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Abstract— A vehicle yaw stability controller is proposed to
make vehicle yaw stable in critical cornering manoeuvres in
the paper. Considering vehicle body dynamics, wheel dynamics
and tire nonlinear characteristics, a discrete nonlinear time-
varying model is firstly constructed, with disturbances standing
for tire/road forces estimation error and unmodelled dynamics.
Then, the controller is proposed based on sliding mode control
in backstepping control framework, in which the control input
is calculated step-by-step. The stability of the system is analyzed
through input-to-state stability (ISS) theory. Finally, a group of
simulations is carried out with a multi-body vehicle dynamics
software to evaluate the controller and the results indicate that
it can maintain vehicle stable in critical cornering situation.

I. INTRODUCTION

Yaw stability controller of an automotive vehicle has been

established as an essential safety/performance component,

which generally prevents the vehicle from understeer and

oversteer situations in critical cornering manoeuvres[1]. A-

mong all the proposed control strategies, yaw stability con-

troller based on differential braking with Electromechanical

Brake module (EMB) as actuator has been widely investigat-

ed, in which brake torques on each wheel are considered as

control input. As the overall vehicle dynamics is described

with hard nonlinear properties (e.g. tire nonlinear character-

istics, vehicle body and wheel nonlinear dynamics), simpli-

fying the nonlinearities and deducing control oriented model

are the first essential work in developing the controller. These

models can be categorized into two main kinds according to

their structures. The first kind is integration model including

vehicle body and wheel dynamics either by excluding tire

nonlinearity[2] or excluding wheel transient dynamics[3],

[4], based on which Linear Quadratic Regulator theory, H∞

theory, and sliding mode control are implemented to design

yaw stability controller. However, although the closed loop

systems based on integration model are simple to analyze,

this kind of models fails to reveal vehicle nonlinearities

when vehicle lateral acceleration is more than 0.4g, which

commonly occurs in critical cornering situations. Under the

assumption that the tire/road forces are estimated, the second

kind of vehicle models consists of two main parts, which are

vehicle body and wheel dynamics models. The significance
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is introducing yaw moment as virtual control input of vehicle

body model to integrate these two parts[5], [6]. This kind of

models inspires hierarchical yaw stability controller, which

controls yaw rate and wheel slip separately in different

control loops. In order to obtain the calculated virtual control

input of the upper layer controller, control allocation is

implemented to allocate yaw moment to wheel slip either

through fuzzy logic or through nonlinear optimizing alloca-

tion algorithm, considering nonlinear relationship from wheel

slip to yaw moment. Although this kind of control strategies

has advance in reflecting vehicle nonlinear characteristics,

the analysis of closed loop system stability is remarkable

difficult as there are two control loops and nonlinear control

allocation are included.

In this paper, a vehicle yaw stability controller is proposed

based on a new control oriented vehicle yaw dynamics

model. Different from above two modelling strategies, the

new model is discrete nonlinear time-varying model, which

is strict-feedback with brake torque as input and yaw rate

as output and includes vehicle yaw dynamics, wheel slip

dynamics and tire nonlinear characteristics. In the model,

the tire/road forces are assumed to be estimated through

estimator and are considered as time-varying parameters.

In order to embody estimation error of these forces and

unmodelled dynamics, two bounded disturbances are intro-

duced to the model. Then a cascade yaw stability controller

is designed to keep vehicle stable through sliding mode

control (SMC) in backstepping framework, in which the

control input is derived step-by-step and the disturbances are

estimated in approximative way. Furthermore, to analyze the

closed loop stability property, input-to-state stability (ISS)

is implemented as it’s suitable in analyzing systems with

disturbances. The paper is organized as follows. In Section II,

the vehicle dynamics is briefly reviewed and the established

model is presented. In Section III, controller design and

closed loop system stability analysis are proposed. In Section

IV, a group of simulations based on a high-precise vehicle

dynamics software is carried out to evaluate the control

system.

II. VEHICLE YAW STABILITY CONTROL ORIENTED

MODEL

In general, a vehicle is mainly divided into two parts:

vehicle body and wheels, and the tire/road forces determine

their states. The vehicle body yaw dynamics and wheel longi-

tudinal dynamics are shown in Fig. 1 and Fig. 2 respectively,

in which the symbols in the paper are illustrated[7].
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Fig. 1. Vehicle dynamics
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Fig. 2. Wheel dynamics(i refers to each wheel and is in the range of [1,4])

As the function of yaw stability controller is to maintain

vehicle follow driver command in critical cornering situation-

s and yaw rate r is cornering speed, it is natural to design the

controller to make r follow its reference, which is determined

by steering angle δ and vehicle speed vx and is constrained

by road condition[1], [7]. The yaw rate reference is described

in Eq.(1).

rr =





rmax rd > rmax

rd − rmax < rd < rmax

−rmax rd < −rmax

(1)

where
rd = vxδ

(lf+lr)+
m(lrCr−lfCf )vx2

2(lf+lr)CfCr

rmax = 0.85µg
vx

µ is road adhesion coefficient and Cf , Cr is tire lateral

stiffness. In contrast to above design goal, vehicle slip angle

β is controlled in small range in [2] and [3]. It is omitted

here because β is related to r and β is kept in small range

automatically when r follows rr. These declaration will be

further testified in Section IV.
It has been well addressed that the convenient way to make

r follow its reference rr is braking the most effective wheel
according to vehicle situations[1]. In vehicle understeer state,
the rear inner wheel is braked and the front outer wheel
is braked in oversteer state. As the four wheels are braked
alternatively and the characteristics of these four situations
are similar, the model in the situation, which is δ > 0, r > rr
and front right (FR) wheel to be braked, is chosen to be
discussed and it is described as

ṙ = 1
Jz

[lf (Fx1 + Fx2) sin δ +
d
2
(Fx2 − Fx1) cos δ

+lf (Fy1 + Fy2) cos δ +
d
2
(Fy1 − Fy2) sin δ

−lr(Fy3 + Fy4) +
d
2
(Fx4 − Fx3)]

(2a)

λ̇2 = −
R2

vx

Tb2 +R2Fx2

Jω2

(2b)

Eq.(2b) is derived considering that vx varies slowly in

yaw stability control process. For other three situations, the

models are similar and the states are [r, λ1], [r, λ3], [r, λ4]
respectively. These models are time-varying and nonlinear.

In Eq. (2a), the forces Fxi and Fyi could be categorized

into two kinds: the forces acting on braked wheel and the

forces acting on un-braked wheels. For the first category,

the forces are related to wheel states, especially related

to wheel slip λi, so it is natural to implement tire model

to describe this relationship. The tire model is strongly

nonlinear and researchers have developed some models to

approximate it, such as Magic Formula[8], Dugoff Model[9],

LuGre Model[10]. In the paper, the rational tire model is

employed, which not only describes tire longitudinal and

lateral characteristics, but also describes wheel combined

characteristics[11], and it is shown in Eq. (3).

Fxi(αi, λi, µ, Fzi) ≈
µFzi

µ0Fzi0

χz

χλλ2
i
+1

Kλ

χαα2
i
+1

λi

Fyi(αi, λi, µ, Fzi) ≈
µFzi

µ0Fzi0

ηz
ηλλ2

i
+1

Cα

ηαα2
i
+1

αi

(3)

where Fzi is wheel load, and χz , χλ, χα, ηz , ηλ and ηα
are all tire parameters. Wheel load Fzi is mainly affected by

vehicle longitudinal acceleration ax, lateral acceleration ay ,

and they can be calculated as Eq. (4):

Fz1 = mglr
2(lf+lr)

− maxh
2(lf+lr)

−
maylrh

2d(lf+lr)

Fz2 = mglr
2(lf+lr)

− maxh
2(lf+lr)

+
maylrh

2d(lf+lr)

Fz3 =
mglf

2(lf+lr)
+ maxh

2(lf+lr)
−

maylfh

2d(lf+lr)

Fz4 =
mglf

2(lf+lr)
+ maxh

2(lf+lr)
+

maylfh

2d(lf+lr)

(4)

As in [12], the time-varying parameters, wheel slip angle

αi, are calculated as below:

α1 = δ − arctan
(

vy+lf r

vx−
b
2
r

)

α2 = δ − arctan
(

vy+lf r

vx+ b
2
r

)

α2 = − arctan
(

vy−lf r

vx−
b
2
r

)

α4 = − arctan
(

vy−lf r

vx+ b
2
r

)
(5)

As for the tire/road forces acting on un-braked wheels in
Eq. (2a), it is not needed to include tire nonlinear model,
as these wheel slip λi are not essential to be considered
as model states. Although these forces are hard to mea-
sure, there are many estimation methods proposed, such
as extended Kalman filter[13], sliding mode observer[14]
and the estimation performance are evaluated in normal and
critical situations. Thus, Fxi and Fyi can be replaced by their

estimation F̂xi and F̂yi, and they are considered as time-
varying parameters of Eq. (2). Another problem of Eq. (2)
is its parameter uncertainties and unmodelled dynamics, as
using much simple model to describe vehicle main dynamics
through excluding other dynamics (e.g. vehicle roll, pitch
dynamics). To comprise the forces estimation error and
unmodelled dynamics, disturbances d12 and d22 are added to
Eq. (2). Furthermore, as the vehicle yaw stability controller
has to be discrete to be implemented in a vehicle, the model
is converted to discrete form through Euler approximation.
As Eq.(6), the model of braking FR wheel is brought forth
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to represent one of the four vehicle yaw stability control
conditions.

r(k + 1) = f11(r(k)) + f12(r(k))g(λ2(k)) + d11(k) + d12(k)
(6a)

λ2(k + 1) = f21(λ2(k))+f22(k)Tb2(k)+d 21(k)+d22(k) (6b)

where

f11(r(k)) = r(k)

f12(r(k)) =
TsµFz2(k)
Jzµ0Fz20

χzKλ

χαα2(k)
2+1

(lf sin δ(k) +
d
2
cos δ(k))

g(λ2(k)) =
λ2(k)

χλλ2(k)
2+1

d11(k) =
Ts

Jz
[−lr(F̂y3(k) + F̂y4(k)) +

d
2
(F̂x4(k)− F̂x3(k))

lf F̂x1(k) sin δ(k) + lf cos δ(k)(F̂y1(k) + F̂y2(k))

− d
2
F̂x1(k) cos δ(k) +

d
2
(F̂y1(k)− F̂y2(k)) sin δ(k)]

f21(λ2(k)) = λ2(k)
f22(k) = − TsR2

Jω2vx(k)

d21(k) = −TsR2
Jω2

R2F̂x2(k)
vx(k)

Ts is sampling period

It is important to note that d12(k) and d22(k) are assumed

to be slowly time-varying comparing with sampling rate

of the controller, and (Fxi(k)− F̂xi(k)), (Fyi(k)− F̂yi(k)),
d12(k), d22(k) ∈ L∞. Eq. (6) can reflect vehicle body, wheel

dynamics and tire nonlinear characteristics as it is obtained

from integrating vehicle yaw dynamics, wheel dynamics and

rational tire model instead of using linear tire model[3] or

using direct yaw moment to leave tire nonlinearity behind[5].

III. VEHICLE YAW STABILITY CONTROLLER DESIGN

The output of Eq. (6) is r and its input is Tb2(k), so

it is in single-input-single-output strict-feedback form and

it is convenient to implement backstepping control theory,

which is a systematic method for designing a controller

to track reference signal step-by-step through calculating

control (virtual control) at each step. Furthermore, to improve

robustness of control systems, backstepping and sliding mode

control (SMC) have been combined and implemented[15].

In the section, the proposed controller is designed according

to the integration of backstepping and sliding mode control

theory and the closed loop system stability is testified through

input-to-state stability theory, which is well developed for

analyzing systems with uncertainties.

A. Yaw stability controller design

The yaw stability controller calculating Tb2(k) to control

r(k) follow rr(k) is designed in the following two steps.

Step 1. Yaw rate control This step is based on Eq. (6a)

and λ2(k) is taken as virtual control input. The yaw rate

tracking error Sr(k) = r(k) − rr(k) is selected as sliding

surface and the tracking velocity is designed as

Sr(k + 1) = βrSr(k) (−1 < βr < 1) (7)

where βr is used to balance tracking velocity and control

intensity.

Substituting Eq.(6a) to Eq.(7) and rearranging, the follow-

ing equation is obtained

g(λ2(k)) = [f12(r(k))]
−1[βrSr(k)− f11(k)− d11(k)

−d12(k) + rr(k + 1)]
(8)

To calculate g(λ2(k)), rr(k + 1) and d12(k) must be

obtained in every sampling period. Considering vehicle ve-

locity vx(k) and steering angle δ(k) are continuous and

the sampling period Ts is small, the reference yaw rate

of next sampling period rr(k + 1) is approximated by

current reference yaw rate rr(k). d12(k) is assumed to be

slowly time-varying, so it can be estimated in each step as

follows[16]:

d̂12(k) ≈ d12(k − 1) = r(k)− f11(r(k − 1))
−f12(r(k − 1))g(λ2(k − 1))− d11(k − 1)

So, Eq.(8) is obtained as

g(λ2(k)) = [f12(r(k))]
−1[βrSr(k)− f11(k)− d11(k)

−d̂12(k) + rr(k)]
(9)

Then the virtual control input λr2(k) to make r(k) track

rr(k) is obtained in the following progress:

(1) Substitute above g(λ2(k)) to its definition in Eq.(6)

and solve the equation to get two results;

(2) Choose the larger one of above results as λr2(k) to

reduce braking intensity. If it is out of [−1, 0], set it 0
when overshooting on the upside and set it −1 when

overshooting on the downside.

Step 2. wheel slip control This step is to control λ2(k) to

track λr2(k), the tracking error, Sλ(k) = λ2(k)− λr2(k), is

chosen as sliding surface as Step 1, and the desired tracking

velocity is defined as

Sλ(k + 1) = βλSλ(k) (−1 < βλ < 1) (10)

Substitute Eq.(6b) to Eq. (10) and it is obtained

Tb2(k) =
vx(k)
TsR2

[−βλSλ(k) + f21(λ2(k))

+d21(k) + d22(k)− λr2(k + 1)]−1 (11)

In Eq.(11), the unknown items are λr2(k + 1) and d22(k).
Similarly to Step 1, λr2(k + 1) is approximated by its

current value λr2(k) and d22(k) is approximated as below

considering its slowly time-varying characteristics.

d̂22(k) ≈ d22(k − 1) = λ2(k)− f21(λ2(k − 1))
+ TsR2

vx(k−1)
Tb2(k − 1)− d21(k − 1)

So, the control input is rewritten as

Tb2(k) =
vx(k)Jω2

TsR2
[−βλSλ(k) + f21(λ2(k))

+d21(k) + d̂22(k)− λr2(k)]
−1

(12)

Similarly, the calculation of control input Tb1(k), Tb3(k)
and Tb4(k) for the other three vehicle situations follows Step

1 and Step 2 in the same way.

Remark 1. Usually, there are two other ways to handle the

disturbances d12(k) and d22(k), one is to neglect them and to

design controller based on nominal system, and the other is

to use the bounds of them and to design robust controller[17].

In the paper, they are approximated in each sampling period

in order to compensate them considering their characteristics

to obtain better performance. This design principle will be

testified in Section IV.
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B. Stability analysis

Although backstepping theory is one of control-Lyapunov

method and the stability can be guaranteed in normal case,

there are disturbances estimation and reference approxima-

tion in above design. So the closed-loop system stability

is evaluated in this section and the following theorem is

obtained.

Theorem 1. Define

Λ1(k) = f12(r(k))g̃(λ2(k)) + d12(k)− d̂12(k)
+rr(k)− rr(k + 1)

Λ2(k) = d22(k)− d̂22(k) + λr2(k)− λr2(k + 1)

where g̃(λ2(k)) is the error between Eq. (9) and

its real value in each sampling period. Consider-

ing that the tire/road forces observer is stable (i.e.

(Fxi(k)− F̂xi(k)), (Fyi(k)− F̂yi(k)) ∈ L∞) and distur-

bances d12(k), d22(k) are slowly time-varying and bounded

(i.e. d12(k), d22(k) ∈ L∞), the closed-loop system of plant

Eq.(6) and controller Eq.(12) is ISS with the consideration

that d(k) = [Λ1(k),Λ2(k)]
T is lumped disturbance.

Proof. For the system, define S(k) = [Sr(k), Sλ(k)]
T and

choose Eq.(13) as candidate Lyapunov function

V (S(k)) = V1(Sr(k)) + V2(Sλ(k)) (13)

where

V1(Sr(k)) =
1

2
Sr(k)

2, V2(Sλ(k)) =
1

2
Sλ(k)

2

Firstly, the difference of V1(Sr(k)) is computed as

∆V1(Sr(k)) = V1(Sr(k + 1))− V1(Sr(k))
= 1

2 (f11(k) + f12(r(k))g(λ2(k)) + d11(k)
+d12(k)− rr(k + 1))2 − 1

2Sr(k)
2

(14)

Substitute Eq.(9) to above equation,

∆V1(Sr(k)) =
βr

2 − 1

2
Sr(k)

2+βrSr(k)Λ1(k)+
1

2
Λ1(k)

2
(15)

According to Young’s inequality,

|βrSr(k)Λ1(k)| ≤ κ1βr
2
Sr(k)

2 +
1

4κ1
Λ1(k)

2
(16)

where κ1 > 0. Substitute Eq.(16) to Eq.(15),

∆V1(Sr(k))≤(
1

2
βr

2−0.5+κ1βr
2)Sr

2(k) + (
1

2
+

1

4κ1
)Λ1(k)

2

(17)

In the same way,

∆V2(Sλ(k))≤(
1

2
βλ

2−0.5 +κ2βλ
2)Sλ

2(k)+(
1

2
+

1

4κ2
)Λ2(k)

2

where κ2 > 0.

The difference of the above candidate Lyapunov function

shown in Eq.(13) is

∆V (S(k)) ≤ −α(S(k)) + γ(d(k)) (18)

where

α(S(k)) = (0.5− 1
2
βr

2 − κ1βr
2)Sr

2(k)
+(0.5− 1

2
βλ

2 − κ2βλ
2)Sλ

2(k)
γ(d(k)) = ( 1

2
+ 1

4κ1
)Λ1(k)

2 + ( 1
2
+ 1

4κ2
)Λ2(k)

2

Through choosing |βr| <
√

0.5
0.5+κ1

and |βλ| <
√

0.5
0.5+κ2

,

α(S(k)) > 0 is obtained. And it is easy to find α̃(|S(k)|) ∈
K∞ and γ̃(|d(k)|) ∈ K to meet α(S(k)) > α̃(|S(k)|) and

γ(d(k)) < γ̃(|d(k)|). So Eq.(19) is rewritten as

∆V (S(k)) ≤ −α̃(|S(k|)) + γ̃(|d(k)|) (19)

Based on the analysis, V (S(k)) is Lyapunov-ISS function

and the closed-loop system of vehicle yaw stability is ISS

according to [18].

�

According to Eq.(7) and Eq.(10), the parameters βr and

βλ are critical to the controller performance and are needed

to be tuned through simulations both to satisfy Theorem 1

and to balance those two issues below:

1.Driver expectation. The driver expects vehicle follow

commands as fast as possible. To reach the expectation, it’s

desirable to set βr and βλ small values, which means vehicle

states approach their references fast and requires large brake

torque.

2.Wheel forces saturation. As tire/road forces are non-

linear with the increase of wheel slip and wheel slip angle,

and the wheel may even locked due to large brake torque. As

a result, these parameters needs to be chosen close to 1 to

waken the brake intensity and to prevent wheel from being

locked.

IV. SIMULATIONS

To evaluate the performance of the proposed vehicle yaw

stability controller, a comparative group of simulations is

carried out in this section and the simulations are designed to

control a high-precision modular multi-body vehicle model

ve-DYNA[19], whose parameters have been configured to

simulate the dynamics of CA7180A4E produced by FAW

(China First Automobile Works), and the parameters are

listed in Table 1. Particularly, the tire parameters of Eq.(3)

is obtained through fitting tire characteristics of ve-DYNA

and the comparison is illustrated in Fig. 3, which shows that

Eq.(3) fits ve-DYNA well in small wheel slip and slip angle.

That is accurate enough in vehicle yaw stability control as

the wheel slip is controlled in small range.

TABLE I

VEHICLE PARAMETERS

Parameter Symbol Value

Vehicle mass (kg) m 1300

Yaw moment of inertia (kg ·m2) Jz 2167.56

Wheel rational inertia(kg ·m2) Jωi 0.8

Distance from mass center to front axle (m) lf 1.45

Distance from mass center to rear axle (m) lr 1.07

Wheel base(m) d 1.40

tire longitudinal parameter χz 0.22

tire longitudinal parameter χλ 10

tire longitudinal parameter χα 50

tire longitudinal parameter Kλ 72000

tire lateral parameter ηz 1.5

tire lateral parameter ηα 100

tire lateral parameter ηλ 50

tire lateral parameter Cα 35000

To testify the performance of the proposed controller, Sine

Steer test method is implemented, which is a conventional
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Fig. 3. Tire characteristics comparison between Eq.(3) and ve-DYNA

way to evaluate vehicle yaw dynamics. In the group of

comparative simulations, the vehicle accelerates to 80km/h
and is steered sinusoidally with amplitude of 100◦ and

frequency of 0.5Hz, and the road adhesion coefficient is

0.8. The simulations are carried out five times:

Sim1. without yaw stability controller.

Sim2. with yaw stability controller. The parameters of ve-

DYNA and controller are listed in Table 1.

Sim3. with yaw stability controller. The parameters of

ve-DYNA are set as m = 1400kg, Jz = 2600kg · m2,

Kλ = 50000, Cα = 25000, lf = 1.7m, lr = 0.82m and

Jωi
= 0.6kg · m2 to simulate vehicle load variation and

tires wear. This simulation is to evaluate the robustness of

the controller, as these parameters are critical in affecting

vehicle yaw dynamics and wheel dynamics.

Sim4. with yaw stability controller without d̂12(k) and

d̂22(k) in Eq.(8) and Eq.(12).

Sim5. with yaw stability controller but d̂12(k) and d̂22(k)
are replaced by ρ1sat( r−rr

ε1
) and ρ2sat(λi−λri

ε2
) respectively,

where sat(·) is saturation function, ρ1 and ρ2 are bounds of

d12(k) and d22(k), and ε1, ε2 are parameters to be tuned[17].

In above simulations, the sampling period is 0.005s and

the parameters βr and βλ in the last four simulations are

tuned as 0.995 and 0.85 respectively through simulations to

achieve satisfied performance.
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Fig. 4. Vehicle states comparison of the first three simulations

Vehicle yaw rate, reference yaw rate and slip angle in the

first three simulations are shown in Fig. 4. As illustrated in

it, the vehicle is unstable in Sim1 as yaw rate r(k) could

not follow its reference rr(k) and vehicle slip angle β(k)
is very large, nearly −20◦. The vehicle is in understeer and

oversteer states alternately and the driver could not control it

as desired. While the vehicle is stable both in both Sim2 and

Sim3, as r(k) follows rr(k) and β(k) is kept in small range.

Comparing with Sim2, r(k) in Sim3 just oscillates in small

extent. Furthermore, the results testifies that it’s equivalent

to control r(k) and to control both r(k) and β(k).
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Fig. 5. FR wheel states in Sim2
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Fig. 6. FR wheel states in Sim3
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Fig. 7. Estimation of d12 and d22 in Sim2

Fig. 5 and Fig. 6 describe FR wheel states in Sim2 and

Sim3 respectively. The wheel slip and brake torque in Sim3

both change faster than them in Sim2. Fig. 7 and Fig. 8

present d12(k), d22(k) and their approximation values in

the these two simulations and the disturbances are relatively
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Fig. 8. Estimation of d12 and d22 in Sim3

small comparing with r(k) and λ2(k). d12(k) and d22(k) in

Sim3 both oscillate too. From these results, it is validated that

although the control performance is degraded, the proposed

controller is robust to vehicle parameter uncertainties.

To check the effect of compensating d12(k) and d22(k)
through d̂12(k) and d̂22(k) more deeply, vehicle yaw rates

in Sim2, Sim4 and Sim5 are compared. In Sim5, ρ1 and

ρ2 are set to 0.01 and 0.03 respectively according to Fig.

7, and ε1, ε2 are set to 0.2 and 0.4 respectively through

simulation tuning. Vehicle yaw rate is described in Fig. 9,

which indicates that r in Sim2 is much smoother than it in

Sim4 and Sim5, as the parameter uncertainties have been

already complemented as discussed in Remark 1.
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Fig. 9. Vehicle yaw rate comparison in Sim2, Sim4 and Sim5

This group of simulations indicates that the proposed

controller is able to make vehicle yaw stability in critical

cornering manoeuvre and is robust to parameters uncertain-

ties.

V. CONCLUSION

To control vehicle yaw rate follow its reference, a vehicle

yaw stability controller is proposed based on discrete non-

linear time-varying model. The model is firstly established

through considering vehicle yaw dynamics, braked wheel

dynamics and tire nonlinear characteristics. The forces of

un-braked wheels are considered as time-varying parameters

and they are assumed to be estimated. In order to compensate

estimation error and unmodelled dynamics, uncertainties

are added to yaw dynamics and wheel dynamics. Then,

yaw stability controller is designed in the framework of

backstepping control, and control (virtual control) input is

derived under sliding mode control method. Based on ISS

theory, the closed-loop system is proved to be stable. Finally,

with a high precision vehicle dynamics model, a group of

critical cornering simulations validate that this vehicle yaw

stability controller meets the control requirement.
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[6] M. Alberding, J. Tjønnås, T. A. Johansen, “Nonlinear Hierarchical
Control Allocation for Vehicle Yaw Stabilization and Rollover”, Pre-

vention European Control Conference, Budapest, 2009.
[7] Kiencke, U. and L. Nielsen, Automotive Control Systems, For Engine,

Driveline and Vehicle, Springer-Verlag, Heidelberg, Germany, 2005.
[8] Pacejka, H. B. Tyre and Vehicle Dynamic. Oxford, Butterworth-

Heinemann , 2002.
[9] H. Dugoff, FANCHER P S, SEGAL L. An Analysis of Tire Traction

Properties and Their Influence on the Vehicle Dynamics performance.
SAE. Detroit, MI, USA:SAE press, 1970: SAE Paper No. 700377.

[10] N. Patel, C. Edwards, and S. K. Spurgeon. A sliding mode observer for
tire friction estimation during braking. Proceedings of the 2006 Amer-

ican Control Conference. Minnesota, USA: IEEE press,2006:5867 –
5872.

[11] S. C. Baslamisli, I. Polat, and I. E. Kose, “Gain Scheduled Active
Steering Control Based on a Parametric Bicycle Model”, IEEE in

Intelligent Vehicles Symposium, pp. 1168-1173, Istanbul, Turkey, June.
2007.

[12] R. Rajamani, Vehicle Dynamics and Control. Austin,Troy: Springer,
2006.

[13] M. A. Wilkin, W. J. Manning, D. A. Crolla, and M. C. Levesley,
“Use of an extended Kalman filter as a robust tire force estimator,”
Vehicle System Dynamics: International Journal of Vehicle Mechanics
and Mobility, vol. 44, pp. 50 - 59

[14] Ouladsine, M., et al. “Vehicle Parameter Estimation and Stability
Enhancement u sing the Principles of Sliding Mode”. in American
Control Conference, 2007.

[15] R. Benayache, L. Chrifi-Alaoui, A. Benamor, X. Dovifaaz, and P.
Bussy, “Robust control of nonlinear uncertain systems via sliding
mode with backstepping design,” in American Control Conference
(ACC), 2010, pp. 4695-4700.

[16] J.-L. Chang, “Discrete-Time Sliding Mode Controller Design with
State Estimator and Disturbance Observer,” Electrical Engineering
(Archiv fur Elektrotechnik), vol. 89, pp. 397-404, 2007.

[17] H. Qinglei, D. Chunling, X. Lihua, and W. Youyi, “Discrete-Time
Sliding Mode Control With Time-Varying Surface for Hard Disk
Drives,” IEEE Transactions on Control Systems Technology, vol. 17,
pp. 175-183, 2009.

[18] D. Nesic and D. S. Laila, “A note on input-to-state stabilization for
nonlinear sampled-data systems,” IEEE Transactions on Automatic
Control, vol. 47, pp. 1153-1158, Jul 2002.

[19] Z. Ma, Z. Liu, J. Lu, and H. Chen, “Study on Real-Time Simulation
System of Vehicle Dynamics Via ve-DYNA”, in Proceedings of the

2006 Vehicular Electronics and Safety, pp. 454-458, Dec. 2006.

8061


