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Abstract—This paper presents a nonlinear model predictive 
control (NMPC) scheme and a case study for improving the 
regenerative braking (RB) energy recovery for electric vehicles 
(EV) with in-wheel motors. The first part deals with a braking 
torque split problem, that is, given a desired vehicle longitudinal 
velocity profile, design braking torques for front and rear 
wheels independently to increase the RB energy recovery. The 
second part provides a case study to see the effects of different 
vehicle velocity profiles, with the same initial and terminal 
velocities and desired travelling distance, on RB energy 
recovery. The controller developed in the first part employs a 
three degrees-of-freedom longitudinal vehicle dynamic model 
with explicit considerations on the experimentally-measured, 
motor-to-battery RB efficiency map. Simulation results show 
that the proposed NMPC is capable of restoring more RB 
energy than a conventional PI controller does. The case study 
clearly shows the great potential in planning a priori velocity 
trajectory that is optimal in terms of energy recovery for RB 
control of EVs with in-wheel motors. 

I. INTRODUCTION 

ECENTLY, emerging electric vehicle technologies show 
great potentials in relieving the energy consumption 

concerns in the transportation sector.  One significant feature 
of EVs is the ability of converting/harvesting vehicle kinetic 
energy into electric energy through regenerative braking (RB) 
[1]. This recovered energy can in turn be used to power EV in 
the driving maneuver, thus reducing total energy 
consumption.  As early as 40 years ago, authors in [2] 
proposed an energy control method for a motor driven vehicle, 
which allowed RB, with a maximum principle. Recently, 
some simple and effective RB control strategies were also 
provided in [3]~[5], where regenerative braking was 
considered together with the traditional mechanical braking 
system, and optimum braking force distribution curve was 
taken into account for stability concerns.  Moreover, some 
other novel controllers were provided in the literature. Cao et 
al. in [6] designed a neural network self-adaptive PID 
controller, and in [7] combined neural network control with 
sliding mode control such that stronger robustness was 
achieved.  Zhang et al. [8] proposed a fuzzy logic based 
controller and showed its ability of restoring more energy as 
well as ensuring braking safety and battery life. Xie et al. [9] 
provided a robust controller based on switched system theory 
with the main concern of stability during RB.   

 
*Corresponding author.  This research was partially supported by the 

Office of Naval Research Young Investigator Program (ONR-YIP) Award 
under Grant N00014-09-1-1018, Honda-OSU Partnership Program, and 
OSU Transportation Research Endowment Program. 

Though successful in restoring RB energy to some extent 
and dealing with stability problems, previous research seldom 
treated the following control problems together with energy 
concerns: track desired vehicle longitudinal velocity profile; 
and travel desired distance with given initial and terminal 
velocities. Solutions to the former problem have applications 
in autonomous/unmanned vehicle controls where the velocity 
trajectories may be predefined. While solutions to the latter 
one can be applied to commonly encountered maneuvers on 
regular vehicles such as deceleration/stop before a red traffic 
light [10] or transitional maneuvers in adaptive cruise control 
(ACC) [11]. Furthermore, the motor-to-battery efficiency of 
regenerative braking [12] is not explicitly considered in any 
of the previous research. As a matter of fact, with the presence 
of additional objectives as well as limitations, tradeoffs 
become possible between control performance and improving 
RB energy recovery. Nonlinear model predictive control 
(NMPC) is capable of dealing with complex optimization 
problems as well as handling some kinds of nonlinearities and 
constraints, and has been applied in automotive research 
[13]~[16]. In this paper, an NMPC approach is adopted to 
address the first problem of velocity tracking for improving 
RB energy recovery, and a case study illustrating great 
potentials in significantly increasing RB efficiency by smart 
design of the velocity profile during deceleration is also 
provided.    

In this study, only the straight-line braking maneuver is 
considered and it is assumed that no mechanical friction brake 
is involved. The main objectives of this paper are: first, 
develop a NMPC to achieve improvement of regenerative 
braking energy recovery when tracking desired vehicle 
velocity profile; and second, give insight into the effects that 
different velocity profiles under the given initial and terminal 
velocities and total distance can have on RB energy recovery. 
In the first problem, the front and the rear RB torques are seen 
as two independent control inputs, while in the second one, 
only total braking torque is considered as the manipulated 
input for simplicity, and some techniques that are not 
introduced may be needed to satisfy multiple terminal 
constraints.  In the design of the NMPC, an 
experimentally-determined motor-to-battery RB efficiency 
and constraints on braking torques are explicitly reflected in 
the NMPC formulations.  The main contribution of this paper 
lies in that it provides the great potential and possibilities of 
using NMPC to solve multi-objective optimization problems 
for regenerative braking of electric vehicles.  

The rest of this paper is organized as follows: In Section II, 
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regenerative braking system is introduced.  Section III 
addresses the first problem of velocity profile tracking. 
Section IV presents the case study for different velocity 
profiles during deceleration. Simulation results of the 
proposed NMPC-based RB controller as well as case study 
are given in Section V, followed by conclusion remarks in 
Section VI. 

II. ELECTRIC VEHICLE REGENERATIVE BRAKING SYSTEM 

For electric ground vehicles (EGV) with in-wheel motors, 
the regenerative braking system for each wheel can work 
alone or together with a mechanical friction braking system. 
In this paper, only braking torques generated by in-wheel 
motors are in effect. For the cases where RB itself is not 
sufficient, some cooperative control of mechanical / 
regenerative braking is needed, yet falls beyond the interest of 
this paper.  

For control purposes, the motor-to-battery efficiency is 
introduced, as defined below: 

,c c

b

U I

T





 (1) 

where, cU  and cI  are the measurable battery charging 

voltage and current during RB, respectively, bT  is in-wheel 

motor braking torque, and   is wheel/motor angular speed. 
It should be noted that the braking torque has excluded the 
resistance torque (which can be calibrated) embedded in the 
wheel/motor set, i.e.,  bT  is the net braking torque on an 

individual wheel.  
The regenerative braking efficiency map is generated from 

EGV chassis dynamometer test under different exerted 
braking torque values and various wheel speeds. Since battery 
charging voltage and current can also be measured under 
given braking torque and wheel speed, the RB efficiency is 
seen to be a function of braking torque and wheel speed and 
rewritten in the following form  

 , .bT  
 (2) 

In order for NMPC design, the efficiency map (as shown in 
Fig. 1) was fitted using surface fitting tool to be a polynomial 
of bT  and   of fourth-order, based on the experimental data 

obtained on a prototyping EGV with in-wheel motors 
developed by the Vehicle Systems and Control Laboratory 
(VSCL) at The Ohio State University. The main features of 
the in-wheel motor and batteries have been described in [12]. 

As can be seen from Fig. 1, the efficiency map is not 
strictly concave or convex. At a given wheel speed, RB 
efficiency generally has a maximum value under a relatively 
large braking torque. Moreover, RB can only be triggered 
when motor speed is higher than 200rpm. This is mainly due 
to the feature of in-wheel motor and its driver, and will be 
considered as a constraint in the controller design.  

 

III. NMPC DESIGN FOR VELOCITY TRACKING 

In this problem, the desired vehicle velocity profile is 
known in advance. The objectives are: 1) to improve RB 
energy during the whole process; and 2) to track desired 
velocity as closely as possible. The problem is worthwhile for 
some applications such as in braking control of autonomous 
vehicles or wheeled robots, for which velocity trajectories are 
known a priori. A 3-DOFs (degrees-of-freedom) vehicle 
longitudinal model including wheel dynamics is first 
described.  The reason for inclusion of such a dynamic model 
is to incorporate constraints brought by longitudinal tire 
normal load transfer into the NMPC formulation. The 
problem is more like a control allocation problem with the 
purpose of optimization and tracking [20].  

A. 3-DOF Longitudinal Vehicle Dynamic Model 

The 3-DOFs longitudinal vehicle dynamic model takes 
vehicle longitudinal velocity v , front wheel angular speed 

wF  and rear wheel angular speed wR  as state variables. 

The individual wheel dynamics are shown in Fig. 2. Note that 
the actual value of xF  will be negative during braking.  

 
The dynamic equations are shown below. 

,x a x F zF x R zR amv F F k s F k s F F        (3)

  ,wF bF e x F zFJ T r k s F     
 (4)

  ,wR bR e x R zRJ T r k s F      (5)

where xF , aF , zFF  and zRF  are exerted longitudinal tire 

 
Fig. 2.  Individual Wheel Dynamics 

Fig. 1.  Regenerative Braking Efficiency Map. 
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force, aerodynamic drag force, front and rear tire normal 
forces, respectively; J  is the inertia of wheel/motor set, m  is 
the total mass of vehicle,   denotes the rolling resistance 

coefficient, er  is the effective radius of tire. Besides, Fs  and 

Rs  are slip ratios of front and rear wheels, respectively, and 

xk  denotes the slip-slope when the slip ratio is under a certain 

threshold value. For a specific road condition, xk
 
is assumed 

to depend only on tire properties and can be estimated using 
typical estimation methods such as recursive least-squares 
(RLS) [18][21]. In this paper, it is satisfied by the constraints 
on system states and inputs that the tires are always working 
in the linear region. This constraint also stems from the 
vehicle safety consideration, that is, tires should work far 
from the saturation region on the tire characteristic curve. 
Other details can be found in the NMPC formulation. System 
inputs are front and rear braking torques, bFT  and bRT , which 

should be distributed equally between the left and right 
wheels due to the negligence of vehicle lateral dynamics.    

B. NMPC Formulation  

The proposed NMPC scheme works as follows: at each 
sampling instant, given the current state as initial state, the 
optimization problem is solved for designed cost function 
within a finite time window, and the first element in the 
solution sequence is applied to the plant. Then, for the next 
instant, the same procedure is repeated to generate the next 
control input vector [17].  

The NMPC problem can be formulated as below.  
1) Model: 
 The model (3)~(5) after discretization and rearrangement 

is shown as follows. 

 
   
        1 ,

x F zF

x R zR a

k s k F kt
v k v k

m k s k F k F v k
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 (8)

where, the input vector is       T
bF bRk T k T k   u .

 
The 

following equations are part of the computation. 

    2 ,a aF v k C v k  (9) 

     ,zF R a aF k m l g hv k l F h l  
 (10)

     ,zR F a aF k m l g hv k l F h l  
 (11)

      1,F wF es k k r v k 
 (12)

      1,R wR es k k r v k 
 (13)

where, aC is the air resistance coefficient, Fl  and Rl  are 

distances from front axle and rear axle to the EGV center of 
gravity (c.g.), respectively, l  is the wheelbase, h  is c.g. 

height above ground, ah  is equivalent height of exerting 

point of aerodynamic drag force.  
Note that in the calculation of normal force ziF ,

     1v k v k v k t      , such that the undesirable 

algebraic loop in the continuous time is avoided. 

2) Cost Function:  
Considering the two objectives, intuitively, the cost 

function can be designed to be in the form of (14). 
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bF wF F bR wR R

bF wF bR wR

T T

T T

   


 



 (15)

where,   is the overall RB efficiencies; ph  and ch  are 

prediction horizon and control horizon; rw  and uw  are 

weighting matrices to determine relative importance of the 
penalized terms: tracking error and RB efficiency, and 
braking torque changing rate.  
Remark 1:  Throughout this paper, it is always RB efficiency 
being penalized in the cost function instead of RB power. 
This is due to the fact that maximal RB power is not 
equivalent to highest energy-efficiency. Since the duration 
time of RB is undetermined, higher RB power at each instant 
cannot guarantee more energy recovered during the whole 
RB process. 

3) Constraints: 
Due to the motor limitation, the highest value of 

regenerative braking torque for an individual wheel is no 
more than 80 Nm. From modeling point of view, slip ratio of 
each wheel should be kept under 0.03 [19] for tires to work in 
the linear range. From stability point of view, since wheel 
dynamics are much faster than vehicle body dynamics, to 
avoid high slip ratio, or in some extreme cases, wheel lock 
[3]~[5], the maximal braking torque must be adjusted 
automatically according to the normal load for each wheel. 
As to normal load, during braking maneuver, the load transfer 
from rear wheels to front wheels should be taken into account. 
Therefore, constraints on system inputs and states can be 
expressed as follows.  

,max0 2bi bT T  , (16)

min maxwi    , (17)

maxis s , (18)

where,  ,i F R  denoting front or rear; min  and max  are 

determined from the efficiency map (Fig. 1).  

 3) Nonlinear Model Predictive Control: 
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NMPC works for this RB control problem following three 
steps. 

First, at sampling instant k , measure the current system 

states         T
wF wRk v k k k    x . Also, the 

previous input  1k u  generated by NMPC is kept in 

memory. 
Then, rearrange the control sequence within control 

horizon       , 1 ... 1ck k k h  u u u  as 

         ... 1 ... 1
T

bF bF c bR bR ck T k T k h T k T k h      U (19)

and solve the nonlinear optimization problem where cost 
function is defined in (14). 

 
 

* min ,
k

k J
U

U  (20)

subjected to nonlinear model (6)~(13) in the prediction 
horizon and constraints (16)~(18). 

Third, the current desirable control input vector is taken to 
be 

     * * * ,
T

bF bRk T k T k   u  (21)

and is applied to the system. 

Finally, for the next instant, with  * ku  and measured 

 1k x , the same procedure is repeated to generate the 

control input vector  * 1k u .  

It is important to point out that the length of control horizon 

ch  determines the dimension of manipulated variable  kU  

and therefore the size of the optimization problem, while the 
length of prediction horizon ph  decides to what extent 

NMPC can “predict”, thus affecting control performance. In 
fact, prediction horizon window is typically much smaller 
than the entire optimization time window, therefore this finite 
horizon NMPC only provides “semi-optimal” solutions. 
Furthermore, since c ph h , for simplicity, the control inputs 

outside of control horizon and inside prediction horizon will 
take the last value in the control horizon, that is, 

   1 ,   0,1,...,bi c bi c p cT k h j T k h j h h       . (22)

IV. CASE STUDY: OPTIMAL VEHICLE VELOCITY PROFILE 

In a typical adaptive cruise control transitional maneuver 
[10][11], the initial vehicle velocity is known, and the 
terminal velocity and the desired travelling distance are 
determined by some higher-level controller. Such constraints 
on vehicle kinematics give rise to optimal vehicle velocity 
profile design, in which the main purpose is to gain as much 
RB energy as possible.  

If either one of the two terminal constraints—terminal 
velocity and total travelling distance is missing, the problem 
becomes an open-loop optimum seeking problem. In other 
words, at each time step, for a measured wheel speed, there 
exists a most energy efficient braking torque value according 
to the motor-to-battery RB efficiency map (Fig. 1). However, 

if the constraints are all exerted and the problem is solvable 
(which means the required distance is within reachable 
range), the design of velocity profile may have effects on the 
amount of RB energy that can be recovered. Moreover, the 
involvements of environmental disturbances, such as road 
slope and wind force, can make the problem even more 
complicated. 

This case study aims to provide insight into the effects that 
different velocity profiles can have on the RB energy 
recovery, rather than design the optimal profile.  An intuitive 
indication from the efficiency map in Fig. 1 is that the larger 
wheel speed and braking torque, the higher RB efficiency. 
This suggests that one efficient RB strategy is to apply large 
braking torque at the beginning stage of deceleration, where 
velocity is high, and then after velocity has reached some 
lower level, apply small or even zero braking torque in order 
to satisfy the terminal constraints. On the contrary, if small 
braking torque is first applied followed by large braking 
torque, the recovered RB energy may not be as much as that 
in the previous case though terminal constraints are still 
satisfied.  

Once the vehicle velocity profile is somehow determined, 
the NMPC scheme developed in the previous section can be 
used for the torque distribution. It is important to point out 
that wheel dynamics should be taken into account when 
designing globally optimal velocity profile. Nevertheless, 
3-DOF dynamic model renders the problem too complicated 
and cannot be isolated from the previous problem. Hence, for 
simplicity, only one manipulated input, the total braking 
torque, is considered in designing velocity profile. As a result, 
the design of such a semi-optimal velocity profile may also 
apply a higher-level NMPC control algorithm, which together 
with the lower-level NMPC developed in the previous 
section, constitutes a two-level NMPC-based RB controller 
for the EVs with in-wheel motors.  

The dynamic equations for the higher-level controller are 
shown below.  

   ,                               0 0, ,f fd v d d t d                  (23)

   0,     0 , ,b e f a f fmv T r F F v v v t v      (24)

where, d  is the distance vehicle travels, bT  is the total 

braking torque, fF  is the rolling resistance force. The 

problem can therefore be transferred from velocity profile 
design to seeking the optimal bT  as a function of time. To 

incorporate RB efficiency map, the following approximation 
is needed. 

.ev r   (25)
Simulation results under different velocity profiles are 

given in the following section. 

V. SIMULATION RESULTS AND ANALYSES 

For the first problem, comparisons were made between the 
proposed NMPC and a conventional PI controller. A 
full-vehicle model provided by CarSim® was used in the 
simulations. 
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A. Simulation Results of Velocity Tracking Problem 

Parameter values used in simulations are listed in Table I. 
TABLE I 

PARAMETERS IN VELOCITY TRACKING PROBLEM 

Parameter Value Unit 

m  300 kg 
J  1.9 kg.m2 

er  0.33 m 
  0.01 - 
h  0.43 m 

ah  0.43 m 

Fl  1.09 m 

Rl  0.8 m 

aC  0.037 Ns2/m2 

xk  10.2 - 

maxs
 

0.03 - 

ph  10 - 

ch  4 - 

rw  1 - 

uw  0.0001 - 

As can be seen, the simulation is based on a small-scaled 
vehicle mainly for the purpose of expanding the deceleration 
range with limited motor capability. As a comparison, the PI 
controller determines the total braking torque and distributes 
it to front and rear wheels according to normal forces in real 
time, that is 

,

,

bF PI zF

bR PI zR

T F

T F
 .

 (26)

The proportional and integral gains for the PI controller are 
tuned by trial-and-error. A too small gain leads to an 
unsatisfactory tracking performance, while a too large gain 
may result in oscillations or even instability. Desired velocity 
trajectory can be expressed as a function of time. 

 24 1.5 sin 0.4 .fv t t  
 (27)

The total recovered RB energy and velocity tracking 
performance are shown in Fig. 3. Braking torque evolutions 
of both controllers are demonstrated in Fig. 4.   

As can be seen, the energy recovered using the proposed 
NMPC is more than that of using a PI controller, while the 
vehicle tracking performance is almost same. From the 
braking torque curve, it is easily seen that distributing the 
total braking torque according to (26) is not an 
energy-efficient way, especially when the braking torque is 
small. In fact, around 2 or 7 second, NMPC applies almost all 
braking torque to front wheels. This can be explained by the 
unique shape on the RB efficiency map where braking torque 
is low. On the contrary, the PI controller always applies 
slightly larger braking torque on rear wheels due to larger 
normal loads. Another observation is that the hard constraint 
(16) on braking torque is reached for NMPC at the beginning 
of the simulation due to high deceleration demand. 

 

 

B.  Simulation for Velocity Profile Planning 

To show the effects of velocity profile on RB energy 
recovery, four different velocity profiles with the same initial 
and terminal velocities, 24 m/s and 9 m/s, as well as a total 
distance, 165m are designed, as shown in Fig. 5. Brief 
descriptions of these profiles and the RB energy recovered for 
them are listed in Table II. 

As can be observed and deduced from the figure and table, 
due to the existence of strict terminal constraints, the duration 
of the entire deceleration is free of change. For some traffic 
control problems, this duration may also be subjected to 
constraint. Among all velocity profiles, the “harsh-gentle” 
braking pattern is the most efficient way, which matches with 
the previous discussion, while the “gentle-harsh” pattern 
recovers the least RB energy. This result provides a 
rule-of-thumb in designing energy-efficient velocity profiles. 

 
Fig. 4.  Braking Torques of Using NMPC and PI Controller 
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Fig. 3.  Comparisons of Energy Recovery and Velocity Tracking 
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TABLE II 
RECOVERED RB ENERGY UNDER DIFFERENT VELOCITY PROFILE 

 Profile 1 Profile 2 Profile 3 Profile 4 

Profile 
Description 

Sinusoidal Harsh-Gentle Gentle-Harsh 
Constant 
Decelera

tion 
RB Energy 

(kJ) 
33.59 35.20 30.89 32.23 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, a NMPC-based RB controller is developed 
for energy recovery during regenerative braking for EVs with 
in-wheel motors. Simulation results show that for velocity 
track problem, NMPC is able to recover more RB energy than 
a traditional PI controller by wisely distributing braking 
torque to the front and rear wheels without scarification of 
vehicle velocity tracking performance.  A case study is also 
provided for fixed terminal velocity and distance problem and 
shows great potentials in using NMPC to achieve RB energy 
improvement by designing a semi-optimal velocity profile.  

Though satisfactory at this preliminary stage, the proposed 
NMPC method can still be improved in the following aspects: 
1) The proposed NMPC can be made adaptive to model 
uncertainties, for example, slip slope xk , which is an 

unknown constant in most cases; 2) some techniques are 
needed in speeding up the computation process; 3) NMPC for 
RB energy recovery  can be extended to some more complex 
maneuvers, such as braking when cornering.  
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Fig. 5.  Different Velocity and Distance Profiles. 
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