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Abstract— Convex underestimators of a polynomial on a box.
Given a non convex polynomial f ∈ R[x] and a box B ⊂ Rn, we
construct a sequence of convex polynomials (fdk) ⊂ R[x], which
converges in a strong sense to the “best” (convex and degree-d)
polynomial underestimator f∗d of f . Indeed, f∗d minimizes the
L1-norm ‖f − g‖1 on B, over all convex degree-d polynomial
underestimators g of f . On a sample of problems with non
convex f , we then compare the lower bounds obtained by
minimizing the convex underestimator of f computed as above
and computed via the popular αBB method. In all examples
we obtain significantly better results.

I. INTRODUCTION

Consider the general polynomial optimization problem P:

P : f∗ = min
x

f(x)

s.t gi(x) ≥ 0, i = 1, ...,m

x ∈ [xL,xU ] ⊂ Rn,

where f, gi are polynomials and xl,xU ∈ Rn define the box
[xL,xU ] ⊂ Rn. To approximate f∗ and global minimizers
of P, one popular method (especially for large scale opti-
mization problems) is the deterministic global optimization
algorithm αBB. It uses a branch and bound scheme where
the lower bounds computed at nodes of the tree search are
obtained by solving a convex problem where f is replaced
with some convex underestimators on a box B ⊂ Rn; see
e.g. Floudas [2], Androulakis I.P et al. [5]. Of course, the
overall efficiency of the αBB algorithm depends heavily
on the quality of the lower bounds computed in the branch
and bound tree search, and so, ultimately, on the quality
of the underestimators of f that are used. Therefore, the
development of tight convex underestimators for non convex
polynomials on the feasible region (compact or non compact)
is of crucial importance.

Many results are available in the literature for computing
convex envelopes of simple functions in explicit form, on
a box B ⊂ Rn. See for instance Floudas [2] for convex
envelopes of bilinear, trilinear, and multilinear monomials.
For a general non convex function f , a convex underestima-
tor can be obtained from the original function f by adding
a negative part. For instance, this part could be a negative
quadratic polynomial of the form

x 7→ L(x) = f(x) +
n∑
i=1

αi(xi − xLi )(xi − xUi ),
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e.g., as in Androulakis et al. [5], or an exponential term from
the original function of the form

x 7→ L(x) = f(x)−
n∑
i=1

(1− eαi(xi−xL
i ))(1− eαi(x

U
i −xi)),

e.g., as in Akrotirianakis and Floudas [6]).
Several heuristics have been proposed for choosing appro-

priate nonnegative coefficients α ∈ Rn in a tradeoff between
two conflicting criteria. On the one hand, the additional
term must be negative enough to overpower all the non
convexities, which requires positive semidefiniteness of the
Hessian matrix ∇2L of the twice-differentiable function L.
But on the other hand, this additional part should also be as
small as possible to obtain good lower bounds when using
L as a substitute for f in the Branch and Bound tree search.
Indeed, bad lower bounds would slow down convergence of
the αBB method. The so-called scaled Gershgorin method
is among the most efficient.

Contribution. We present a new class of convex under-
estimators for a non convex polynomial on a box B ⊂ Rn.
We use two certificates for (a) L ≤ f and (b), convexity
of L on the box B. More precisely, we are looking for a
convex polynomial fd ∈ R[x]d (with degree d fixed) which
approximates f from below on a given box B ⊂ Rn. Hence
a polynomial candidate fd must satisfy two major conditions:
• f ≥ fd on B,
• The Hessian matrix ∇2fd must be positive semidefinite

(i.e., ∇2fd � 0) on B.
But of course, there are many potential polynomial can-
didates fd ∈ R[x]d and therefore, a meaningful criterion
to select the “best” among them is essential. A natural
candidate criterion to evaluate how good is fd, is the integral
J(fd) :=

∫
B
|f − fd|dx, which evaluates the L1-norm of

f − fd on B. Indeed, minimizing J tends to minimize the
discrepancy (or “error”) between f and fd, uniformly on
B. If desired, some flexibility is permitted by allowing any
weight function W : B → R, positive on B, so as to
minimize JW =

∫
B
|f − fd|Wdx.

Fortunately, to certify f − fd ≥ 0 and ∇2fd � 0
on B, a powerful tool is available, namely Putinar’s Posi-
tivstellensatz (or algebraic positivity certificate) [9], already
extensively used in many other contexts, and notably in
global polynomial optimization; see e.g. [8] and the many
references therein. Moreover, since f ≥ fd, the criterion
J(fd) to minimize becomes

∫
B

(f − fd)dx and is linear in
the coefficients of fd! Therefore, we end up with a hierarchy
of semidefinite programs, parametrized by some integer k ∈
N. This parameter k reflects the size (or complexity) of
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Putinar’s positivity certificate. Any optimal solution of a
semidefinite program in this hierarchy provides a convex
degree-d polynomial underestimator fdk ∈ R[x].

We then provide a sequence of convex degree-d poly-
nomial underestimators (fdk) ⊂ R[x]d, k ∈ N, such that
‖f − fdk‖1 → ‖f − f∗d ‖1 for the L1-norm on B, where
f∗d minimizes J(h) over all convex degree-d polynomial
underestimators h of f on B. In fact, any accumulation point
ϕ∗ of the sequence (fdk) ⊂ R[x]d also minimizes J(h) and
fdki → ϕ∗ pointwise for some subsequence.

This convergence analysis which provides the theoretical
justification of the above methodology is only theoretical, be-
cause in practice one let k fixed (and even to a small value).
However, we also prove that if k is sufficiently large, then fdk
is necessarily better than the αBB underestimator. Finally,
a practical justification is also obtained from a comparison
with the αBB method carried out on a set of test examples
taken from the literature. Recall that the main motivation
for computing underestimators is to compute “good” lower
bounds on a box B for non convex problems, and use these
lower bounds in a Branch and Bound algorithm. Therefore,
to compare the two underestimators, we have computed
the lower bound obtained my minimizing each of them on
the box B. In all examples, the results obtained with the
moment approach are significantly better. Finally, we also
provide an alternative way to compute the coefficients α
in the αBB method. Namely, we propose to compute the
coefficients α which minimize

∫
B
|f − L|dλ (where L is

the αBB-underestimator), which reduces to solving a single
semidefinite program. A library of such α could be computed
off-line for several important particular cases.

Typically in large scale problems (in particular, mixed in-
teger nonlinear programs), the non convex objective function
f is a sum of many functions fi, each with a small number
of variables. As convex underestimators of f would be too
costly to compute one rather adds up convex underestimators
of the fi’s, much easier to obtain and which can be computed
separately. Hence the moment approach can be implemented.
However, if some sparsity is present in the data then it may be
worth trying the specific and efficient semidefinite relaxations
of Waki et al. [10] that take sparsity into account, to compute
a convex underestimator of f . (Such “sparse” semidefinite
relaxations have been implemented in [10] for solving some
non convex optimization problems with up to a thousand
variables!)

II. NOTATION AND DEFINITIONS

Let R[x] be the ring of real polynomials in the n variables
x = (x1, ...xn), and for every d ∈ N , let R[x]d ⊂ R[x]
be the vector space of polynomials of degree at most d
whose dimensions is s(d) :=

(
n+d
n

)
. Similary, let R[x,y]d ⊂

R[x,y] be the vector space of polynomials of degree at most
d whose dimension is v(d) :=

(
2n+d

2n

)
. Also, let Σ[x]d ⊂

R[x] be the cone of sums of squares of degree at most 2d.
With (xα), α ∈ Nn, being the canonical (monomial) basis

of R[x], a polynomial f ∈ R[x]d is written

x 7→ f(x) =
∑
α∈Nn

fα xα,

for some vector of coefficients f = (fα) ∈ Rs(d).
Let Nnd := {α ∈ Nn : Σiαi ≤ d} and let the box B :=

[0, 1]n be described as the compact basic semi-algebraic set:

B := {x ∈ Rn : gj(x)(:= xj(1− xj)) ≥ 0, j = 1, . . . , n}.

Let go be the constant polynomial equal to 1, and let QB ⊂
R[x] be the quadratic module associated with the g′js, i.e.,

QB :=


n∑
j=0

σjgj : σj ∈ Σ[x], j = 1, ..., n

 .

The quadratic module QB is Archimedean, i.e., there ex-
ists some M > 0 such that the quadratic polynomial
x 7→ M − ‖x‖2 belongs to QB. The following result is
a direct consequence of Putinar’s Positivstellensantz [9] for
Archimedean quadratic modules.

Proposition 1 (Putinar [9]): Every polynomial strictly
positive on B belongs to QB.
Let K ∈ Rn be the closure of some open bounded set, and
let U := {x ∈ Rn := ‖x‖2 ≤ 1}. Recall that f ∈ R[x]d is
convex on K if and only if ∇2f(x) is positive semidefinite
on K. Equivalently, f is convex if and only if Tfd ≥ 0 on
K×U, where T : R[x]→ R[x,y] is the mapping:

h 7→ Th(x,y) := y′∇2h(x)y, ∀h ∈ R[x]. (1)

The vector of coefficients ((Th)αβ), α, β ∈ Nn, of the
polynomial Th ∈ R[x,y] is a vector with finitely many
zeros and is obtained from the vector h of h ∈ R[x] by a
linear mapping with associated infinite matrix T whose rows
(resp. columns) are indexed in the canonical basis of R[x,y]
(resp. R[x]) and with entries:

T((α, β), δ) = (Txδ)αβ , α, β, δ ∈ Nn. (2)

Next let f = (fα) be the vector of coefficients of f ∈
R[x]. Expanding the polynomial Tf = y′∇2f(x)y in the
canonical basis (xαyβ) of R[x,y]d, yields

y′∇2f(x)y =
∑

(α,β)∈N2n
d

(Tf)αβxαyβ =
∑
δ∈Nn

d

fδTxδ.

III. MAIN RESULT

Let λ denote the Borel probability measure uniformly
distributed on the unit ball B := [0, 1]n (i.e. a normalization
of the Lebesgue measure on Rn), and consider the associated
optimization problem:

min
h∈R[x]d

{∫
B

(f − h)dλ : f − h ≥ 0 on B;

h convex on B
}
, (3)
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whose optimal value is denoted by ρd. Equivalently,

ρd = min
h∈R[x]d

{∫
B

(f − h)dλ : f − h ≥ 0 on B;

Th ≥ 0 on S
}
, (4)

where T is defined in (1), and S = B×U.
Lemma 1: The optimization problem (4) has an optimal

solution f∗d ∈ R[x]d.
Proof: Observe that for every feasible solution fd ∈

R[x]d, fd ≤ f on B and so∫
B

(f − ff ) dλ =
∫
B

|f − fd| dλ = ‖f − fd‖1,

where ‖ · ‖1 denotes the norm on L1([0, 1]n), and which
also defines a norm on R[x]d (or, equivalently, on Rs(d)).
Indeed, if f, g ∈ R[x] and ‖f − g‖1 = 0 then f = g,
almost everywhere on B, and so on all of B because
both are polynomials and B has nonempty interior. So if
(fdk) ⊂ R[x]d, k ∈ N, is a minimizing sequence then
fdk ∈ ∆a := {h : ‖f − h‖1 ≤ a} for all k (where
a :=

∫
B

(f − fd0) dλ), and
∫
B

(f − fdk) dλ → ρd as
k →∞. Notice that ∆a ⊂ R[x]d is a ball and a compact set.
Therefore, there is a subsequence ki and a element f∗d ∈ ∆a

such that fdki
→ f∗d as i→∞. Therefore, fdki

(x)→ f∗d (x)
for every x ∈ B. Next, since fdki

≤ f on B, by the Bounded
Convergence Theorem,

ρd = lim
i→∞

∫
B

(f − fdki) dλ→
∫
B

(f − f∗d ) dλ.

It remains to prove that f∗d is a feasible solution of (4). So, let
x ∈ B be fixed, arbitrary. Then since f − fdk ≥ 0 on B, the
pointwise convergence fdki

→ f∗d yields f(x) − f∗d (x) ≥
0. Hence f − f∗d ≥ 0 on B. Similarly, let (x,y) ∈ S be
fixed, arbitrary. Again, from fdk(x,y) ≥ 0, the convergence
fdki → f∗d, and the definition of T in (1), it immediately
follows that Tf∗d (x,y) ≥ 0. Therefore, Tf∗d ≥ 0 on S, and
so f∗d is feasible for (4).

With U := {y ∈ Rn : ‖y‖2 ≤ 1}, the set S = B×U ⊂
R2n is a compact basic semi-algebraic set. Note that in (4)
one has replaced the constraint “h is convex on B” with
Th ≥ 0 on S. So, let QS ⊂ R[x,y] be the quadratic module
associated with S, i.e.,

QS = {
n+1∑
j=0

θj gj : θj ∈ Σ[x,y], j = 0, ..., n+ 1},

where (x,y) 7→ gn+1(x,y) := 1 − ||y||2; it is straightfor-
ward to show that QS is Archimedean.

By Proposition 1, ρ =
∫
B
fdλ − ρd, and the optimal

solution f∗d of (3) is an optimal solution of the problem Pd

defined by:

ρd = max
fd∈R[x]d

{∫
B

fddλ :f − fd ∈ QB; Tfd ∈ QS

}
, (5)

So with T being the mapping defined in (1), introduce the
following semidefinite relaxation Pdk of Pd, defined by:

max
h∈R[x]d

∫
B
h dλ

f(x) = h(x) +
n∑
j=0

σj(x)gj(x) ∀x

s.t. Th(x,y) =
n∑
j=0

θj(x,y)gj(x)

+θn+1(x,y)gn+1(x,y) ∀x,y
σ0 ∈ Σ[x]k, σj ∈ Σ[x]k−1, j ≥ 1
θ0 ∈ Σ[x,y]k, θj ∈ Σ[x,y]k−1, j ≥ 1

(6)

with k ≥ max[dd/2e, d(deg f)/2e] and optimal value ρdk.
Theorem 1: Let ρd be the optimal value of (4) and

consider the hierarchy of semidefinite relaxations (6) with
associated sequence of optimal values (ρdk), k ∈ N. Then∫
B
fdλ − ρdk ↓ ρd as k → ∞, so that ‖f − fdk‖1 ↓ ρd

if fdk ∈ R[x]d is any optimal solution of (6). Moreover,
any accumulation point ϕ∗ ∈ R[x]d of the sequence (fdk) ⊂
R[x]d, is an optimal solution of (4), and fdki

→ ϕ∗ pointwise
for some subsequence (ki), i ∈ N.

Proof: Let f∗d ∈ R[x]d be an optimal solution of (4),
which by Lemma 1, is guaranteed to exist. As f∗d is convex
on B, ∇2f∗d � 0 on B. Let ε > 0 be fixed and such that
ε‖x‖2 < 1 on B. Let gε := f∗d − ε + ε2‖x‖2), so that
∇2gε � ε2I on B. Hence, by the matrix version of Putinar’s
Theorem (see [8, Theorem 2.22]), there exist SOS matrix
polynomials Fj , j = 0, . . . , n, such that

∇2gε(x) = F0(x) +
n∑
j=1

Fj(x) gj(x).

(Recall that a SOS matrix polynomial F ∈ R[x]q×q is a
matrix polynomial of the form x 7→ L(x)′L(x) for some
matrix polynomial L ∈ R[x]p×q for some p ∈ N). And so,
for every j = 0, . . . , n, the polynomial (x,y) 7→ θεj(x,y) :=
y′Fjy is SOS for every j = 0, . . . , n, and

Tgε =
n∑
j=0

θεj(x,y) gj(x) + θεn+1(x,y)(1− ‖y‖2).

Moreover, observe that f − gε = f − f∗d + ε(1 − ε‖x‖2) is
strictly positive on B. Hence by Putinar’s Theorem,

f − gε =
n∑
j=0

σεjgj ,

for some SOS polynomials σj ∈ R[x], j = 1, . . . , n. Let
2t ≥ max{[maxj deg σj + 2,maxj [deg Fj + 4] }. Then the
polynomial gε is a feasible solution of (6) whenever k ≥ t.
Its value satisfies∫

B

gεdλ =
∫
B

(f∗d − ε+ ε2‖x‖2)dλ ≥
∫
B

f∗ddλ− ε,

and so ρdt ≥ ρd − ε. As ε > 0 was arbitrary and the
sequence (ρdk) is monotone non decreasing, the first result
follows. Next, any optimal solution fdk ∈ R[x]d of (6)
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satisfies ‖f − fdk‖1 ≤
∫
B
fdλ − ρd1 =: a and so belongs

to the ball ∆a := {h : ‖f − h‖1 ≤ a}. Let ϕ∗ ∈ ∆a be
an arbitrary accumulation point of the sequence (fdk) for
some subsequence (ki), i ∈ N. Proceeding as in the proof of
Lemma 1, fdki → ϕ∗ pointwise, f −ϕ∗ ≥ 0 and ∇2ϕ∗ � 0
on B. Moreover, by the Bounded Convergence Theorem

ρd = lim
i→∞

ρdki = lim
i→∞

∫
B

(f − fdki)dλ =
∫
B

(f − ϕ∗)dλ,

which proves that ϕ∗ is an optimal solution of (4).
Theorem 1 states that the optimal value of the semidefinite

relaxation (6) can become as close as desired to that of
problem (4), and accumulation points of solutions of (6) are
also optimal solutions of (4). The price to pay is the size of
the semidefinite program (6) which becomes larger and larger
as k increases. In practice, on let k fixed at a small value
and the computational experiments presented below indicate
that even with k small (k = d(deg f)/2e), the polynomial
fdk does not change much with k, and provides better lower
bounds than the αBB-underestimator.

IV. COMPARING THE MOMENT AND αBB METHODS

A. Convex underestimators from the αBB method

To obtain a convex underestimator of a non convex poly-
nomial, the αBB method is based on a decomposition of
f into a sum of non convex terms of special type (e.g.,
linear, bilinear, tri-linear, fractional, fractional tri- and quadri-
linear) and non convex terms of arbitrary type. The terms of
special type are replaced with their convex envelopes which
are already known (see Floudas [2]).

For an arbitrary type f , the underestimator L is obtained
by adding a separable negative quadratic polynomial, i.e.,

L(x) = f(x) +
n∑
i=1

αi(xi − xLi )(xi − xUi ), (7)

where the positive coefficients αi’s are determined so as
to make the polynomial underestimator L convex. As L is
convex on B if and only if its Hessian ∇2L is positive
semidefinite on B, the coefficients αi, , i = 1, . . . , n must
satisfy

∇2L(x) = ∇2f(x) + 2∆ � 0, ∀x ∈ B, (8)

where ∆ = diag{α1, α2, ..., αn} is referred to as the diago-
nal shift matrix. The separation distance between the original
polynomial f and its convex underestimator L is

dαBB = f(x)− L(x) = −
n∑
i=1

αi(xi − xLi )(xi − xUi ) ≥ 0,

which achieves its maximum at the middle point of the
interval [xL,xU ]. Therefore,

dmaxαBB = −1
4

n∑
i=1

αi(xUi − xLi )2.

hence, the value of dαBB is proportional to the α′is and
the size of the domains [xL,xU ]. A number of methods to
calculate the parameters diagonal ∆ have been developed

using interval analysis (see e.g. Floudas [2]), and are based
on the following result:

Theorem 2: Let [Hf ] be a real symmetric interval matrix
such that ∇2f(x) ∈ [Hf ],∀x ∈ [xL,xU ]. If [∇2

L] := [Hf ]+
2∆ � 0 then L is convex on [xL,xU ].
Among the most efficient methods is the scaled Gershgorin
method where (αi) ∈ Rn is determined by

αi = max
{

0,−1
2

(f
ii
−
∑
j 6=i

max{|f
ii
|, |f ij |})

dj
di

}
(9)

where f
ii

and f ij are the lower and upper bounds of
∂2f/∂xi∂xj in the interval [xL,xU ] and di, i = 1, 2, ..., n
are some chosen positive parameters. Notice that computing
good upper and lower bounds may be time consuming.

B. Comparison with the moment method
Given an arbitrary polynomial f ∈ R[x] and d ∈ N, one

searches for an ideal polynomial f∗d ∈ R[x]d convex on B,
that is an optimal solution of Pd, i.e., f∗d solves:

ρd = max
h∈R[x]d

{∫
B

h dλ : f − h ∈ QB; Th ∈ QS

}
(10)

(See Lemma 1.) In practice, one obtains a convex underes-
timator fdk ∈ R[x]d by solving the semidefinite relaxation
(6) of Pd for a small value of k, typically k = dd/2e.

We can now compare fdk with the αBB underestimator
L in (7), with xLi = 0 and xUi = 1 (possibly after scaling).

Lemma 2: With f being a non convex polynomial, let
fdk ∈ R[x]d be an optimal solution of (6) and let L be
as in (7). If ∇2L(x) � 0 for all x ∈ B then

‖f − fdk‖1 ≤ ‖f − L‖1, (11)

whenever k is sufficiently large, i.e., the convex underesti-
mator fdk is better than L for the L1-norm

∫
B
|f − g|dλ.

Proof: Observe that

f(x)− L(x) =
n∑
i=1

αi︸︷︷︸
σi∈Σ[x]0

xi(1− xi),

that is, the separation distance dαBB is a very specific
element of QB, where the SOS weights σj are the constant
polynomials αj , j = 1, . . . , n.

Moreover, if TL � 0 on B then by [8, Theorem 2.22]

∇2L(x) =
n∑
j=0

Fj(x) gj(x),

for some SOS polynomial matrices x 7→ Fj(x) (i.e., of the
form Lj(x)Lj(x)′ for some matrix polynomials Lj) and so

TL(x,y) = y′∇2L(x)y =
n∑
j=0

(Lj(x)y)2︸ ︷︷ ︸
θj∈Σ[x,y]

gj(x).

Hence TL ∈ QS and L is a feasible solution of (6) as soon
as 2k ≥ maxj degFj+4. Therefore, at least for k sufficiently
large k, ∫

B

fdkdλ ≥
∫
B

L dλ,

and so as f ≥ fdk and f ≥ L on B, (11) holds.

7197



C. Computational results

We consider the two natural choices, d = deg f and d = 2
(and k = max[dd/2e, d(deg f)/2e]). With the former one
searches for the best convex underestimator of same degree
as f , while with the latter one searches for the best quadratic
underestimator of f . Recall that the main motivation for com-
puting underestimators is to compute “good” lower bounds
on a box B for non convex problems, and use these lower
bounds in a Branch and Bound algorithm. Therefore, to
compare the moment and αBB underestimators, we have
chosen non convex optimization problems in the literature,
and replaced the original non convex objective function by
its moment and αBB underestimator, respectively fd and L.
We then compare the minimum f∗mom (resp. f∗αBB) obtained
by minimizing1 fd (resp. L) on the box B. We also provide
the respective values of the L1-norm

∫
B
|f − fd|dλ and∫

B
|f −L|dλ. In view of (7), the latter is easy to compute.

Computational results: Figure 1 and Figure 2 illustrate an
example with the bivariate polynomial f(x) = −3x1−4x2+
10x2

1+9x2
2+6x3

1+7x3
2 in the box B = [−1.5, 1]2. The global

minimum is f∗ = −0.5957 to be compared with fmom =
−7.7149 and fαBB = −68.4650.
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Fig. 1. f∗ = −0.5957; fmom = −7.7149
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Fig. 2. f∗ = −0.5957; fαBB = −68.4650

1) Choice 1: d = deg f : Table I displays results for
several nonconvex polynomials f with n > 2 variables
and various degrees. The examples are test functions f
taken from Gounaris and Floudas [3]. One may see that the

1All computations were made by running the Gloptipoly software de-
scribed in Henrion et al. [4], for solving the Generalized Problem of
Moments whose global optimization is only a special case. The αBB
underestimator was computed via the scaled Gershgorin method.

Prob n deg f [xL,xU ] fαBB fmom f∗

Test2 4 3 [0,1] -1.54 -1.225 -1
Test3 5 4 [-1,1] -15 -14 -6
——- 5 4 [1,3] -73.45 -73.05 -66
Test4 6 6 [-1,1] -60.15 -10.06 -3
Test5 3 6 [-2,2] -411.2 -12.66 -1
Test10 4 4 [0,1] -197.54 -54.28 0
Test11 4 4 [0,1] -33.02 -0.85 0
Test14 3 4 [-5,1] -2409 -1020 -300
——- 4 4 [-5,1] -3212 -1360 -400
——- 5 4 [-5,1] -4015 -1700 -500

TABLE I
COMPARING fmom AND fαBB ; d = deg f

lower bound fmom obtained from the moment method is
significantly better (and even much better) than the lower
bound fαBB obtained from the αBB method.

2) Choice 2: d = 2 (quadratic underestimator): Given
f ∈ R[x], one searches for a convex polynomial fd ∈ R[x]2
of the form x 7→ fd(x) = x′Ax + a′x + b for some real
positive semidefinite symmetric matrix A ∈ Rn×n, vector
a ∈ Rn and scalar b. Let Mλ be the moment matrix of
order 1 of the (normalized) Lebesgue measure λ, i.e.,

Mλ =
[

1 γ′

γ Λ

]
with γi =

∫
B
xidλ for all i = 1, . . . , n, and Λij =∫

B
xixjdλ for all 1 ≤ i, j ≤ n. The semidefinite relaxation

Pdk in (6) reads:
max
b,a,A

b+ a′γ + 〈A,Λ〉

s.t. f(x) = fd(x) +
n∑
j=0

σj(x)gj(x) ∀x

A � 0; σ0 ∈ Σ[x]d, σj ∈ Σ[x]d−1, j ≥ 1.

(12)

Table II displays results for a number of optimization
polynomial problems taken from Floudas [2]. On a box
B that contains the feasible set, we compute the convex
αBB underestimator L and the (only degree-2) moment
underestimator fd of the initial objective function f . We then
compute their respective minimum fαBB and fmom on B. As
can be seen from Table I and Table II, the lower bound fmom
is significantly better (and sometimes much better) than
fαBB, even with only a convex quadratic underestimator, and
in most examples, the lower bound fmom is very close to the
global minimum f∗. Finally, Table III displays the respective
values of

∫
B
|f − L|dλ and

∫
B
|f − fd|dλ. Once again, the

score of the moment underestimator fd is significantly better
than that of the αBB underestimator L.

D. Computing α in the αBB method

The above approach can also be used to provide a new
and systematic way to compute the coefficients α ∈ Rn+ of
the αBB method. Indeed it suffices to impose the additional
requirement that the underestimator has the αBB form (7).
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Prob n m fαBB fmom f∗

Fl.2.2 5 11 -18.9 -18.9 -17
Fl.2.3 6 8 -5270.9 -361.50 -361
Fl.2.4 13 21 -592 -195 -195
Fl.2.6 10 21 -269.833 -269.45 -268.01
Fl.2.8C1 20 30 -560 -560 -394.75
Fl.2.8C2 20 30 -1050 -1050 -884
Fl.2.8C3 20 30 -13600 -12000 -8695
Fl.2.8C4 20 30 -920 -920 -754.75
Fl.2.8C5 20 30 -16645 -10010 -4150.41

TABLE II
COMPARING fmom AND fαBB ; d = 2

Prob
R
B |f − L|dλ

R
B |f − fd|dλ

Test2 1 0.625
Test3(1) 373.33 192.44
Test3(2) 1653.3 1529.6
Test4 3840 467.04
Test5 6336.5 1485.3
Test10 133.33 57.00
Test11 46.33 1
Test14(1) 5.63e+05 1.18e+05
Test14(2) 5.25e+06 1.10e+06
Test14(3) 4.59e+07 9.67e+06
Fl.2.2 41.66 41.66
Fl.2.3 67500 833.33
Fl.2.4 8122.5 900
Fl.2.6 8.33 5.83
Fl.2.8C1 1.22e+24 1.22e+24
Fl.2.8C2 1.22e+24 1.22e+24
Fl.2.8C3 2.44e+25 2.44e+25
Fl.2.8C4 1.22e+24 1.22e+24
Fl.2.8C5 3.35e+15 3.35e+15

TABLE III
COMPARING

R
B |f − L|)dλ AND

R
B |f − fd|dλ

And so, possibly after a rescaling of the box
∏n
i=1[xLi , x

U
i ]

to [0, 1]n, one wishes to minimize∫
B

(f − L)dλ =
∫
B

fdλ︸ ︷︷ ︸
constant

+
n∑
i=1

αi

∫
B

xi(1− xi)dλ, (13)

=
∫
B
fdλ+ 1

6

∑n
i=1 αi, under the convexity constraint:

y′∇2L(x)y =
n+1∑
j=1

θj gj ; θj ∈ Σ[x,y]d−vj , ∀j,

where d ≥ 1 + deg f . The parameter d ∈ N is now the max-
imum degree allowed in the Putinar certificate of convexity.
Therefore computing the best αi’s reduce to solving

min {
n∑
i=1

αi : y′∇2f(x)y = −2
n∑
i=1

αiy
2
i +

n+1∑
j=0

θjgj

α ≥ 0; θn+1 ∈ R[x,y]df+1; θj ∈ Σ[x,y]df−vj
},

a semidefinite program! Results for various box sizes in
Table IV show that this strategy can yield significantly better
lower bounds than with the scaled Gershgorin method, at

Prob [xL, xU ] fαBB fmom f∗

Fl 8.2.7 [0, 1]5 -899.5 -2.76 -0.5
Fl 8.2.7 [−1, 1]5 -2999 -23 -0.6
Fl 8.2.7 [−5, 5]5 -63000 -2987 -982
Test 10 [0, 1]4 -197.5 -61.9 0
Test 10 [−1, 1]4 -870.2 -323.8 0
Test 10 [−5, 5]4 -137e+05 -4.73e+04 -19

TABLE IV
COMPARING fmom AND fαBB ; d = 2

least on the examples with highly nonconvex functions.
Indeed, for various box sizes, the resulting lower bound
fmom is always much better than the fαBB bound.

V. CONCLUSION

By solving a hierarchy of semidefinite programs one may
approximate, as closely as desired on a box B ⊂ Rn,
the best degree-d convex polynomial underestimator g of a
nonconvex polynomial f , i.e. the one which minimizes the
L1-norm

∫
B
|f−g|dλ. On a sample of non convex problems

from the literature, the resulting lower bounds computed by
minimizing this convex underestimator (even obtained at the
first semidefinite program in the hierarchy), are significantly
better than those obtained by minimizing the popular αBB
underestimator. The αBB estimator may be cheaper to
compute, but in fact this depends on how much effort is
spent to get “good” upper and lower bounds in (9), since the
latter bounds directly affect its quality. But remember that
for large scale discrete optimization problems, one typically
considers sums of convex underestimators involving few
variables rather than a single underestimator involving all
variables! And so in this situation, our underestimator is also
cheap to compute.
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