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Abstract— For all first order plus time delay (FOPTD)
systems, a fractional order PI (FOPI) or a traditional integer
order PID (IOPID) controller can be designed to fulfill
three design specifications: gain crossover frequency, phase
margin, and a flat phase constraint simultaneously. In this
paper, a guideline for choosing feasible or achievable gain
crossover frequency and phase margin specifications, and a
new FOPI/IOPID controller synthesis are proposed for all
FOPTD systems. Using this synthesis scheme, the complete
feasible region of the gain crossover frequency and phase
margin can be obtained and visualized in the plane. With
this region as the prior knowledge, all combinations of the
phase margin and gain crossover frequency can be verified
before the controller design. Only if the combination is chosen
from this achievable region, the existence of the stabilizing
and desired FOPI/IOPID controller design can be guaranteed.
Especially, it is interesting to compare the areas of these
two feasible regions for the IOPID controller and the FOPI
controller. This area comparison reveals, for the first time, the
potential advantages of one controller over the other in terms
of achievable performances. As a basic step, a scheme for
finding the stabilizing region of the FOPI/IOPID controller
is presented first, and then a new scheme for designing a
stabilizing FOPI/IOPID controller satisfying the given gain
crossover frequency, phase margin and flat phase constraint
is proposed in details. Thereafter, the complete information
about the feasible region of gain crossover frequency and phase
margin is collected. This feasible region for the FOPI controller
is compared with that for the traditional IOPID controller. This
area comparison shows the advantage of the FOPI over the
traditional IOPID clearly. Simulation illustration is presented
to show the effectiveness and the performance of the designed
FOPI controller comparing with the designed IOPID controller
following the same synthesis in this paper.

I. INTRODUCTION

Due to the relatively simple structure and remarkable
effectiveness of implementation, the PID controllers are so
far overwhelmingly applied in industrial applications [1].
It has been reported that, more than 95% of the control
loops in process control industry are controlled by the PID
controllers [2]. In the past decides, many techniques on
design and tuning of the PID controllers are proposed. Some
of the most popular methods are Ziegler-Nichols method
[3], Cohen-Coon rule [4], modified Ziegler-Nichols scheme
[3], integral performance criteria [5], Astrom-Hagglund
method [1], and so on. Meanwhile, in order to improve
the feedback control performance, variant PID controllers
have been proposed, for typical examples, PID-dead time
controller [6], IMC-PID controller [7], Smith predictor-PID
controller [8], etc. In recent years, as the development of the
fractional calculus theory [9] and the computer technology,
the implementation of the fractional order controller has
become feasible. The fractional order PID controllers have
been proposed [10] and have received more and more
attentions [11][12]. Some synthesis schemes for the frac-
tional order PID controller in feedback control systems are
presented in [11], these results showed the potential of the
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fractional order controllers to improve both the stability and
robustness of the feedback control systems.

The primary concern for the controller design and tuning
is to maintain the stability of the control system. Stabil-
ity is the minimal requirement for the controller design.
Whereafter, some specific controller need to be determined
to meet the desired robustness and performance criteria
by searching over the stabilizing controller set. Recently,
several schemes have been proposed to analyze the stability
region for the traditional integer order PID controllers [13],
and also for the fractional order PID controllers [14]. Within
the complete stabilizing set, it is important to design the
proper controllers to guarantee the robust requirement, and
satisfy performance specifications, e.g., phase margin, gain
margin, gain crossover frequency, etc. However, a proper
controller may not be available or feasible for satisfying
some performance requirements and robustness constraints,
simultaneously.

For all first order plus time delay (FOPTD) systems, a
controller can be designed to satisfy the given crossover
frequency, phase margin and a flat phase constraint. This
flat phase means that the system open loop phase is a
constant around the given gain crossover frequency, which
can show the iso-damping property for the system response.
This scheme has been discussed in a previous work [11].

However, how do we know a selected combination of gain
crossover frequency and phase margin is achievable for a
proper controller while maintaining the flat phase feature?
And is this designed controller stable? In this paper, in order
to find a guideline for choosing the proper gain crossover
frequency and phase margin to achieve a stabilizing and
desired controllers, a new FOPI/IOPID controller design
synthesis is proposed for all FOPTD systems.

Using this design scheme, a two dimension figure for the
complete set of the feasible gain crossover frequency and
phase margin can be drawn given any first order plus time
delay system. With this complete set as the prior knowledge,
all the combinations of phase margin and gain crossover
frequency can be verified before the controller design. Only
if the combination is chosen from this achievable region, the
existence of the stabilizing and desired FOPI/IOPID can be
guaranteed. Especially, it is interesting to compare the areas
of these two feasible regions for the IOPID controller and
the FOPI controller.

As a starting point, a scheme for finding the complete
stabilizing region of the FOPI/IOPID controller for the given
FOPTD system is presented, and then a new scheme for
designing a stabilizing FOPI/IOPID controller satisfying
the given gain crossover frequency, phase margin and flat
phase constraint is proposed in details. After that, the
complete feasible region of gain crossover frequency and
phase margin is collected. This feasible region for the FOPI
controller is compared with that for the traditional IOPID
controller. This area comparison shows the advantage of
the FOPI over the traditional IOPID clearly. Simulation
illustration is presented to show the effectiveness and the
performance of the designed FOPI controller comparing
with the Ziegler-Nichols PID (ZNPID), and the designed
IOPID controller following the same synthesis in this paper.
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Fig. 1. Diagram of the feedback control system.

II. STABILIZING AND ROBUST FOPI CONTROLLER

DESIGN FOR FOPTD SYSTEMS

A. The Plant and Controller Considered

Considering the feedback control system as shown in
Fig. 1, P (s) is the control plant, and C(s) is the designed
controller. The considered plant P (s) in this paper is typi-
cally targeting the FOPTD systems, which are characterized
by the following transfer function,

P (s) =
K

Ts+ 1
e−Ls, (1)

where, K represents the steady-state gain of the plant, T is
the time constant, and L represents the time delay.

In this paper, in order to show the proposed controller
synthesis clearly, we focus on the fractional order propor-
tional integral (FOPI) controller C(s) as follows,

C(s) = Kp +
Ki

sr
, (2)

where, Kp is the proportional gain, Ki is the integral gain,
and the real number r ∈ (0, 2) is the fractional order [9]. It
is straightforward to extend this FOPI controller synthesis
to the IOPID controller design case.

In Fig. 1, MT is a Gain-Phase Margin Tester [15], which
provides information for plotting the boundaries of constant
gain margin and phase margin in the parameter plane [16].
The transfer function of MT is given as,

MT (A, φ) = Ae−jφ. (3)

Setting φ = 0 in (3), the controller parameters boundary can
be obtained satisfying a given gain margin A of the control
system as shown in Fig. 1. Meanwhile, setting A = 1 in
(3), one can get the controller parameters boundary for a
given phase margin φ.

B. Stability Region Analysis of the FOPI Controller

The open-loop transfer function of the feedback control
system in Fig. 1 can be derived from (1), (2), and (3),

G(s) = MT (A, φ)C(s)P (s). (4)

The closed-loop transfer function can be expressed as,

T (s) =
MT (A, φ)C(s)P (s)

1 +MT (A, φ)C(s)P (s)
. (5)

Substituting (1), (2), and (3) into (5), yields,

T (s) =
Ae−jφe−LsK(Kps

r +Ki)

sr(Ts+ 1) +Ae−jφe−LsK(Kpsr +Ki)
. (6)

Hence, the characteristic equation of the closed-loop system
(5) is,

D(Kp,Ki, r, A, φ; s)

= sr(Ts+ 1) +Ae−jφe−LsK(Kps
r +Ki) = 0.(7)

The primary concern for the controller design is about the
complete set of controllers which can stabilize the system.
On the FOPI controller design for the FOPTD plants, the
system stability is depending on the locations of the roots
of the characteristic equation (7) with A = 1 and φ = 0◦.

If all roots of the polynomial (7) are located in the left-
half of the s-plane, the closed-loop system (5) is bounded-
input bounded-output stable. There are three parameters
Kp, Ki and r for the FOPI controller. The stability region
Q of these three controller parameters is defined as that,
if (Kp,Ki, r) ∈ Q, all the roots of D(Kp,Ki, r, A, φ; s)
line in the left-half of the s-plane. The boundaries of the
controller parameters stability region Q can be determined
by the real root boundary (RRB) and complex root boundary
(CRB) [17][18][13][16].

• Region of r: For the fractional order r in the FOPI
controller, the chosen range is defined as r ∈ (0, 2).

• RRB: The real root boundary is defined by the equation
D(Kp,Ki, r, A, φ; s = 0) = 0, so, one can get the
boundary as, Ki = 0.

• CRB: Substituting jω for s in (7), the complex root
boundary can be defined from D(Kp,Ki, r, A, φ; s =
jω) = 0 as follows,

D(Kp,Ki, r, A, φ; jω) = (jω)r(jTω + 1)

+Ae−jφe−jωLK(Kp(jω)
r +Ki)

= 0. (8)

Considering the real part and the imaginary part of (8)
respectively, one can obtain,

ωr cos
rπ

2
− Tω1+r sin rπ2

+AK cos(φ+ ωL)(Ki +Kpω
r cos rπ2)

+AK sin(φ+ ωL)Kpω
r sin rπ2

= 0; (9)

Tω1+r cos
rπ

2
+ ωr sin rπ2

+AK cos(φ+ ωL)Kpω
r sin rπ2

−AK sin(φ+ ωL)(Ki +Kpω
r cos rπ2)

= 0. (10)

From (9) and (10), it yields,

B1 +AKC1E +AKS1F = 0, (11)

B2 +AKC1F −AKS1E = 0, (12)

where,

B1 = ωrC2 − Tω1+rS2,

B2 = Tω1+rC2 + ωrS2,

C1 = cos(φ+ ωL), S1 = sin(φ + ωL),

C2 = cos
rπ

2
, S2 = sin

rπ

2
,

E = Ki +Kpω
rC2, F = Kpω

rS2.

From (11) and (12),

Kp =
−(B1S1 +B2C1)

AKS2ωr
, (13)

Ki =
B −B1S1C1 − B2C2

1

AKS1

+
B1S1C2 + B2C1C2

AKS2

.

(14)

Hence, given r, the curve of Ki w. r. t. Kp can be
plotted with ω → +∞ from zero.

So, with A = 1, φ = 0◦ and a fixed fractional order
r, the parameter-plane (Kp, Ki) is divided into stable and
unstable regions by the RRB and CRB presented above.
The stable region can be detected by testing one random
point in every region [19]. Thus, the stability region of the
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parameters Ki and Kp can be fixed by the RRB and CRB
conditions with a fixed r in the interval (0, 2). By sweeping
over all the r ∈ (0, 2), the three-dimension stability region
in the parameter-space for the three parameters of FOPI can
be determined, which is named as the complete stability
region.

C. FOPI Parameters Design with Two Specifications

Since the complete stability region is determined, the
special surface in the complete stability region can be drawn
to satisfy the specified phase margin φm when we set A = 1
and φ = φm in (8), or satisfy the specified gain margin Am

with the set of φ = 0◦ and A = Am in (8).
Given one specification −− phase margin φm, a relative

stability line can be drawn in the (Kp, Ki)-plane as ω → ω0

from zero with a certain fixed r1 ∈ (0, 2), by setting
A = 1 and φ = φm in (8). ω0 is the maximum frequency
on the relative stability line and in the complete stability
region. Sweeping all the r in (0, 2), a surface in the three-
dimension parameter-space can be generated satisfying the
pre-specified φm. This surface is named as the relative
stability surface. The maximum frequency ω0max in all ω0

on all relative stability lines with r1 ∈ (0, 2) is the frequency
upper boundary of the relative stability surface.

Given another specification −− gain crossover frequency
ωc, a point corresponding to the parameters Kp and Ki on
the relative stability line can be determined with a fixed r1.

Actually, from (5) and (7), one can get characteristic
equation of the closed-loop system (5),

1 +MT (A, φ)C(s)P (s)|s=jω = 0,

which means the open-loop transfer function G(s) is equal
to −1 with s = jω,

G(s)s=jω = MT (A, φ)C(s)P (s)|s=jω = −1, (15)

so, one can get the magnitude equation,

|MT (A, φ)C(s)P (s)|s=jω | = 1,

and the phase equation,

6 (MT (A, φ)C(s)P (s)|s=jω ) = −π.

If setting A = 1 and φ = φm, all the ω ∈ (0, ω0]
satisfying equation (15) can be treated as the gain crossover
frequencies for the control system (5) in Fig. 1. Since the
relative stability lines are generated from equation (7) which
is equal to equation (15), all the frequency ω corresponding
to the points on the relative stability lines can be treated as
the gain crossover frequency.

So, with the pre-specified ωc, φm and a fixed r1, the
other two FOPI parameters Kp and Ki can be determined
on a point of the relative stability lines. In the same way,
sweeping all the r in (0, 2), a curve in the three-dimension
parameter-space can be determined, which is the relative
stability curve. All the points on this curve can guarantee
the two pre-specifications ωc and φm.

To make the FOPI controller parameter setting unique,
we need one more specification.

D. FOPI Parameters Design with An Additional Flat
Phase Constraint

In this section, an additional flat phase tuning constraint
is presented to make the parameters of the FOPI controller
unique.

From (11) and (12),

S1 =
B2E −B1F

AK(E2 + F 2)
, C1 =

−B1E −B2F

AK(E2 + F 2)
, (16)

so, one can get,

φ = arctan
B1F −B2E

B1E +B2F
− ωL+ nπ, (17)

where, n is an integer which guarantees,

φ+ ωL− nπ = arctan
B1F −B2E

B1E +B2F
∈ (−π/2, π/2).

In order to make the system robustness to the loop
gain variations, the flat phase constraint as an additional
specification is presented to design the FOPI controllers.
The flat phase means the phase of the open-loop system is
flat around the gain crossover frequency point in the Bode
plot. With this constraint, the system phase can maintain
almost the same value when the loop gain changes in a
certain interval, namely, the system with this designed FOPI
is robust to the loop gain variations, and the overshoots of
the step responses are almost the same with the loop gain
variations in certain range, which is called “iso-damping”
property.

In order to satisfy the flat phase tuning constraint, the
derivative of the open-loop phase θ w. r. t. the frequency ω
is forced to be zero at the gain crossover frequency point,
e.g., dθ

dω
= 0.

As mentioned in Sec. II-C, φ can be treated as the phase
margin by setting A = 1 in (8). Thus, θ = φ − π, and,
dθ
dω

= dφ

dω
= 0. From (17), one can get,

dφ

dω
=

M

(B1E +B2F )2 + (B1F −B2E)2
− L = 0,

M = (B2
1+B2

2)(EF ′−E′F )+(B′
1B2−B1B

′
2)(E

2+F 2),

where,

E′ = C2Kprω
r−1, F ′ = S2Kprω

r−1,

B′
1 = C2rω

r−1 − S2T (1 + r)ωr,

B′
2 = S2rω

r−1 + C2T (1 + r)ωr. (18)

From Sec. II-C, all FOPI parameter points on the relative
stability curve in the three-dimension parameter-space sat-
isfying both the pre-specified φm and ωc, can be tested by
the equation (18). If certain point with the FOPI parameters
(Kp, Ki, r) on the relative stability curve can be found
to satisfy the relationship (18), this point is the flat phase
stable point, which is the goal of this FOPI controller design
for the given FOPTD system.

Thus, the FOPI controller from this flat phase stable point
can achieve the desired control performance introduced by
the two specifications φm and ωc, and the robustness to
the loop gain changes induced by the flat phase tuning
constraint.

E. Achievable Region Collection of Two Specifications for
FOPI Controller Design

From Sec. II-C, the upper boundary ω0max of the gain
crossover frequency specification can be found satisfying
the given phase margin φm with a fixed r1 in (0, 2). Pre-
specifying a phase margin φm, one relative stability curve
in the three-dimension parameter-space can be detected for
one ωc ∈ (0, ω0max]. The existence of the flat phase stable
point can be detected on each relative stability curve with
each ωc.

So, with a fixed phase margin, the region for choosing the
gain crossover frequency to get the desired FOPI controller
can be decided by searching the frequency in between
(0, ω0max]. Whereafter, sweeping the phase margin spec-
ification from 0 to 2π, the complete achievable region for
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the phase margin and gain crossover frequency, guaranteing
a FOPI controller satisfying the flat phase tuning constraint,
can be collected.

According to this instructional information of the achiev-
able region, a feasible combination of phase margin φm

and gain crossover frequency ωc can be checked in advance
before controller design, and the desired stabilizing and ro-
bust FOPI controller can be designed following the proposed
synthesis in this paper.

III. DESIGN PROCEDURES SUMMARY WITH THE

ILLUSTRATION OF AN EXAMPLE

In this section, the procedures are summarized with the
illustration of an examples for the proposed FOPI controller
design.
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(a) Stability boundary of Ki w.
r. t. Kp with r=0.5

(b) Complete stability region of Ki,
Kp and r

Fig. 2. Stability boundary of Ki w. r. t. Kp with r=0.5 and complete
stability region.
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(a) Stability region comparison
of Ki and Kp with φm = 0◦

in red line and φm = 50◦ in
blue line (r = 0.5)

(b) Three-dimension relative stability
surface of Ki, Kp and r with φm =
50◦

Fig. 3. Stability boundary comparison of Ki and Kp and three-dimension
relative stability surface with φm = 50◦.

Step 1: Given the first order plus time delay plant with
K = 1, T = 1s and L = 1s, and two specifications on
the phase margin φm = 50◦ and gain crossover frequency
ωc = 0.5 rad/s.

Step 2: With the range of fractional order r ∈ (0, 2),
choose r = 0.5 and draw the line of Kp w. r. t. Ki in the
(Kp, Ki)-plane according to the equations (13) and (14) of
CRB in Sec. II-B. Draw the line Ki = 0 according to RRB
in Sec. II-B. Detect the stabilizing region with random point
test [19] as shown the red line boundary surrounded section
in Fig. 2(a). Obtain the complete stability region as shown
in Fig. 2(b) by sweeping all the r in (0, 2), following the
scheme introduced in Sec. II-B.

Step 3: With the pre-specified φm = 50◦ and fixed
r = 0.5, the relative stability line in the (Kp, Ki)-plane
can be drawn as the blue line in Fig. 3(a), which can be
compared with the complete stability boundary as shown
the red line. Get the relative stability surface by sweeping
all r in (0, 2) in Fig. 3(b) in the three-dimension parameter-
space, satisfying the pre-specified phase margin φm = 50◦.
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Fig. 4. The designed Ki and Kp satisfying ωc = 0.5 rad/s, φm = 50◦

with r = 0.5 and with sweeping all the optional r ∈ (0, 2).
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relative stability surface
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Fig. 5. The relative stability curve and the flat phase stable point in the
three-dimension parameter-space.

According to the relative stability surface in Fig. 3(b), the
maximum value ω0max of ω0 which is corresponding to the
biggest frequency point on each relative stability line for
different r, is ω0max = 1.38 rad/s.

Step 4: Given gain crossover frequency ωc = 0.5 rad/s,
phase margin φm = 50◦ and r = 0.5, the other two param-
eters Kp and Ki can be determined from the intersection
point in Fig. 4(a) with ω = ωc = 0.5 rad/s. Sweeping all
the r ∈ (0, 2) as shown in Fig. 4(b), one can get the relative
stability curve presented as the black curve in Fig. 5(a) on
the relative stability surface with φm = 50◦. All points on
this relative stability curve can satisfy the two specifications
φm = 50◦ and ωc = 0.5 rad/s simultaneously.

Step 5: Test all points on the relative stability curve to find
a solution of equation (18), this point is illustrated as a red
star on the relative stability curve in the three-dimension
parameter-space of Fig. 5(b). This point is the flat phase
stable point. Get the corresponding parameters (Kp,Ki, r)
on this flat phase stable point to fix the FOPI controller
satisfying the pre-specified phase margin, gain crossover
frequency and the flat phase constraint.

IV. COMPLETE INFORMATION COLLECTION FOR

ACHIEVABLE REGION OF ωc AND φm

In order to high light the scheme of complete achievable
region collection for the ωc and φm, this procedure is
separated from the procedures summary in Section III.

Step 6: With the frequency boundary ω0max from Step 3,
obtain the optional range of the gain crossover frequency
ωc ∈ (0, ω0max] under the pre-specified phase margin
φm = 50◦. One relative stability curve can be drawn with
one ωc ∈ (0, ω0max] under φm = 50◦, and the existence
of the flat phase stabile point can be test on each relative
stability curve. So, the achievable gain crossover frequency
ωc for guaranteing the existence of the flat phase stable
point with φm = 50◦, can be collected. The achievable
ωc interval is corresponding to the nonzero solution of the
flat phase stable point (Kpfp,Kifp, rfp). Testing different
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phase margin φm ∈ (0, 2π), the complete information for
the achievable region of the specifications phase margin and
gain crossover frequency, can be generated as shown the red
region in Fig. 6(a).
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Fig. 6. The achievable region of ωc and φm for FOPI and IOPID design
with T = 1s and L = 1s.

In order to show the advantages of the fractional order
PI controller, the integer order PID (IOPID) controller is
also designed with specifications on the phase margin, gain
crossover frequency and flat phase requirement following
the same synthesis in this paper.

Therefore, the complete achievable regions of the φm and
ωc are collected for IOPID with the given FOPTD setting
T = 1 and L = 1s, as shown in Fig. 6(b).

From the comparisons of Fig. 6, it can be seen clearly
that, the feasible region of φm and ωc for FOPI is signif-
icantly bigger than that for IOPID. This bigger achievable
region for FOPI over IOPID gives the users more capability
and flexibility to design the proper controller and get the
desired control performance. The advantage of the proposed
FOPI controller over the traditional IOPID controller is
illustrated clearly through these comparisons on the achiev-
able regions of the two specifications.
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Fig. 7. Open-loop Bode plot and step responses in continuous time domain
with loop gain variations using the ZNPID controller.
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Fig. 8. Open-loop Bode plot and step responses in continuous time domain
with loop gain variations using the flat phase designed IOPID controller.
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Fig. 9. Open-loop Bode plot and discretized step responses with loop
gain variations using the designed FOPI controller #1 Cfopi21.
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Fig. 10. Open-loop Bode plot and discretized step responses with loop
gain variations using the designed FOPI controller #2 Cfopi22.

V. SIMULATION ILLUSTRATION

In this section, the designed FOPI controller is validated
by the numerical simulation illustration. In order to verify
the effectiveness of this proposed controller design synthesis
and show the advantages of the designed FOPI controller,
the traditional Ziegler-Nichols PID (ZNPID) controller is
designed, and the integer order PID (IOPID) controller is
also designed following the same scheme in this paper.
These designed two integer order controllers (ZNPID and
IOPID) are compared with the designed FOPI controller for
the given FOPTD model in the simulation.

The FOPTD simulation model (1) is chosen with K = 1,
T = 1s and L = 1s. According to the Ziegler-Nichols tun-
ing rule [3] for the FOPTD systems, the ZNPID controller
can be designed as,

Cznpid2(s) = Kpzn2+Kizn2

1

s
+Kdzn2s = 1.2+0.6

1

s
+0.6s.

From the complete achievable region of the specifications
in Fig. 6, the combination of ωc = 0.5rad/s and φm = 80◦

are achievable for both IOPID and FOPI controllers. So,
these two controllers can be designed as follows,

Ciopid2(s) = 0.7935 +
0.5513

s
+ 0.6301s,

Cfopi21(s) = 1.1339 +
0.3582

s1.2597
.

From Fig. 6, the combination of ωc = 0.4rad/s and
φm = 60◦ is achievable for the FOPI controller design,
but not for the IOPID controller design. This shows the
advantage of the FOPI controller over the traditional integer
order PID controller. The stabilizing FOPI controller can be
designed with the set of ωc = 0.4rad/s and φm = 60◦,
following the scheme in this paper,

Cfopi22(s) = 0.6727 +
0.3597

s1.2329
.
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With the given FOPTD model and the above four de-
signed controllers, the Bode plots of the open-loop transfer
functions can be drawn in Fig. 7(a), Fig. 8(a), Fig. 9(a), and
Fig. 10(a), for the designed Cznpid2, Ciopid2, Cfopi21 and
Cfopi22, respectively. It can be seen that, all the Bode plots
with the designed Ciopid2, Cfopi21, and Cfopi22 satisfy the
flat phase requirement and two corresponding specifications
ωc and φm.

In order to show the performance of the designed con-
trollers, step responses are tested with loop gain variations.
The Fig. 7(b) and Fig. 8(b) show the step responses using
the designed Cznpid2 and Ciopid2 controllers, respectively,
with the loop gain variations ±20%.

The Fig. 9(b) and Fig. 10(b) show the step responses
using the designed Cfopi21 and Cfopi22 controllers, respec-
tively, with the loop gain variations ±20%. The fractional
order operators sr is also implemented by the impulse re-
sponse invariant discretization methods in time domain [20].

One can see that, the designed Ciopid2, Cfopi21

and Cfopi22 controller outperform the ZNPID controller
Cznpid2, and the designed two FOPI controllers can get
better performance than the designed traditional IOPID
controller Ciopid2. Ciopid2 and Cfopi21 are both designed
following the same specifications ωc = 0.5 rad/s and
φm = 80◦. Ciopid2 is designed with different specifications
combination of ωc = 0.45 rad/s and φm = 60◦, which
is beyond of the achievable region in Fig. 6(b) for IOPID
controller design. It is obviously that, the performance
using Ciopid2 is the best over the other three designed
controllers. More flexibility and capability for the FOPI
controller design is illustrated by this simulation case.

VI. CONCLUSION

This paper provides a synthesis for the fractional or-
der PI controllers to achieve two pre-specifications, e.g.,
phase margin and gain crossover frequency, and flat phase
tuning constraint for the first order plus time systems.
This designed FOPI controller can be stable for sure as
its parameters are located in the complete stability region.
This controller can get the desired control performance as
satisfying two specifications. It can also be robust to the
loop gain variations as following the flat phase constraint.
Furthermore, the complete achievable region of the two
specifications (phase margin and gain crossover frequency)
can be collected for the FOPI controller design. This is
an important benefit of this proposed design synthesis. The
advantage of the FOPI controller is presented from the com-
parison of the achievable region of the two specifications
over the IOPID controller. Simulation illustration is pre-
sented to show the performance and benefit of the designed
FOPI controller comparing with traditional Ziegler-Nichols
PID controller and the designed integer order PID controller
following the same design scheme for the FOPI, based on
the first order plus time delay plants.
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