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Abstract— In this paper, the observer based pole place-
ment control for non-lexicographically-fixed linear time-varying
MIMO systems is considered. Using the concept of the relative
degrees of a MIMO system, Ackerman-like design algorithm for
pole placement state feedback control is directly derived. This
makes the calculation procedure to obtain the pole placement
state feedback very simple, especially for MIMO systems. The
separation principle is also shown in the case where both of
the controllability indices and the observability indices are not
lexicographically-fixed.

I. INTRODUCTION

The design of the pole placement for linear time-varying

systems is well established problem. The design procedure

of the pole placement state feedback for linear time-varying

system was proposed in[4][5] using the Flobenius standard

form as linear time invariant case[1][2][3]. However, the

time-varying transformation is complicated, so the design

procedure is also complicated especially for MIMO systems.

From this point of view, [7] proposed the Ackerman-like

calculation algorithm of pole placement for linear time-

varying systems.

Another problem is that even though the time-varying

linear system is controllable and observable, its control-

lability indices and/or observability indices may not be

fixed. Such a system is called non-lexicographically-fixed

system. For this problem, M.Valasek et.al. proposed the

pole placement control design method, by adding some

dynamics so that the augmented system is controllable and

lexicographically-fixed[6]. W.Chai et.al. proposed the design

method of observer for the system which is observable, but,

its observability indices are not lexicographically-fixed[8].

However, in [8], the observability canonical form is used, so

the total system analysis becomes complicated and separation

principle of the total system was not argued.

This paper will consider the following subject. 1. Using

the concept of the relative degrees, we derive easily the

Ackerman-like design algorithm for the pole placement state

feedback for linear time-varying MIMO systems. 2. Using

the duality of the adjoint system, the Ackerman-like design

method of the observer is proposed. 3. The observer based

pole placement control is considered for the system that is

controllable and observable, but its controllability indices

and observability indices are not lexicographically-fixed. The
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total closed loop is analyzed and the separation principle is

also shown.

II. POLE PLACEMENT OF MULTI-INPUT SYSTEMS

Consider the following linear time-varying (LTV) system

with multi-input.

ẋ(t) = A(t)x(t) +B(t)u(t) (1)

Here, x(t) ∈ Rn and u(t) ∈ Rm are the state variable and

the input signal, and, A(t) ∈ Rn×n and B(t) ∈ Rn×m

are the time varying coefficient matrices, which are smooth

functions of t. The matrix B(t) can be written as follows.

B(t) =
[

b1(t) b2(t) · · · bm(t)
]

(2)

Let Bj(t) ∈ Rn×m be defined as follows.

B0(t) = B(t)

Bj+1 = A(t)Bj(t)− Ḃj(t) (3)

Then, the following UC(t) is the controllability matrix.

UC(t) =
[

B0(t) B1(t) · · · Bn−1(t)
]

=
[

b01(t) · · · b0m(t) · · ·

· · · bn−1
1 (t) · · · bn−1

m (t)
]

(4)

where bik(t) is the k-th column vector of Bi(t). Hence, from

(3), bik(t) satisfies the same equation, i.e.,

b0k(t) = bk(t)

bi+1
k (t) = A(t)bik(t)− ḃik(t)

k = 1, 2, · · · ,m i = 0, 1, 2, · · · (5)

The system (1) is controllable if and only if

rankUC(t) = n. (6)

Suppose that the system (1) is controllable. Let µi (i =
1, · · · ,m) be its controllability indices, then we have the

following equations,

rankR(t) = n
m
∑

i=1

µi = n (7)

where

R(t) =
[

b01(t) · · · b
µ1−1
1 (t) · · ·

· · · b0m(t) · · · bµm−1
m (t)

]

. (8)

In this section, the system (1) is assumed to be

lexicographically-fixed, that is, it is assumed that µi does not
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change with t. It is also assumed that µ1 ≥ µ2 ≥ · · · ≥ µm

without loss of generality.

The problem is to find the state feedback

u(t) = K(t)x(t) (9)

which makes the closed loop system equivalent to some time

invariant linear system with arbitrarily stable poles.

Now, consider the problem of finding a new output signal

ỹ(t) such that the relative degree from u to ỹ is n. Here,

ỹ(t) has the following form.

ỹ(t) = C̃(t)x(t) (10)

Then, the problem is to find a matrix C̃(t) ∈ Rm×n that

satisfies this condition. Eq. (10) can be rewritten as

ỹi(t) = c̃i(t)x(t), i = 1, · · · ,m (11)

here,

ỹ(t) =







ỹ1(t)
...

ỹm(t)






, C̃(t) =







c̃1(t)
...

c̃m(t)






(12)

Let c̃
j
i (t) be the i-th row of C̃j(t) defined by

C̃j+1(t) = C̃j(t)A(t) + ˙̃
Cj(t), C̃0(t) = C̃(t).(13)

(c̃j+1
i (t) = c̃

j
i (t)A(t) + ˙̃c

j

i (t), c̃0i (t) = c̃i(t))

Lemma 1: The relative degree from u to ỹ is n, if and

only if

c̃0j (t)b1(t) = · · · = c̃
µj−1

j (t)b1(t) = 0

c̃0j (t)b2(t) = · · · = c̃
µj−1

j (t)b2(t) = 0

...

c̃0j (t)bj(t) = · · · = c̃
µj−2

j (t)bj(t) = 0,

c̃
µj−1

j (t)bj(t) = 1

... (14)

c̃0j (t)bm−1(t) = · · · = c̃
µj−1

j (t)bm−1(t) = 0

c̃0j (t)bm(t) = · · · = c̃
µj−1

j (t)bm(t) = 0

(j = 1, · · · ,m)
(Proof) By differentiating ỹ µi times successively, we have

ỹi(t) = c0i (t)x(t)

˙̃yi(t) = c1i (t)x(t)

¨̃yi(t) = c2i (t)x(t)

...

ỹ
(µi)
i (t) = c

(µi)
i (t)x(t) + c

(µi−1)
i (t)bi(t)ui(t)

= c
(µi)
i (t)x(t) + ui(t)

+γi(i+1)(t)ui+1(t) · · ·+ γim(t)um(t)

(i = 1, · · · ,m) (15)

which implies that the relative degree from u to ỹ is n. Here,

γij(t) = c
(µi−1)
i (t)bj(t)

Lemma 2: If C̃(t) satisfies the condition of Lemma 1, we

have

c̃kj (t)bi(t) = c̃j(t)b
k
i (t)

(j, i = 1, · · · ,m), (k = 0, · · · , µj − 1) (16)

The proof is omitted, here. From Lemma 2, (14) can be

written as

C̃(t)R(t) = W (17)

where

W = diag(w1, w2, · · · , wm) (18)

and

wi = [0, · · · , 0, 1] ∈ R1×µi (i = 1, · · · ,m) (19)

Hence, such C̃(t) can be calculated by

C̃(t) = WR−1(t). (20)

From this, the pole placement state feedback is obtained

as follows. Let αi
j(i = 1, · · · ,m, j = 0, · · · , µi) be the

coefficients of an ideal polynomial

αi(s) = sµi + αi
µi−1s

µi−1 + · · ·+ αi
0 (21)

where s is a differential operator. By multiplying in sequence

from the first equation of (15) by αi
0, · · · , α

i
µi−1, 1, and

summing them up, we have

αi(s)yi(t) = Di(t)x(t) + Λi(t)u(t) (22)

where Di(t) ∈ R1×n and Λi(k) ∈ R1×m are as follows

Di(t) = [αi
0, α

i
1, · · · , α

i
µi−1, 1]











c̃0i (t)
c̃1i (t)

...

c̃
µi

i (t)











Λi(t) = [0, · · · , 0, 1, γi(i+1)(t), · · · , γim(t)] (23)

Thus, by the state feedback

u(t) = −Λ−1(t)D(t)x(t)

(24)

D(t) =











D1(t)
D2(t)

...

Dm(t)











, Λ(t) =











Λ1(t)
Λ2(t)

...

Λm(t)











the closed loop system becomes as follows.






α1(s)
. . .

αm(s)






ỹ(t) = 0 (25)

This implies that (24) is the pole placement state feedback.

From (1) and (24), the closed loop state equation becomes

ẋ(t) = (A(t)−B(t)D(t))x(t) (26)
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Let T (t) be the time varying matrix defined by

T (t) =



























c̃01(t)
...

c̃
µ1−1
1 (t)

...

c̃0m(t)
...

c̃µm−1
m (t)



























(27)

and define the new state variable w by

w(t) = T (t)x(t), w =





























ỹ1(t)
...

ỹ
(µ1−1)
1 (t)

...

ỹm(t)
...

ỹ
(µm−1)
m (t)





























(28)

Then, from (25), (26) is transformed into

ẇ = {T (t)(A(t)−B(t)D(t))T−1(t)− T (t)Ṫ−1(t)}w

=







A∗

1 0
. . .

0 A∗

m






w (29)

where

A∗

i =













0 1 · · · 0
...

. . .
...

... 1
−αi

0 · · · · · · −αi
µi−1













(i = 1, · · · ,m) (30)

which is the realization of (25). This implies that the closed

loop system is equivalent to the time invariant linear system

which has the desired closed loop poles. (det(sI − A∗) =
α1(s) · α2(s) · · ·αm(s))

The non-singularity of T (t) is guaranteed by the following

Theorem.

Theorem 1: If the system (1) is controllable, then, the

matrix for the change of variable, T (t), given by (27) is

nonsingular for all t. ∇∇
This theorem can be proved by straightforward calculation

as for the time invariant case.

It is well known that the exponential stability is preserved

between two equivalent linear time-varying systems if the

transformation matrix is Lyapunov transformation. Note that

T (t) is Lyapunov transformation if it is nonsingular and both

of T (t) and T−1(t) are continuous and bounded for all t.

Then, to guarantee the stability of the closed loop system,

we need the following Theorem.

Theorem 2: In the above pole placement control, the

closed loop system is exponentially stable if the transfor-

mation matrix T (t) in (27) is Lyapunov transformation.

The pole placement design procedure is as follows.

STEP 1 Check the controllability of the system (1) and

find the controllability indices µi.

STEP 2 Calculate C̃(t) using (17).

STEP 3 Determine the desired characteristic polynomials

in (21).

STEP 4 (24) is the pole placement state feedback, i.e.,

the disired state feedback gain matrix is K(t) =
−Λ−1(t)D(t).

III. STATE OBSERVER

In this section, we consider the design of the state observer

for the following linear time-varying MIMO system.

ẋ = A(t)x+B(t)u

y = C(t)x (31)

Here, y ∈ Rm is the output signal of this system and

C(t) ∈ Rm×n is a time varying matrix. Other variables and

matrices are the same as those in (1). The system (31) is

supposed to be observable. The problem is to design the full

order state observer of (31). Consider the following system

as a candidate of the observer.

˙̂x = A(t)x̂+B(t)u+H(t)(C(t)x̂− y)

= A(t)x̂+B(t)u+H(t)C(t)(x̂− x) (32)

where H(t) ∈ Rn×m is an observer gain matrix. From this,

e = x̂− x satisfies the following error equation.

ė = (A(t) +H(t)C(t))e (33)

Hence, as well known, (32) is a state observer of (31) if

H(t) satisfies the following condition.

A(t) +H(t)C(t) : arbitrarily stable matrix (34)

Then, the problem is to find H(t) such that A(t)+H(t)C(t)
is equivalent to some constant matrix that has desired con-

stant exponentially stable poles.

For this purpose, consider the pole placement control

problem of the following adjoint system of (31).

ẋ = −AT (t)x+ CT (t)u (35)

From the property of the duality of the time varying adjoint

system, if the pair (A(t), C(t)) is observable, the pair

(−AT (t), CT (t)) is controllable. This implies that if the

system (31) is observable, there is an anti-stablized pole

placement state feedback for the system (35).

Using the result of the previous section, the calculation

procedure to obtain the observer for (31) is summarized as

follows.

STEP 1 Check the observability of the system (31) and

find the observablility indices νi (i = 1, · · · ,m).

STEP 2 Since νi’s are controllability indices of the adjoint

system (35), calculate the matrix C̃(t) for (35)

using (17) by replacing A(t), B(t) and µi by

−AT (t), CT (t) and νi respectively.

STEP 3 Determine the desired anti-stable characteristic

polynomial for the observer by (21), by replacing
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µi by νi. That is, if the desired stable poles for the

observer are {λ1, λ2, · · · , λn}, the desired unstable

poles in this case are {−λ1,−λ2, · · · ,−λn}.

STEP 4 Using (24), the anti-stablized pole placement

state feedback

u = −HT (t)x

for the system (35) is obtained, by replacing µi by

νi.

This implies that, from the previous section, using the

appropriate transformation matrix, P (t) ∈ Rn×n, we have

the following equation.

P−1(t)(−AT (t)− CT (t)HT (t))P (t)

−P−1(t)Ṗ (t) = −F ∗T (36)

Here, the eigenvalues of −F ∗ are {−λ1,−λ2, · · · , −λn}.

From this, we have the following.

PT (t){A(t) +H(t)C(t)}(PT (t))−1

−PT (t)
d

dt
(PT (t))−1

= PT (t){A(t) +H(t)C(t)}(PT (t))−1

+ṖT (t)(PT (t))−1

=
(

P−1(t){AT (t) + CT (t)HT (t)}P (t)

+P−1(t)Ṗ (t)
)T

= F ∗ (37)

The eigenvalues of F ∗ are the desired observer poles,

(λ1, λ2, · · · , λn). Hence, H(t) is an observer gain matrix.

Note that the system (32) is the observer for the system

(31) if the transformation matrix P (t) is Lyapunov transfor-

mation.

IV. NON-LEXICOGRAPHICALLY-FIXED SYSTEMS

A. Pole Placement for NLF systems

In this section, we assume that the system (1) is con-

trollable. However, its controllability indices µi’s are not

fixed. Such a system is called ”Non-Lexicographically-

Fixed” (NLF) system. For such systems, the truncated con-

trollability matrix R(t) in (8) is not always non-singular,

which makes the design problem difficult. M.Valasek and

N.Olgac proposed the pole placement control design method,

by adding some dynamics so that the augmented system is

controllable and lexicographically-fixed[6] In this paper, this

design procedure is not repeated. Please see [6] for details.

Using this technique, basic design procedure is as follows.

Since, the system (1) is assumed to be controllable, the

rank of UC(t) is always n. In addition, it is supposed that

the maximum values of all controllablity indices are known,

i.e., the following µ̄i’s are known.

µ̄i = max
t

µi(t) (i = 1, · · · ,m) (38)

Let ne be defined as

ne =
m
∑

i=1

µ̄i − n (39)

and consider the following augmented system.

d

dt

[

x

xe

]

=

[

A(t) 0
A2(t) A1(t)

] [

x

xe

]

+

[

B(t)
Be(t)

]

u

(40)

where xe ∈ Rne , A2(t) ∈ Rne×n, A1(t) ∈ Rne×ne and

Be(t) ∈ Rne×m. The calculation method for A1(t), A2(t)
and Be(t) is shown in [6] so that the augmented system

(39) is controllable and its controllability indices are µ̄i (i =
1, · · · ,m) and they are lexicographically-fixed.

Then, by using the simple design procedure in Section II,

the following pole placement augmented state feedback can

be obtained.

u =
[

K(t) Ke(t)
]

[

x

xe

]

(41)

Define Aaug(t) by

Aaug(t) =

[

A(t) 0
A2(t) A1(t)

]

+

[

B(t)
Be(t)

]

[

K(t) Ke(t)
]

(42)

then, there exists the state transformation matrix Taug(t) ∈
R(n+ne)×(n+ne), and it satisfies the following equation.

Taug(t)Aaug(t)T
−1
aug(t)− Taug(t)Ṫ

−1
aug(t) = A∗

aug (43)

where A∗

aug ∈ R(n+ne)×(n+ne) is a constant matrix that has

the desired augmented closed loop eigenvalues.

B. Observer for NLF systems

Consider the system (31) which is supposed to be observ-

able, but, its observability indices are not lexicographically-

fixed. It is assumed that the following ν̄i’s are known.

ν̄i = max
t

νi(t) (i = 1, · · · ,m) (44)

Let nf be defined as

n̂e =
m
∑

i=1

ν̄i − n (45)

and consider the following candidate of the augmented

observer for the system (31).

d

dt

[

x̂

ǫ

]

=

[

A(t) Â2(t)

0 Â1(t)

] [

x̂

ǫ

]

+

[

B(t)
0

]

u

+

[

H(t)
He(t)

]

[

C(t) Ce(t)
]

[

x̂− x

ǫ

]

(46)

where ǫ ∈ Rn̂e , Â2(t) ∈ Rn×n̂e , Â1(t) ∈ Rn̂e×n̂e , He(t) ∈
Rn̂e×m, and Ce(t) ∈ Rm×n̂e

Define e = x̂− x, then, from (31) and (46) we have

d

dt

[

e

ǫ

]

=

[

A(t) Â2(t)

0 Â1(t)

] [

e

ǫ

]

+

[

H(t)
He(t)

]

[

C(t) Ce(t)
]

[

e

ǫ

]

(47)
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Hence, (46) is an augmented observer for the system (31),

if Faug(t) defined by

Faug(t) =

[

A(t) Â2(t)

0 Â1(t)

]

+

[

H(t)
He(t)

]

[

C(t) Ce(t)
]

(48)

is equivalent to some constant matrix, F ∗ which has desired

stable constant eigenvalues. For this purpose, we consider

the following augmented adjoint system.

ζ̇ = −

[

AT (t) 0

ÂT
2 (t) ÂT

1 (t)

]

ζ +

[

CT (t)
CT

e (t)

]

v (49)

Then, the observer problem is to find the anti-stabilized pole

placement state feedback

v = −
[

HT (t) HT
e (t)

]

[

e

ǫ

]

(50)

for (49), so that −FT
aug(t) is equivalent to some constant

matrix −F ∗T
aug . The eigenvalues of −F ∗T

aug are chosen as

{−γ1, · · · ,−γ(n+n̂e)}, where {γ1, · · · , γ(n+n̂e)} are desired

augmented observer poles.

Since the system (31) is assumed to be observable, the

pair (−AT (t), CT (t)) is controllable. Then, from the pre-

vious section, we can find ÂT
1 (t), ÂT

2 (t) and CT
e (t) such

that the augmented adjoint system (49) is controllable and

its controllability indices are {ν1, · · · , νm} and they are

lexicographically-fixed. Thus, we can calculate the state

feedback

v =
[

HT (t) HT
e (t)

]

ζ (51)

such that the closed loop system matrix, −FT
aug(t), is

equivalent to −F ∗T
aug. This implies that there exists a state

transformation matrix Paug(t) ∈ R(n+n̂e)×(n+n̂e) satisfying

the following relation.

PT
aug(t)(−FT

aug(t))P
−1
aug(t)

−PT
aug(t)

d

dt
(PT

aug(t))
−1

= −F ∗

aug (52)

Then, we have the following.

PT
aug(t)F

T
aug(t)(P

T
aug(t))

−1

−PT
aug(t)

d

dt
(PT

aug(t))
−1

= PT
aug(t)F

T
aug(t)(P

T
aug(t))

−1

+ṖT
aug(t)(P

T
aug(t))

−1

= −
(

P−1
aug(t)(−FT

aug(t))Paug(t)

−P−1
aug(t)Ṗaug(t)

)T

= F ∗

aug (53)

C. Observer Based Control of a NLF System

In this section, the observer based pole placement control

for a system which has both of NLF controllability indices

and NLF observability indices.

In this case, x should be replaced by x̂ in the controller.

This implies that to obtain xe, the equation (40) should be

modified as follows using x̂e instead of xe.

˙̂xe = A2(t)x̂+A1(t)x̂e +Be(t)u (54)

Thus, the pole placement state feedback is

u =
[

K(t) Ke(t)
]

[

x̂

x̂e

]

(55)

The augmented system to be controlled is described by

ẋ = A(t)x+B(t)u (56)

˙̂xe = A2(t)x̂+A1(t)x̂e +Be(t)u (57)

and the augmented observer is described by (46). By sub-

stituting the state feedback (55) into (46),(56) and (57), the

total closed loop system is as follows.

d

dt









x

x̂e

x̂

ǫ









=









A BKe

0 A1 +BeKe

−HC BKe

−HeC 0

BK 0
A2 +BeK 0

A+BK +HC Â2 +HCe

HeC Â1 +HeCe

















x

x̂e

x̂

ǫ









(58)

(Here, (t) is omitted because of the narrow space. ) By the

following change of variable,








x

x̂e

e

ǫ









=









I 0 0 0
0 I 0 0
−I 0 I 0
0 0 0 I

















x

x̂e

x̂

ǫ









(59)

the total system (58) is described as follows.

d

dt









x

x̂e

e

ǫ









=









A+BK BKe

A2 +BeK A1 +BeKe

0 0
0 0

BK 0
A2 +BeK 0

A+HC Â2 +HCe

HeC Â1 +HeCe

















x

x̂e

e

ǫ









=

[

Aaug(t) E(t)
0 Faug(t)

]









x

x̂e

e

ǫ









(60)

where

E(t) =

[

BK 0
A2 +BeK 0

]

(61)
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From this, the further transformation matrix Q(t) defined

by

Q(t) =

[

Taug(t) 0
0 PT

aug(t)

]

(62)

the system matrix of (60) is transformed as follows.

Q(t)

[

Aaug(t) E(t)
0 Faug(t)

]

Q−1(t)−Q(t)Q̇−1(t)

=

[

A∗

aug Taug(t)E(t)(PT
aug(t))

−1

0 F ∗

aug

]

(63)

This implies the separation principle of the observer

based pole placement control for NLF systems. Note that

Q(t) should be Lyapunov transformation for the exponential

stability of the closed loop system.

V. EXAMPLE

Cosider the following system.

ẋ =





0 0 0
0 0 0
0 sin t 0



x+





1 0
0 1

sin t 0



u (64)

y =

[

0 1 1
sin t 1 0

]

x (65)

This system is controllable and observable. However, both of

its controllability indices and observability indices are non-

lexicographically-fixed.

For this system, the augmented system is





ẋ1

ẋ2

ẋ3



 =





0 0 0
0 0 0
0 sin t 0









x1

x2

x3



+





1 0
0 1

sin t 0



u

˙̂xe =
[

0 0 0
]





x̂1

x̂2

x̂3



+
[

cos t − sin t
]

u

(66)

and the augmented observer is









˙̂x1

˙̂x2

˙̂x3

ǫ̇









=









0 0 0 sin t
0 0 0 cos2 t
0 sin t 0 cos t− cos2 t− cos3 t
0 0 0 sin t cos t









×









x̂1

x̂2

x̂3

ǫ









+









1 0
0 1

sin t 0
0 0









u

+

[

H(t)
He(t)

] [

0 1 1 sin t
sin t 1 0 0

]









x̂1 − x1

x̂2 − x2

x̂3 − x3

ǫ









(67)

One simulation result of observer based pole placement

control for this system is shown in Fig.1 and Fig.2.

VI. CONCLUSIONS

In this paper, using the concept of the relative degrees

and the adjoint system, the Ackerman-like design algorithm

for the pole placement state feedback and observer for

linear time-varying MIMO systems was considered. Then,

the observer based pole placement control was considered

for the non-lexicographically-fixed system. The separation

principle of the total closed loop system was also shown.
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Fig. 1. Response of the Controlled Augmented System (x4 = x̂e)
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Fig. 2. State Estimation Error (e4 = ǫ)
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