimate of the Caputo derivative and indirectly of the 

initialization state vector. Numerical simulations have shown 

the efficiency of the proposed initialization technique and 

have provided interpretations of  the long range memory 

phenomenon which is the main feature of fractional systems. 

In future works, some points will deserve more investigation. 

The relation between the initialization function of Lorenzo 

and Heartley and the integrator state vector will have to be 

analyzed. The initial vector has been estimated with a 

numerical algorithm, but is it possible to formulate an 

analytical solution ?  Indeed, the proposed initialization 

technique will have to be adapted to the case of the 

Riemann-Liouville fractional derivative. 
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