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Abstract— This paper is concerned with the development of
the generalized Kalman-Yakubovich-Popov (KYP) lemma for
two-dimensional (2-D) Fornasini-Marchesini local state-space
(FM LSS) systems and its application to state-feedback positive
realness control with finite frequency specifications. An linear
matrix inequality (LMI) characterization for a rectangular
finite frequency region is firstly technically constructed and then
a generalized KYP lemma is proposed for 2-D FM LSS models.
This lemma provides sufficient conditions in terms of LMI for
general quadratic properties of the transfer function over a
rectangular finite frequency region, including the extensively
investigated bounded realness and positive realness as special
cases. Based on this result, a new condition is further derived for
designing controllers guaranteeing the finite frequency positive
realness of the closed-loop systems. The presented numerical
example shows the advantage of the proposed design method.

I. INTRODUCTION

In the field of control theory and signal processing, transfer

function method and state space method are two fundamental

approaches to describe, analyze and design dynamic systems,

respectively, from the frequency-domain and time/space-

domain points of view. A well-known result bridging the two

methods is the Kalman-Yakubovich-Popov (KYP) lemma

[1], [14]. Many properties of a transfer function, such as

bounded realness (H∞) [8] and positive realness (passivity)

[16], can be tackled via utilizing the KYP lemma to convert

an infinite-dimensional problem to a convex optimization

problem with LMI constraints.

In engineering practice, each property specification is

often required for a finite frequency range. However, the

standard KYP lemma can only treat the properties over the

entire frequency domain, which is the main drawback of the

KYP lemma when it is applied to engineering practice. A

milestone in exploring solution to overcoming this obstacle

is the generalized KYP lemma in [10], which elegantly

generalizes the KYP lemma from the infinite frequency range

to a finite frequency range. Hence, the generalized version

is more suitable for practical requirements [11], [9], [10].

On the other hand, two-dimensional (2-D) systems also

have been widely investigated over the past decades due

to their significance in both theory and practical applica-

tions [13], [4]. Two commonly used state space models

for 2-D systems are the Roesser model [15] and Fornasini-

Marchesini local state-space (FM LSS) model [7]. For these
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two models, properties such as bounded realness [5], [6], [17]

and positive realness [19] have been extensively studied and a

great number of related results have been reported. However,

these results can only tackle certain specific property for 2-

D systems. Until recently, some general results with regard

to the KYP lemma for 2-D systems have just appeared for

both entire frequency and finite frequency cases. In [2], the

authors proposed a KYP lemma for hybrid 2-D Roesser

systems, which includes the existing bounded real lemma

(BRL) in [6] and positive real lemma (PRL) in [18] as special

cases; independent of [2], [21] developed a generalized KYP

lemma that can directly treat properties of 2-D systems over

a rectangular region for Roesser models. However, it should

be noted that the 2-D KYP lemmas mentioned above are

only for Roesser models. To the authors’ knowledge, there

is no (generalized) KYP lemma for FM LSS models existing,

which motivates us to make efforts to fill the void of gap.

Hence, the first main results of the paper will focus on

developing a generalized KYP lemma for 2-D FM LSS

systems over a rectangular finite frequency region. To this

end, an LMI characterization of rectangular finite frequency

regions specified for 2-D FM LSS models is firstly derived,

and then by combining this new characterization with S-

procedure [20], LMI conditions are obtained guaranteeing a

general quadratic property of the transfer function, which is

the generalized KYP lemma. The obtained results not only

can directly imply the existing BRL [6] and PRL [19] for

2-D FM LSS models, but also include the standard KYP

lemma as a special case.

To further show the effectiveness of the proposed gener-

alized KYP lemma, we also apply it to the finite frequency

positive realness control problem for FM LSS models. The

authors in [9] pointed out that positive realness property is

crucial for achieving good control performance, and they still

provided compelling evidences to support that in practice, it

is not necessary to require this property for the entire fre-

quency range due to the limitation on the control bandwidth.

By the developed generalized KYP lemma, we will present

a new state-feedback controller design method. Numerical

results will show that the proposed synthesis method is

advantageous over the standard one when finite frequency

specifications are considered.

Notation: NX is arbitrary matrices whose columns form a

basis of the nullspace of X . R and C denote the set of reals

and complex numbers, respectively. The notation P > 0 (≥
0) means that matrix P is positive (semi)definite. I denotes

an identity matrix with appropriate dimension. In addition,

sym{A} indicates A∗ + A, diag{· · · } stands for a block-
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diagonal matrix, and σmax(·), λmin(·), respectively, denote

the maximum singular value and minimum eigenvalue of a

transfer function.

II. GENERALIZED KYP LEMMA FOR FM LSS MODEL

A. Problem Statement

Consider the following 2-D FM LSS model [7]:

x(i+ 1, j + 1) = A1x(i, j + 1) +A2x(i+ 1, j)

+B1u(i, j + 1) +B2u(i+ 1, j),

y(i, j) = Cx(i, j) +Du(i, j), (1)

where x(i, j) ∈ C
n is the state vector; u(i, j) ∈ C

nu is the

external (noise/disturbance) input signal; y(i, j) ∈ C
ny is the

concerned output signal; A1, A2 ∈ C
n×n, B1, B2 ∈ C

n×nu ,

C ∈ C
ny×n and D ∈ C

ny×nu are system matrices.

Let z1 and z2 be the z-transform operator of the i- and

j-orientations, respectively, and x̂ denotes the z-transform of

the state vector x. Then, the state equation of the FM LSS

model (1) can be expressed in the frequency-domain as

z1z2x̂ = z2A1x̂+ z1A2x̂+ z2B1û+ z1B2û, (2)

and accordingly the transfer function from û to ŷ is

H(z1, z2) = C(z1z2I−z2A1−z1A2)
−1(z2B1+z1B2)+D.

(3)

Motivated by the generalized KYP lemma for 1-D systems

[10] and 2-D Roesser systems [21], one of the main objec-

tives of this paper is to find an LMI condition ensuring a

general quadratic property of the 2-D FM LSS model over a

rectangular finite frequency region, which is the generalized

2-D KYP lemma.

B. Finite Frequency Region and Its Characterization

To develop the generalized KYP lemma, a key procedure

is to establish an equivalent LMI condition for a complex

vector set G defined as

G , { col{f, g1, g2} ∈ C
3n : f = ejω1g1, f = ejω2g2,

for some ω1, ω2 ∈ [−π, π], |ω1| ≤ ω̄1, |ω2| ≤ ω̄2} , (4)

where ω̄1, ω̄2 ∈ [0, π] are given real scalars. Noting z1 =
ejω1 , z2 = ejω2 and regarding f = z1z2x̂, g1 = z2x̂
and g2 = z1x̂, one can easily see that G describes the

relationship of signals (z1z2x̂, z2x̂, z1x̂) within a rectangular

finite frequency region [−ω̄1, ω̄1] × [−ω̄2, ω̄2]. First, let us

introduce the following fundamental lemma.

Lemma 1 ([14]): Let F,G ∈ C
n×n and f, g ∈ C

n. Then,

ff∗ = gg∗ if and only if there exists a scalar ω ∈ R such

that f = ejωg.
Then, we have the following result, which reveals that the

set G can be equivalently characterized by an LMI.

Lemma 2: Let ω̄1, ω̄2 ∈ [0, π] and f, g1, g2 ∈ C
n be

given. The following statements are equivalent.

(i) There exist two real scalars ω1, ω2 ∈ [−π, π] such that

f = ejω1g1, f = ejω2g2, |ω1| ≤ ω̄1, |ω2| ≤ ω̄2.

(ii) For all Hermitian matrices Pk ∈ C
n×n and 0 < Qk ∈

C
n×n, k = 1, 2, the following matrix inequality holds:

[

f
g

]∗ [

P Q
Q∗ ∆

] [

f
g

]

≥ 0, (5)

where

P , P1 + P2, Q , [ Q1 Q2 ], g = col{g1, g2},

∆ , diag{−P1 − 2 cos ω̄1Q1,−P2 − 2 cos ω̄2Q2}.
Proof: The proof is omitted due to space limitation.

Remark 1: In [10], the characteristic set G in (4) only

includes two vectors, for instance, f = jωg for the 1-D

continuous-time case; in [21], this set G actually consists of

two pairs of such vectors as fh = ejωhgh and fv = ejωvgv ,

with each pair corresponding to the horizontal or vertical

state vector in the discrete Roesser model. For the discrete

FM LSS model, since x(i+1, j+1) can be viewed as the one-

step forward shift from x(i, j+1) or x(i+1, j), we need three

vectors to identify the relationship of x(i+1, j+1), x(i, j+1)
and x(i + 1, j), which exactly corresponds to that of f, g1
and g2 of G in (4). This can well explain how to technically

explore such G along the road of [10] and [21] and also is the

most important underlying idea and motivation of this paper.

Thus, Lemma 2 further extends the results of 1-D systems

and 2-D Roesser models to 2-D FM LSS models.

C. Generalized KYP Lemma for FM LSS Model

Based on Lemma 2, we present the generalized 2-D KYP

lemma for the FM LSS model as follows.

Theorem 1: Consider the FM LSS model in (1) and

suppose that det(z1z2I−z2A1−z1A2) 6= 0 for all (z1, z2) ∈
{(z1, z2) ∈ C×C : |z1| ≥ 1, |z2| ≥ 1}. Let Hermitian matri-

ces Θ1 =
[

Θ11 Θ12

Θ∗

12
Θ13

]

∈ C
n+nu ,Θ2 =

[

Θ21 Θ22

Θ∗

22
Θ23

]

∈

C
n+nu and scalars ω̄1, ω̄2 ∈ [0, π] be given. If there exist

Hermitian matrices Pk ∈ C
n×n and 0 < Qk ∈ C

n×n, k =
1, 2, satisfying

[

A B

I 0

]∗ [

P Q
Q∗ ∆

] [

A B

I 0

]

+Θ < 0, (6)

where P, Q, ∆ are defined in (5) and

A , [ A1 A2 ], B , [ B1 B2 ],

Θ ,









Θ11 0 Θ12 0

0 Θ21 0 Θ22

Θ∗

12 0 Θ13 0

0 Θ∗

22 0 Θ23









,

then the following finite frequency condition holds:
[

G(ω1, ω2)
I(ω1, ω2)

]∗

Θ

[

G(ω1, ω2)
I(ω1, ω2)

]

< 0, ∀(ω1, ω2) ∈ Ω̄

(7)

where

G(ω1, ω2) ,

[

ejω2G(ω1, ω2)
ejω1G(ω1, ω2)

]

, I(ω1, ω2) ,

[

ejω2In
ejω1In

]

,

G(ω1, ω2) , [ej(ω1+ω2)In − ejω2A1 − ejω1A2]
−1

× [ejω2B1 + ejω1B2],
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Ω̄ , [−ω̄1, ω̄1]× [−ω̄2, ω̄2].
Proof: The proof is omitted for brevity.

Theorem 1 provides a sufficient condition in terms of LMI

in (6) to guarantee the finite frequency specification in (7)

for the FM LSS model. Note that the specified frequency

region, Ω̄, is a rectangular low frequency domain with the

center being the origin of the ω1ω2-plane. In the following,

the result in Theorem 1 is further developed to tackle the

case of any given rectangular finite frequency domain.

Corollary 1: Consider the FM LSS model in (1) and

suppose that det(z1z2I−z2A1−z1A2) 6= 0 for all (z1, z2) ∈
{(z1, z2) ∈ C×C : |z1| ≥ 1, |z2| ≥ 1}. Let Hermitian matri-

ces Θ1 =
[

Θ11 Θ12

Θ∗

12
Θ13

]

∈ C
n+nu ,Θ2 =

[

Θ21 Θ22

Θ∗

22
Θ23

]

∈

C
n+nu and scalars ωMk, ωmk ∈ [−π, π], k = 1, 2, satisfying

ωmk < ωMk be given. If there exist Hermitian matrices Pk ∈
C

n×n and 0 < Qk ∈ C
n×n, k = 1, 2, satisfying

[

A B

I 0

]∗ [

P QV∗

VQ∗ W

] [

A B

I 0

]

+Θ < 0, (8)

where P,Q are defined in (5), A,B,Θ in (6) and

W , diag{−P1 − 2 cosωa
1Q1,−P2 − 2 cosωa

2Q2}

V , diag{e−jωc
1I, e−jωc

2I},

ωc
k , (ωMk + ωmk)/2, ωa

k , (ωMk − ωmk)/2, k = 1, 2

then the following finite frequency condition holds:

[

G(ω1, ω2)
I(ω1, ω2)

]∗

Θ

[

G(ω1, ω2)
I(ω1, ω2)

]

< 0, ∀(ω1, ω2) ∈ Ω

(9)

where G(ω1, ω2), I(ω1, ω2) are defined in (7) and

Ω , [ωm1, ωM1]× [ωm2, ωM2].

D. Finite Frequency BRL and PRL of FM LSS Model

In this subsection, we consider two important properties

for the FM LSS model: bounded realness and positive

realness. A great number of results in the sense of these two

indices have been proposed for the control and/or filtering

of 2-D systems. By applying the Roesser model version of

generalized KYP lemma, [21] extended the standard BRL [6]

and PRL [18] to the finite frequency domain. Here, based

on the generalized KYP lemma obtained in the paper, we

can also obtain the corresponding finite frequency version of

BRL [6] and PRL [19] for the FM LSS model.

1) Finite Frequency BRL: In contrast with the standard

H∞ norm, the finite frequency bounded realness property of

the FM LSS model indicates that H(ejω1 ,ejω2) in (3) satisfies

‖H‖Ω
∞

, sup
(ω1,ω2)∈Ω

σmax[H(ejω1 , ejω2)] < γ (10)

where Ω is a given finite frequency region and γ > 0 a

scalar. Then, we have the following finite frequency BRL.

Corollary 2: Consider the FM LSS model in (1) and

suppose that det(z1z2I−z2A1−z1A2) 6= 0 for all (z1, z2) ∈
{(z1, z2) ∈ C×C : |z1| ≥ 1, |z2| ≥ 1}. Given scalars γ > 0
and ωMk, ωmk ∈ [−π, π], k = 1, 2, satisfying ωmk < ωMk,

if there exist Hermitian matrices Pk ∈ C
n×n and 0 < Qk ∈

C
n×n, k = 1, 2, such that

[

A B
I 0

]∗ [

P QV∗

VQ∗ W

] [

A B
I 0

]

+
[

C∗C C∗D
D∗C D∗D− γ2I

]

< 0 (11)

holds, where P,Q are in (5), A,B in (6), W,V in (8) and

C = diag{C,C}, D = diag{D,D},

then the finite frequency bounded realness condition in (10)

is satisfied with Ω defined in (9).

2) Finite Frequency PRL: Motivated by the usual pos-

itive realness definition in [19], the FM LSS system with

H(z1, z2) being analytic in |z1| ≥ 1, |z2| ≥ 1 is said to be

finite frequency positive real if the following condition holds

sym[H(ejω1 , ejω2)] > 0, ∀(ω1, ω2) ∈ Ω (12)

with Ω being a given finite frequency domain. Based on

Corollary 1, the following finite frequency PRL can be

obtained for the FM LSS model.

Corollary 3: Consider the FM LSS model in (1) and

suppose that det(z1z2I−z2A1−z1A2) 6= 0 for all (z1, z2) ∈
{(z1, z2) ∈ C × C : |z1| ≥ 1, |z2| ≥ 1}. Given scalars

ωMk, ωmk ∈ [−π, π], k = 1, 2, satisfying ωmk < ωMk,

if there exist Hermitian matrices Pk ∈ C
n×n, 0 < Qk ∈

C
n×n, k = 1, 2, and M ∈ C

nu×nu such that
[

A B
I 0

]∗ [

P QV∗

VQ∗ W

] [

A B
I 0

]

+

[

0 −C∗

−C Md − sym(D)

]

< 0 (13)

holds, where P,Q are in (5), A,B in (6), W,V in (8), C,D
in (11) and Md = diag{M,−M}, then the finite frequency

positive realness condition in (12) is satisfied with Ω defined

in (9).

Remark 2: From the system dimension point of view, the

obtained generalized KYP lemma (Theorem 1 or Corollary

1), finite frequency BRL (Corollary 2) and finite frequency

PRL (Corollary 3) can be seen as the extension of the 1-

D generalized KYP lemma [10] to discrete 2-D systems;

from the modeling point of view, these results can be

regarded as the extension of the Roesser model version of 2-

D generalized KYP lemma [21] to the FM LSS model; from

the frequency domain point of view, they also can be deemed

as the extension of the full frequency (BRL and PRL) results

[6], [19] to the finite frequency domain.

III. APPLICATION TO FINITE FREQUENCY POSITIVE

REAL CONTROL

The positive realness is one of the basic properties that

can be addressed by KYP lemmas. For 2-D systems, the

problem of positive real control has been considered in [19],

[18]; however, the results proposed there were specialized for

the entire frequency domain. In this section, in order to show

the applicative significance of the proposed generalized KYP

lemma in the paper, we concentrate on solving the problem of

finite frequency positive real control for the FM LSS model.
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A. Problem Formulation

In this section, consider the following open-loop 2-D FM

LSS system (Σo) with control input:

(Σo) : x(i+ 1, j + 1) = A1x(i, j + 1) +A2x(i+ 1, j)

+B11u1(i, j + 1) +B12u1(i+ 1, j)

+B21u2(i, j + 1) +B22u2(i+ 1, j),

y1(i, j) = C11x(i, j) +D11u1(i, j)

+D12u2(i, j), (14)

where x(i, j) ∈ C
np is the state vector; u1(i, j) ∈ C

nu1

is the external disturbance signal and u2(i, j) ∈ C
nu2 is

the control input signal; y1(i, j) ∈ C
nu1 is the interested

output signal and y2(i, j) ∈ C
ny2 is the measurement output

signal; Ak, B1k, B2k, C11, C21, D11, D12 and D21, k = 1, 2,
are known system matrices with appropriate dimensions.

Suppose all the states x2(i, j) are measurable and we are

interested in designing a state feedback control law

(Σc1) : u2(i, j) = Kcx2(i, j). (15)

Then, by connecting controller (Σc1) to the open-loop system

(Σo), the resulting closed-loop system (Σcl) from u1 to y1
can be obtained as follows:

(Σcl) : x̄(i+ 1, j + 1) = Ā1x̄(i, j + 1) + Ā2x̄(i+ 1, j)

+ B̄1u1(i, j + 1) + B̄2u1(i+ 1, j),

y1(i, j) = C̄x̄(i, j) + D̄u1(i, j), (16)

where
[

Āk B̄k

C̄ D̄

]

=
[

Ak +B2kKc B1k

C11 +D12Kc D11

]

,k = 1, 2.

Let Hcl denote the transfer function of (Σcl), i.e.,

Hcl(z1, z2) = C̄(z1z2I−z2Ā1−z1Ā2)
−1(z2B̄1+z1B̄2)+D̄.

The objective of finite frequency positive real control is to

design a state feedback controller (Σc1) for system (Σo) such

that the closed-loop system (Σcl) is asymptotically stable and

satisfies

sym[Hcl(e
jω1 , ejω2)] > 0, ∀(ω1, ω2) ∈ Ω (17)

where Ω is a given finite frequency region defined in (9).

B. Multiplier Expansion for Finite Frequency PRL

By virtue of the finite frequency PRL, Corollary 3, system

(Σcl) satisfies (17) if there exist Hermitian matrices Pk, 0 <
Qk, k = 1, 2, and M such that

[

Ā B̄
I 0

]∗[

P QV∗

VQ∗ W

] [

Ā B̄
I 0

]

+
[

0 −C̄
∗

−C̄ Md − sym (D̄)

]

< 0 (18)

with Ā , [Ā1, Ā2] and other notations similarly defined

as in (13). So the analysis of the specification (17) can be

processed by testing an LMI in (18).

When controller synthesis problem is considered, (18) is

not an LMI anymore due to the unknown realization of con-

troller (Σc1). Moreover, since both P and Q are multiplied

by system matrices, the usual change-of-variables method

applied to P (see [3]) is unable to transform (18) to an

LMI and further explicitly present the controller realization,

which is one of the main differences between Corollary 3

and the entire frequency PRL [19], [18], and also is one of

the main drawbacks when it is applied to synthesis problems.

To overcome this, inspired by the strategy for 1-D systems

in [11] and with the aid of the projection lemma [8], we

introduce an additional matrix multiplier for (18) and obtain

the following condition.

Theorem 2: Denote n = np. Let system (Σcl) in (16),

Hermitian matrices Pk ∈ C
n×n, 0 < Qk ∈ C

n×n, k = 1, 2,
M ∈ C

nu1×nu1 , general matrix R ∈ C
n×(3n+2nu1) and

scalars ωMk, ωmk ∈ [−π, π], k = 1, 2, satisfying ωmk <
ωMk be given. The following statements are equivalent.

(i) The conditions in (18) and in the following hold:

N ∗

RΨNR < 0, Ψ =





P QV∗ 0

VQ∗ W −C̄∗

0 −C̄ Md − D̄− D̄∗



 .

(19)

(ii) There exists general matrix F ∈ C
n×n such that

Ψ+ sym(R∗F [ −I Ā B̄ ]) < 0. (20)

Compared with (18), the system matrices in (20) are

multiplied only by F , which relatively facilitates converting

(20) to an LMI when the controller realization is unknown.

It should be noted that in general, (20) is only sufficient

for (18), unless R is chosen to satisfy (19). However, as is

pointed out by [11], for finite frequency conditions, it turns

out to be impossible to find an R such that (19) is satisfied

from (18) in general. According to the discussion in [11], to

make the synthesis problem tractable, a reasonable choice of

R is of the form

R = [ In αIn βIn 0n×2nu1
], (21)

where α and β are two prescribled scalar parameters. In what

follows, we also adopt this specification for R.

Before proceeding further, it should be noted that, how-

ever, the satisfaction of (18) or (20) does not imply the

stability of (Σcl), which is another difference of finite

frequency PRL compared with the entire frequency one in

[19]. Hence, it is necessary to separately provide a condition

for the asymptotic stability of system (Σcl). To conclude

this subsection, the following lemma is presented for this

purpose, where a multiplier is also introduced through the

projection lemma.

Lemma 3: Denote n = np and R̄ = [ In 0n×2n ].
System (Σcl) is asymptotically stable if there exist Hermitian

matrices 0 < P̄1, P̄2 ∈ C
n×n and general matrix F ∈ C

n×n

such that the following LMI holds:

Ψ̄ + sym(R̄∗F [ −I Ā ]) < 0 (22)

where Ψ̄ =
[

P̄ 0
0 −P̄d

]

, P̄ = P̄1+ P̄2, P̄d = diag{P̄1, P̄2}.
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C. Controller Design

Based on Theorem 2 and Lemma 3, we have the following

result guaranteeing the existence of a state feedback con-

troller for system (Σo).

Theorem 3: Consider system (Σo) in (14) and denote

n = np. Given R as in (21), R̄ = [ In 0n×2n ] and

scalars ωMk, ωmk ∈ [−π, π], k = 1, 2, satisfying ωmk <
ωMk, a state feedback controller (Σc1) exists such that the

closed-loop system (Σcl) in (16) is asymptotically stable and

satisfies the finite frequency positive realness specification

in (17) if there exist Hermitian matrices Pk ∈ C
n×n, 0 <

P̄k ∈ C
n×n, 0 < Qk ∈ C

n×n, k = 1, 2, M ∈ C
nu1×nu1

and general matrices F ∈ C
n×n,Kc ∈ C

nu2×n satisfying

the following LMIs:

Φ+ sym(R∗Γ) < 0, Φ̄ + sym(R̄∗Γ̄) < 0, (23)

where

Φ ,













P1 +P2 ejωc
1Q1 ejωc

2Q2 0 0

e−jωc
1Q1 Φ11 0 Φ∗

21 0

e−jωc
2Q2 0 Φ12 0 Φ∗

22

0 Φ21 0 Φ31 0

0 0 Φ22 0 Φ32













,

Φ̄ , diag{P̄1 + P̄2,−P̄1,−P̄2},

Γ , [ −F A1F+B21Kc A2F+B22Kc B11 B12 ],

Γ̄ , [ −F A1F+B21Kc A2F+B22Kc ],

Φ1k , −Pk − 2 cosωa
kQk, Φ2k , −C11F−D12Kc,

Φ31 , M− sym(D11), Φ32 , −M− sym(D11),

and ωc
k, ω

a
k, k = 1, 2, are defined in (8). Moreover, if the

previous conditions are feasible, the state feedback gain

matrix in (15) is Kc = KcF
−1.

If letting Q1 = Q2 = 0, Theorem 3 can be applied to

designing state feedback controllers in the sense of entire

frequency positive realness, and is reduced to the following.

Corollary 4: Denote n = np. A state feedback controller

(Σc1) with Kc = KcF
−1 exists such that the closed-loop

system (Σcl) in (16) is asymptotically stable and satisfies

sym[Hcl(e
jω1 ,ejω2)] > 0 for all frequencies if there exist

Hermitian matrices Pk ∈ C
n×n, 0 < P̄k ∈ C

n×n, k =
1, 2, M ∈ C

nu1×nu1 and general matrices F ∈ C
n×n,Kc ∈

C
nu2×n satisfying the following LMIs:

Φ̂ + sym(R∗Γ) < 0, Φ̄ + sym(R̄∗Γ̄) < 0, (24)

where

Φ̂ ,













P1 +P2 0 0 0 0

0 Φ11 0 Φ∗

21 0

0 0 Φ12 0 Φ∗

22

0 Φ21 0 Φ31 0

0 0 Φ22 0 Φ32













and other notations are defined in (23).
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Fig. 1. Feasible areas of a1a2 for different methods

D. An Illustrative Example

In this subsection, we present an example to illustrate the

effectiveness and merits of the proposed results. Consider

a stationary random field described by the following 2-D

system [12]:

η(i+ 1, j + 1) = a1η(i, j + 1) + a2η(i+ 1, j)

− a1a2η(i, j) + ω(i, j), (25)

where i, j ∈ Z
+ ∪ {0} are, respectively, the horizontal

and vertical position variables, η(i, j) is the state of the

random field at spatial coordinate (i, j), ω(i, j) is a noise

input; a1 and a2 are, respectively, the vertical and horizontal

correlations of the random field.

To represent system in (25) into the FM LSS model in

(14), let x(i, j) = [ η(i, j + 1)T − a2η(i, j)
T η(i, j) ]T be

the state vector, u1(i, j) = ω(i, j) and assume that the output

signal is y1(i, j) = 0.5η(i, j) + 0.6ω(i, j) and the control

input u2(i, j) is with matrices B21 = B22 = [ 0.1 0.1 ]T ,

which result in the representation in (14) with parameters

A1 =
[

a1 0
0 0

]

, A2 =
[

0 0
1 a2

]

, B11 =
[

1
0

]

,

B21 = B22 =
[

0.1
0.1

]

, C11 = [ 0 0.5 ],

B12 = 0, D11 = 0.6, D12 = 0.

Suppose that the interested frequency region is Ω̄ =
[− 3

4π,
3
4π] × [− 3

4π,
3
4π]. For given a1 and a2, we design

state-feedback controllers for (25) by the developed methods,

Theorem 3 and Corollary 4 (α = β = 0), and the one in

[19] such that the closed-loop system is stable with positive

real property in Ω̄. To illustrate the improvement of our

methods, we compare the area on a1a2-plane, where the

corresponding method has a feasible solution, shown in Fig.

1. It is found that the feasible area of a1a2 for Theorem

3 (Green, Red and Yellow) is much larger than that for

Corollary 4 (Green and Red) and the one in [19] (Green),

which verifies the advantage of Theorem 3 when being

applied to state-feedback positive realness control for the

FM LSS model with finite frequency specifications. Even for

the standard positive realness control problem, our method,
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Fig. 2. λmin[sym(H(z1, z2))] with state-feedback controller KcEF
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Fig. 3. λmin[sym(H(z1, z2))] with state-feedback controller KcFF

Corollary 4, also has larger feasible area than the one in [19].

By solving the conditions in Corollary 4 and Theorem 3,

the resulting entire frequency (EF) and finite frequency (FF)

positive realness controllers are, respectively, given by

KcEF = [ −2.2055 0.2300 ], KcFF = [ −1.2287 0.1236 ].

To illustrate the effectiveness of the designed controllers, we

depict the frequency responses λmin[sym(H(z1, z2))] of the

closed-loop systems, presented in Fig. 2 and 3. It is displayed

that the resulting closed-loop systems have positive realness

property within the corresponding frequency regions, which

demonstrates the effectiveness of the developed methods.

IV. CONCLUSION

In the paper, a generalized KYP lemma has been proposed

for the 2-D FM LSS models. The proposed KYP lemma

provides sufficient conditions in terms of LMI for a general

quadratic property of the transfer function over a rectangular

finite frequency region and includes the existing BRLs and

PRLs for FM LSS models as special cases. To obtain this

results, an equivalent LMI characterization for a rectangular

finite frequency region has been technically constructed. By

the developed KYP lemma, an existence condition has been

developed for state-feedback controllers guaranteeing the

asymptotic stability and finite frequency positive realness

of the closed-loop system. As a fundamental result, the 2-

D KYP lemma can be potentially applied to many other

promising areas such as 2-D signal processing and stability

analysis of 2-D systems, which deserve further investigation.
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