
Local stability results for the collective behaviors

of infinite populations of pulse-coupled oscillators

Alexandre Mauroy and Rodolphe Sepulchre

Abstract— In this paper, we investigate the behavior of pulse-
coupled integrate-and-fire oscillators. Because the stability anal-
ysis of finite populations is intricate, we investigate stability
results in the approximation of infinite populations. In addition
to recovering known stability results of finite populations, we
also obtain new stability results for infinite populations. In
particular, under a weak coupling assumption, we solve for
the continuum model a conjecture still prevailing in the finite
dimensional case.

I. INTRODUCTION

In a seminal work on pacemaker cells of the heart,

Peskin introduced a model of (identical) pulse-coupled Leaky

Integrate-and-Fire (LIF) oscillators, characterized by a mono-

tone dynamics [1]. Two complementary studies [2], [3] pro-

vided a complete global stability analysis of the model and

highlighted an interesting dichotomy: the oscillators either

achieve perfect synchrony or converge to an asynchronous

behavior.

Generalizations of the original LIF model have become

popular in the recent years as reduced models of realistic

models of neurons, see e.g. [4]. The Quadratic Integrate-and-

Fire (QIF) model is an important such example, for which

the monotonicity assumptions of the original LIF model no

longer hold. Surprisingly, the dichotomic behavior proven

for the LIF model seems to persist in the QIF model and

other generalizations. But even a local stability analysis has

proven elusive so far, see e.g. [5].

In this paper, we address this stability question by con-

sidering the continuum limit of a large number of pulse-

coupled oscillators. In the case of a weak coupling, we solve

the conjecture on QIF oscillators prevailing in the original

model.

The paper is organized as follows. In Section II, we

introduce the model of pulse-coupled oscillators and the con-

tinuum approximation. The dichotomic behavior observed

with monotone dynamics is described in Section III and

the problems we face with non-monotone dynamics are pre-

sented in Section IV. Section V provides a general stability

analysis of the continuum model and Section VI presents our

main results on local stability of weakly coupled oscillators.

In the case of non-monotone dynamics, a non-dichotomic

behavior is described in Section VII. Finally, we give some

concluding remarks in Section VIII.
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II. PRELIMINARIES

We present a brief overview of pulse-coupled oscillators

and the phase density model obtained in the case of infinite

populations.

A. Models of pulse-coupled oscillators

In this paper, we consider models of integrate-and-fire

oscillators [6]. An integrate-and-fire oscillator is described

by a scalar state variable x, which monotonically increases

between the two thresholds x and x according to the dynam-

ics ẋ = F (x), F > 0. When the oscillator reaches the upper

threshold x, it is reset to the lower threshold x (it is said to

fire).

As initially proposed in [1], the coupling between N
integrate-and-fire oscillators within the network is impulsive.

Whenever an oscillator fires, it sends out a pulse which in-

stantaneously increments the state of all the other oscillators

by a constant value K/N , where K is the coupling strength.

The coupling is usually excitatory (K > 0) but may also

be inhibitory (K < 0). The dynamics of a pulse-coupled

integrate-and-fire oscillator i ∈ {1, . . . , N} is then given by

ẋi = F (xi) + ui(t) , (1)

with the coupling

ui(t) =
K

N

N
∑

j=1
j 6=i

∞
∑

k=0

δ(t − t
(j)
k ) . (2)

The Dirac functions δ model the pulses which increment the

state of oscillator i at the firing times t
(j)
k , that is, when an

oscillator j 6= i fires.

For the sake of simplicity, the dynamics of the oscillators

is turned into a phase dynamics. The phase θ ∈ S1(0, 2π) is

determined from the state x by rescaling in such a way that

θ = 0 corresponds to the low threshold x = x and that a

single (uncoupled) oscillator satisfies θ̇ = ω, where ω is the

natural frequency of the oscillator. The state-phase relation

is given by

θ = ω

∫ x

x

1

F (x′)
dx′ . (3)

The state dynamics (1) of oscillator i is rewritten as the phase

dynamics

θ̇i = ω + Q(θi)ui(t) , v(θi, t) , (4)

where Q : [0, 2π] 7→ R is the phase response curve (PRC) of

the oscillator, that is, the phase sensitivity of the oscillator

to an external perturbation (in this case, the coupling) [4],
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[7]. For integrate-and-fire oscillators, the PRC has the exact

analytical expression (see [8])

Q(θ) =
ω

F [x(θ)]
. (5)

B. Phase density model

For large networks, a good approximation is to consider

an infinite number of oscillators. In this case, a continuum of

oscillators is described by a density function which evolves

according to a nonlinear partial differential equation (PDE).

a) Phase density equation: In the limit of an infinite

number of oscillators, the population is a continuum char-

acterized by a phase density function ρ(θ, t) normalized on

S1(0, 2π). Defining the flux as

J(θ, t) = ρ(θ, t) v(θ, t) ,

the evolution of the oscillators obeys the continuity equation

∂

∂t
ρ(θ, t) = − ∂

∂θ
J(θ, t) . (6)

Since the phase θ is defined on S1(0, 2π) ≡ R mod 2π, the

PDE verifies the boundary condition

J(0, t) = J(2π, t) , J0(t) ∀t . (7)

For the sake of simplicity, we use in the sequel the notation

J0 to denote the boundary flux (7).

b) Impulsive coupling: For a finite population, the

oscillators crossing θ = 0 at times t
(j)
k induce a flux

J0(t) = 1
N

∑

j

∑

k δ(t − t
(j)
k ). In the limit N → ∞, the

influence of a single oscillator is negligible, so that com-

paring the flux J0 with the coupling (2) yields the coupling

u(t) = K J0(t), which is common to the whole population.

The coupling is a continuous-time function interpreted as

an infinite sum of infinitesimal spikes (of size K/N ≪ 1).

For the continuum of pulse-coupled oscillators, the phase

dynamics (4) then writes

v(θ, t) = ω + Q(θ)K J0(t) . (8)

III. DICHOTOMY IN THE LIF MODEL

Impulsive coupling was initially studied in [1] for leaky

integrate-and-fire (LIF) oscillators, characterized by the

monotone dynamics ẋ = F (x) = S + γ x > 0
∀x ∈ [x, x] = [0, 1]. Using the monotonicity property of the

dynamics, two complementary studies showed that finite

populations of pulse-coupled LIF oscillators exhibit two con-

trasting behaviors. The two studies thereby highlighted that

the behavior is characterized by an interesting dichotomy.

If K dF/dx < 0 ∀x ∈ [x, x], the oscillators achieve per-

fect synchrony for almost all initial conditions [2]. If

K dF/dx > 0 ∀x ∈ [x, x], the oscillators globally converge

to a phase-locked clustering configuration [3]. In the latter

situation, the clusters spread over the circle S1(0, 2π) so that

the behavior is an asynchronous state.

Our recent work [9] shows that the dichotomic behavior

of LIF oscillators also prevails in the continuum limit of the

model. In Fig. 1, the oscillators either perfectly synchronize

or converge toward an asynchronous state. In case of syn-

chronization, the flux J0 tends to a series of Dirac functions,

which shows that the whole population concurrently crosses

the threshold θ = 0. In case of asynchronous state, the

flux converges to the uniform (constant) flux J∗. Since the

coupling has a repulsive effect which spreads the oscillators

over the circle S1(0, 2π), this behavior is the continuous

equivalent of the phase-locked asynchronous behavior ob-

served for finite populations.
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Fig. 1. The infinite population of LIF oscillators has a dichotomic behavior.
A. When K dF/dx < 0, the oscillators achieve perfect synchrony: the flux
J0 tends to a series of Dirac functions. B. When K dF/dx > 0, the density
converges toward an asynchronous state: the flux tends to the uniform flux
J∗ ≈ 0.53. (The simulations are performed with a finite differences method,
with F (x) = 2.1 − 2x and K = ±0.1.)

Dichotomy is a global property of the model. For os-

cillators with a monotone dynamics, the global analysis

of the dichotomy relies on the existence of a Lyapunov

function, which shows the global stability (or instability)

of the asynchronous state for finite populations [3] and for

infinite populations [9].

IV. BEYOND MONOTONICITY ASSUMPTIONS

Even though the LIF model is the most popular integrate-

and-fire model, its monotone dynamics implies that the time

evolution of the oscillators has a curvature with a constant

sign. Such a dynamics is not representative of various

biological oscillators (such as neurons) and considering more

complex (non-monotone) dynamics is a relevant problem.

For instance, an important generalization of the LIF model

is the quadratic integrate-and-fire (QIF) model, defined by

F (x) = S + x2, S > 0 [10]. Numerical simulations suggest

clear evidence that pulse-coupled QIF oscillators have also a

dichotomic behavior. The simulations show that the behavior

is determined by the average derivative K dF/dx between

the two thresholds, that is, by the quantity

K [F (x) − F (x)] . (9)

Numerical evidence suggests that QIF oscillators perfectly

synchronize when (9) is negative and converge to the asyn-

chronous state when (9) is positive.

In contrast to monotone dynamics, there is no rigorous

proof of dichotomy in the QIF model. Whether the asyn-

chronous state is globally stable is an open problem so far.

More surprisingly, our recent study [5] on finite populations

has revealed that even a local stability analysis is an intricate

problem, yielding the following conjecture:

Conjecture 1: For the QIF model F (x) = S + x2,

the asynchronous state is locally stable if and only if

K [F (x) − F (x)] > 0.
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To get a deeper insight into the problem, we consider

other “QIF-like” integrate-and-fire dynamics satisfying the

following assumption.

Assumption 1: F (·) : [x, x] 7→ R is continuous, positive,

even, and strictly increasing on [0, x].
Representative models of this class are the exponential

model, defined by F (x) = S exp(x2), S > 0, and the

piecewise linear model, that is, a direct generalization of the

linear LIF model defined by F (x) = S+γ|x|, S, γ > 0 (Fig.

2).

−1 −0.5 0 0.5 1
0

1

2

x
 

 

F (x) = S + x2

F (x) = S + γ|x|
F (x) = S exp(x2)

xx

Fig. 2. Three models (quadratic, exponential, and piecewise linear)
satisfying Assumption 1. The behavior of the oscillators differs when
K [F (x) − F (x)] > 0 or K [F (x) − F (x)] < 0.

Whereas local stability analysis of the QIF model is an

open question, a (fastidious) local analysis is provided in [5]

for finite populations of exponential and piecewise linear os-

cillators. Interestingly, the analysis shows that the dichotomy

is not an obvious and inherent characteristic of pulse-coupled

oscillators: while the local analysis supports the dichotomic

behavior in the exponential model, the study shows that the

dichotomy does not persist in the piecewise-linear model.

In this context, the QIF model, with its conjecture, is an

intermediate case between the exponential model and the

piecewise-linear model.

The analysis of models satisfying Assumption 1 is much

more involved than the analysis of models with a monotone

dynamics. The stability problem, however local or not, is

complex and yields some open problems in the case of finite

populations. For these reasons, we investigate in the rest of

the paper the continuum approximation of the models and

we present further stability results, including the proof of

Conjecture 1 in the weak coupling limit.

V. LOCAL STABILITY ANALYSIS

OF THE CONTINUUM MODEL

In the continuum limit, we investigate the local stability

of the asynchronous state (Fig. 1B). The asynchronous state

corresponds to the stationary solution of (6)-(8):

J(θ) = J∗ , ρ∗(θ) =
J∗

ω + K Q(θ)J∗
. (10)

This solution exists if there exists a value J∗ so that the

stationary density (10) is normalized on [0, 2π]. In [9], we

give a necessary and sufficient condition for the existence of

the stationary solution.

To study the local stability of the stationary asynchronous

state, we linearize the continuity equation (6)-(8) around

the stationary solution (10) and we obtain the eigenvalue

equation (see Appendix)

eλ/J∗ − 1 =
K λ

4π2 J∗

∫ 2π

0

Γ(ϑ) eλϑ/(2π J∗)dϑ . (11)

For the sake of simplicity, a new phase variable has been

introduced, which satisfies

dϑ

dθ
=

2πJ∗

ω + K Q(θ)J∗
, (12)

so that the oscillators have a constant velocity ϑ̇ = 2πJ∗

under the asynchronous regime J0 = J∗ (see (18)). In

addition, ϑ = 0 (resp. ϑ = 2π) corresponds to θ = 0 (resp.

θ = 2π). The function

Γ(ϑ) =
dϑ

dθ
Q(θ) =

2πJ∗ Q(θ)

ω + J∗ K Q(θ)
(13)

is interpreted as a PRC related to phase ϑ and corresponds

to the oscillators phase sensitivity to a perturbation of the

asynchronous regime.

The eigenvalue equation (11) has an infinity of solutions

λn (n ∈ Z) whose real parts determine the stability of the

asynchronous state. When the real parts of the eigenvalues

are all negative, the asynchronous state is locally stable.

When they are all positive, all the modes are unstable and the

flux tends to a Dirac function. In the uncoupled case K = 0,

the eigenvalues λn = i n ω all lie on the imaginary axis and

the asynchronous state is marginally stable.

Whether the model satisfies Assumption 1 or not, the

whole set of eigenvalues can only be obtained numerically.

However, some properties of the eigenvalues, summarized

in the following proposition, provide useful insight in the

stability analysis.

Proposition 1: 1. 0 , λ0 is a solution of (11);

2. If λn is a solution of (11), then its complex conjugate

λ̄n , λ−n is also a solution;

3. There exist solutions satisfying ℑ{λn} → ∞ which tend

to

λ∞ , J∗ log
ω + J∗ K Q(2π)

ω + J∗ K Q(0)
+ i n 2πJ∗ (n → ∞) .

Proof: The first two points are trivial. The latter is

proven as follows. Integrating by parts the right hand of (11)

yields

eλ/J∗ − 1 =
K

2π

[

Γ(2π)eλ/J∗ − Γ(0)
]

− K

2π

∫ 2π

0

dΓ

dϑ
eλϑ/(2π J∗)dϑ .

(14)

Considering that ℑ{λ} → ∞, the Riemann-Lebesgue lemma

[11] implies that the integral in (14) vanishes. Then it follows

from (13) that (14) writes

eλ/J∗

=
ω + J∗ Q(2π)

ω + J∗ Q(0)
.

The solution of this equation is λ∞, which concludes the

proof.
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Proposition 1 provides information for the eigenvalues cor-

responding to high frequency modes. The real part of these

eigenvalues asymptotically tends to the value ℜ{λ∞}. The

value has the same sign as K[Q(2π) − Q(0)], or given (5), as

-K[F (x) − F (x)]. The high frequency modes are thus stable

if (9) is positive. Since eigenvalues of lower frequency can

have real parts of opposite sign, the condition on (9) is only

a necessary condition for the stability of the asynchronous

state but it highlights the role of the quantity (9) as a stability

criterion.

The key role of (9) on the stability is reinforced for models

satisfying Assumption 1. In this case, the symmetry property

of the dynamics induces a PRC with a reflection symmetry

depending on (9):

Property 1: A model satisfying Assumption 1 has a PRC

Q(θ) = Qe(θ − θ) ∀θ ∈ [0, 2π] , (15)

where Qe(·) is an even function on R. To the inequality

F (x) − F (x) > 0 (resp. F (x) − F (x) < 0) corresponds

the inequality θ < π (resp. θ > π). In addition, changing

the sign of F (x) − F (x) yields a mirrored PRC, that is, it

modifies the symmetry point θ, which becomes 2π − θ.

Property 1 directly follows from (3) and (5). As shown in

the following proposition, Property 1 is of interest for the

stability analysis.

Proposition 2: Let Q(1) and Q(2) denote two PRC which

satisfy Q(1)(θ) = Q(2)(2π − θ). Then, the respective eigen-

values, solutions of (11), satisfy ℜ{λ(1)
n } = −ℜ{λ(2)

n }. In

particular, for a pulse-coupled model verifying Assumption

1, changing the sign of F (x)−F (x) changes the sign of the

real parts ℜ{λn}.

Proof: Given the hypothesis, it follows from (12) and (13)

that Γ(1)(ϑ) = Γ(2)(2π − ϑ). In addition, one easily shows

that the stationary flux J∗ is the same for the two PRC. Then,

the eigenvalue equation (11) for Γ(1) can be rewritten as

eλ/J∗ − 1 =
K λ

4π2 J∗

∫ 2π

0

Γ(2)(2π − ϑ) eλϑ/(2π J∗)dϑ

or

e−λ/J∗ − 1 =
K (−λ)

4π2 J∗

∫ 2π

0

Γ(2)(ϑ) e−λϑ/(2π J∗)dϑ .

If λ
(1)
n is an eigenvalue for Γ(1), then −λ

(1)
n , λ

(2)
−n

is an eigenvalue for Γ(2). Since λ
(2)
−n = λ̄

(2)
n , one has

ℜ{λ(1)
n } = −ℜ{λ(2)

n }. When Assumption 1 is satisfied, the

second part of the proposition follows from Property 1.

Proposition 2 shows how models satisfying Assumption 1

are the most likely to exhibit dichotomy: two opposite values

F (x)−F (x) (corresponding to two mirrored PRC) yield two

behaviors with opposite stability.

Remark 1: The particular case F (x) − F (x) = 0 cor-

responds to a marginally stable behavior. In this case,

one has θ = π and the oscillators have a symmetric

PRC Q(θ) = Q(2π − θ). Given the resulting symmetry of

Γ(ϑ) = Γe(ϑ − π), with Γe(·) an even function, the eigen-

value equation (11) writes

eλ/(2J∗) − e−λ/(2J∗) =
K λ

4π2 J∗

∫ π

−π

Γe(ϑ) eλϑ/(2π J∗)dϑ .

Assuming a purely imaginary solution λ = i|λ|, the equation

becomes

sin

( |λ|
2J∗

)

=
K |λ|
4π2 J∗

∫ π

0

Γe(ϑ) cos

( |λ|ϑ
2π J∗

)

dϑ

and has an infinity of solutions. A symmetric PRC

Q(θ) = Q(2π − θ) is a necessary condition to ensure an

infinity of eigenvalues on the imaginary axis.

VI. LOCAL STABILITY RESULTS

FOR WEAKLY COUPLED OSCILLATORS

The preceding section provides qualitative properties de-

rived from the eigenvalue equation but does not provide

a full local stability analysis. In contrast, an analytical

characterization of the eigenvalues becomes available when

the coupling is weak. Using a simple stability criterion, we

will recover stability results known for finite populations and

we will prove Conjecture 1.

When K ≪ 1, the stationary density (10) is approximated

by a constant ρ∗ ≈ J∗/ω and 2π J∗ ≈ ω since ρ∗ is

normalized on [0, 2π]. Then, (12) implies ϑ ≈ θ and (13)

leads to Γ(ϑ) ≈ Q(θ). It follows that the eigenvalue equation

(11) is simplified to

e(2πλ)/ω − 1 =
K λ

2π ω

∫ 2π

0

Q(θ) eλθ/ωdθ .

Next, linearizing the equation around the solutions

λn = i n ω of the case K = 0 leads to

ℜ{λn} = −K nω

4π2

∫ 2π

0

Q(θ) sin(nθ) dθ + O(K2) . (16)

Equality (16) can also be expressed as

ℜ{λn} =
K nω

2π
ℑ{Q̂n} + O(K2) , (17)

with Q̂n the nth Fourier coefficient of the PRC

Q̂n =
1

2π

∫ 2π

0

Q(θ) e−inθ dθ .

The expression (17) is in fact not new. It was used in [12],

[13] to study the local stability of weakly coupled LIF

oscillators. However, (16) gives an explicit expression of

the eigenvalues in the general case. In the sequel, we use

this result to study the local stability of models satisfying

Assumption 1.

QIF model: In the case of a weak coupling, the follow-

ing proposition proves Conjecture 1.

Proposition 3: For a continuum of weakly pulse-coupled

QIF oscillators, the asynchronous state is locally stable if

and only if K[F (x) − F (x)] > 0.

Proof: Given (5), the PRC of QIF oscillators expresses as

Q(θ) =
ω

S
cos2

[√
S

ω

(

θ − θ
)

]

,
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with

ω = 2π
√

S
/

[

arctan
x√
S

− arctan
x√
S

]

and

θ = −2π
arctan

(

x
/√

S
)

arctan
(

x
/√

S
)

− arctan
(

x
/√

S
) .

Assuming K 6= 0, (16) leads to

ℜ{λn}
K

=
n2 ω4 sin(4π2

√
S/ω)

2π S(ω2n2 − 4S)
sin

[

2
√

S

ω

(

θ − π
)

]

.

One easily shows that ω > 2
√

S and 2
√

S|θ − π|/ω < π.

Then, it follows that ℜ{λn}/K < 0 ∀n 6= 0 if θ < π and

that ℜ{λn}/K > 0 ∀n 6= 0 if θ > π. The relation between

θ and F (x)−F (x) (see Property 1) concludes the proof.

For a continuum of weakly coupled oscillators, Conjecture

1 is proven. In the sequel, we also recover all the results

known in the case of finite populations, which validates the

continuum limit approximation.

Exponential model: Our previous study [5] provides a

stability result for finite populations of exponential integrate-

and-fire oscillators. For the continuum under weak coupling,

a similar stability result is obtained, which complements the

previous result.

Exponential integrate-and-fire oscillators have a concave-

down PRC. Then, the local stability of these oscillators is

characterized by the following proposition.

Proposition 4: Consider a continuum of weakly pulse-

coupled integrate-and-fire oscillators which (1) satisfy As-

sumption 1 and (2) have a PRC satisfying d2Q/dθ2 < 0
∀θ ∈ [0, 2π]. Then, the asynchronous state is locally stable

if and only if K[F (x) − F (x)] > 0.

Proof: Since the model satisfies Assumption 1, the PRC can

be rewritten as (15), with d2Qe/dθ2 < 0. Using (16), one

computes the variation of ℜ{λn} (n 6= 0) corresponding to

a variation of the symmetry point θ. Assuming K 6= 0, this

yields

d

dθ
ℜ{λn}/K

=
nω

4π2

∫ 2π

0

sin(nθ)
dQe

dθ

∣

∣

∣

∣

θ−θ

dθ

=
ω

4π2

(

dQe

dθ

∣

∣

∣

∣

−θ

− dQe

dθ

∣

∣

∣

∣

2π−θ

+

∫ 2π

0

cos(nθ)
d2Qe

dθ2

∣

∣

∣

∣

θ−θ

dθ

)

>
ω

4π2

(

dQe

dθ

∣

∣

∣

∣

−θ

− dQe

dθ

∣

∣

∣

∣

2π−θ

+

∫ 2π

0

d2Qe

dθ2

∣

∣

∣

∣

θ−θ

dθ

)

= 0 .

When θ = π, one has ℜ{λn} = 0 (see Remark 1). Then,

it follows that ℜ{λn}/K < 0 ∀n 6= 0 if θ < π and

ℜ{λn}/K > 0 ∀n 6= 0 if θ > π. The relation between

θ and F (x)−F (x) (see Property 1) concludes the proof.

For exponential integrate-and-fire oscillators, Proposition 5

implies that the local stability of the asynchronous state

is characterized by the quantity (9). The result is in good

agreement with the result obtained for finite populations.

Piecewise-linear model: Our previous study [5] shows

that piecewise linear integrate-and-fire oscillators are not

characterized by a dichotomic behavior. The PRC of piece-

wise linear oscillators is

Q(θ) =
ω

S
exp

(

− γ

ω

∣

∣θ − θ
∣

∣

)

,

with

ω = 2πγ/ log

[

(S − γx) (S + γx)

S2

]

and

θ =
2π log

[

(S − γx)
/

S
]

log
[

(S − γx)
/

S
]

+ log
[

(S + γx)
/

S
] .

The relation (16) leads to

ℜ{λn} =
K n2 ω3

2π2S(γ2 + n2ω2)

{

− γ

n
sin(n θ)

+ ω e−πγ/ω sinh
[ γ

ω
(θ − π)

]

}

.

The second term of the right hand, which dominates for

n ≫ 1, has a constant sign for all n. However, the first term

is not negligible for lower values n and has a sign which

depends on n. For some parameters, the values ℜ{λn} with

a low n can be both positive and negative, depending on n
(see Fig. 3). In this situation, there is always at least one

unstable eigenvalue (independently of the sign of (9)). As in

the case of a finite population, the behavior is not dichotomic.
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Fig. 3. Piecewise linear oscillators have not a dichotomic behavior. When
x < −0.5, one has ℜ{λ2} > 0 while ℜ{λ1} < 0. (The parameters are
S = 1, γ = 1, K = 0.5 10−2, and x = 1.)

VII. STABLE COLLECTIVE BEHAVIORS BEYOND

SYNCHRONOUS AND ASYNCHRONOUS BEHAVIORS

Piecewise linear oscillators exhibit a variety of collective

behaviors. For high values x (θ ≈ 0), the asynchronous state

is stable, as for oscillators with a dichotomic behavior. When

x is decreased under a critical value, the system undergoes

a supercritical Hopf bifurcation and the flux oscillates under

the influence of the second (unstable) mode (Fig. 4 A).

A similar behavior was described in [13], [14] for LIF

oscillators with delayed transmission. For x ≈ −x (θ ≈ π),

there is no stable limit cycle so that the unstable mode

strongly affects the behavior. The (second) unstable mode

grows exponentially and the flux tends to a series of Dirac

functions, characterized by two Dirac functions per period

(Fig. 4 B). The oscillators do not uniformly spread over the
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circle but gather in two clusters. (The number of clusters is

determined by the number n of the unstable mode.)
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1000
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Fig. 4. A. Near the Hopf bifurcation, the flux is periodic (left) and the
oscillators spread over the whole circle, but with two high density regions
(right). B. For x ≈ −x, the flux is a series of Dirac functions, with two
Dirac functions per oscillator period (T ≈ 0.9) (left) and the oscillators
gather in two clusters (right). (The simulations correspond to the finite
population model, with a (large) number of N = 100 oscillators, and with
the parameters S = 1, K = 0.5 10−2, x = 1, and x = −0.6 (A) or
x = −0.8 (B))

VIII. CONCLUSION

Pulse-coupled integrate-and-fire oscillators are (biolog-

ically motivated) models characterized by an interesting

dichotomic behavior. The dichotomic behavior is well under-

stood in the original LIF model [2], [3], [9] but even a local

stability analysis seems intricate for more general models,

including the important QIF model.

In the present paper, we have shown that a local stability

analysis is more tractable in the continuum limit, in particular

under the assumption of weak coupling. We characterized the

stability of quadratic models and we proved the conjecture

which still prevails for finite populations. In addition, we

showed that the continuum approximation is relevant since

we recover known results: finite and infinite populations

exhibit a similar dichotomic behavior under identical as-

sumptions.

The recent advances presented in this paper are encour-

aging results. To face the complex problems arising from

the study of pulse-coupled oscillators, considering infinite

populations is a relevant approach.
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APPENDIX

Following similar lines as in [12], [14], we linearize the

PDE (6) and we derive the eigenvalue equation (11). Given

(12), the phase dynamics (8) is rewritten as

ϑ̇ =
dϑ

dθ
v(θ, t) = 2πJ∗ + (J0 − J∗)K Γ(ϑ) . (18)

Defining the density ρϑ so that ρϑ dϑ = ρ dθ, one has

J = ϑ̇ ρϑ . (19)

Next, considering the small variations j = J − J∗ (and

j0 = J0 − J∗) around the stationary solution, (18)-(19) are

linearized and the density expresses as

ρϑ =
1

2π
+

1

2π J∗
j − K

4π2 J∗
Γ(ϑ) j0 . (20)

The continuity equation

∂ρϑ

∂t
= −∂J

∂ϑ

is equivalent to (6). Using (20), the equation becomes the

linear PDE

∂j

∂t
= −2πJ∗ ∂j

∂ϑ
+

K

2π
Γ(ϑ)

dj0
dt

. (21)

In order to compute the eigenspectrum of the equation, an

exponential solution j(ϑ, t) = j̄(ϑ) exp(λt) is injected in

(21). Solving the linear differential equation for a mode j̄,

one obtains

j̄(ϑ) = j̄(0) e−λϑ/(2π J∗)

×
(

1 +
K λ

4π2 J∗

∫ ϑ

0

Γ(ϑ′) eλϑ′/(2π J∗)dϑ′

)

.
(22)

Finally, evaluating (22) in ϑ = 2π and using the boundary

condition (7) yield the eigenvalue equation (11).
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