
Newton-Raphson consensus for distributed convex optimization

Filippo Zanella, Damiano Varagnolo, Angelo Cenedese, Gianluigi Pillonetto, Luca Schenato

Abstract— We study the problem of unconstrained
distributed optimization in the context of multi-agents systems
subject to limited communication connectivity. In particular
we focus on the minimization of a sum of convex cost functions,
where each component of the global function is available only
to a specific agent and can thus be seen as a private local cost.
The agents need to cooperate to compute the minimizer of
the sum of all costs. We propose a consensus-like strategy to
estimate a Newton-Raphson descending update for the local
estimates of the global minimizer at each agent. In particular,
the algorithm is based on the separation of time-scales principle
and it is proved to converge to the global minimizer if a
specific parameter that tunes the rate of convergence is chosen
sufficiently small. We also provide numerical simulations
and compare them with alternative distributed optimization
strategies like the Alternating Direction Method of Multipliers
and the Distributed Subgradient Method.

Index Terms— distributed optimization, convex optimization,
consensus algorithms, multi-agent systems, Newton-Raphson
methods

I. INTRODUCTION

The ability of distributedly and autonomously solve large

scale optimization problems is becoming nowadays of

paramount importance to build effectively smart networks

of agents performing auxiliary and automatic operations such

as in wireless sensor networks [1] and in the next-generation

electrical-power smart grids [2].

In distributed scenarios it is mandatory to provide

the agents with the ability to jointly and autonomously

solve optimization problems without relying on a central

processing units while requiring minimal coordination effort

and possibly small computational and memory requirements.

We focus on the problem of distributed unconstrained

minimization of a sum of convex functions, where each

component of the global function is available only to a

specific agent and can thus be seen as a private local cost.

Practical examples of this scenario arise in home automation

contexts, where smart electrical devices need to agree on

the total amount of energy consumption that maximizes an

overall utility-function that is given by the sum of the utility

functions of the devices. Other examples include distributed

computation of M-estimators in robust statistics [3] and

distributed statistical learning [4].

The research leading to these results has received funding from the
European Union Seventh Framework Programme [FP7/2007-2013] under
grant agreement n◦257462 HYCON2 Network of excellence and n◦223866
FeedNetBack, by Progetto di Ateneo CPDA090135/09 funded by the
University of Padova, and by the Italian PRIN Project “New Methods
and Algorithms for Identification and Adaptive Control of Technological
Systems”.

A. Previous work

Since the seminal work [5], both centralized and

distributed optimization have been a major research topic for

the decades in the area of control and system theory [6], [7],

[8], [9]. Distributed optimization algorithms can be roughly

divided into three main categories: methods based on primal

decompositions, methods based on dual decomposition, and

heuristic methods.

In primal decomposition methods, there is a direct

manipulation of the primal variables, often through

subgradient methods as shown in the survey [10] and in

the references therein. Even if they were originally proposed

to boost the convergence speed of centralized optimization

schemes, they are widely applicable, easy to implement

and require mild assumptions on the objective functions

where convexity is the most crucial one. Despite these

nice properties, they may be rather slow and may not

progress at each iteration, as shown in [11, Chap. 6] in the

context of real wireless sensor networks. There are several

possible implementations mostly based on incremental

gradients methods [12] which can be deterministic [13] or

randomized [14], [15]. Important extensions include the use

of projections in order to take into account possible different

local constraints [16], and the analysis of the convergence

rate and error bounds [17], [18]. These algorithms have

also been compared with more traditional linear consensus

algorithms [19].

In dual decomposition methods, not only the primal

variables are manipulated, but also the dual ones are. Usually

the original problem is split into several sub-problems whose

solution is simpler although some form of coordination

is required since the order of the execution of the sub-

problems is critical. Despite originally intended for CPU-

saving purposes, they have been successfully employed for

distributed optimization purposes. In dual based methods

every agent owns a local copy of the variables that are

locally updated by the same agent. Convergence to the global

optimum is then ensured constraining the convergence of the

local variables to a common value [20], [21]. In the class of

dual decomposition methods, a particularly popular strategy

is the alternating direction method of multipliers developed

in [8, pp. 253-261] which has been recently proposed in a

distributed context [22], [4].

Other approaches, e.g. the so-called Fast-Lipschitz

strategies [23], [24], exploit particular structures of

the objective functions and constraints to increase the

convergence speed at the cost of being suitable only

for particular optimization problems. Finally, alternative

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 5917

distributed optimization approaches can be based on

heuristics, like swarm optimization [25], or genetic

algorithms [26], however their convergence and performance

properties are difficult to be studied analytically.

B. Contribution

In this work we propose a distributed algorithm for the

exact computation of optimal solution that approximatively

operates as a Newton-Raphson minimization procedure. The

algorithm is based on inter-agents communication schemes

that are used in classical average-consensus algorithms [27],

[28]. The main idea is to compute a Newton-Raphson

approximation for the minimizer of the global cost function

via an average consensus algorithm and to move towards

such minimum sufficiently slowly to allow the consensus

algorithm to converge. The use of consensus algorithms has

also been adopted in other distributed strategies such as

the Distributed Subgradient Methods (DSMs) [29]. These

methods typically have a convergence rate of 1
k

where k
is the number of performed steps, but are not always proven

to converge to the global optimum under non-smoothness

hypotheses (see e.g. [30, Prop. 3]). Differently, our algorithm

is proved to converge to the optimal solution for appropriate

choices of the algorithm parameters based on the principle

of separation of time-scales. Another very important feature

of the algorithm is that it inherits the properties of

consensus algorithms like their simplicity, their potential

implementation with asynchronous communication schemes,

and their ability to adapt to time-varying network topologies.

This differentiates our algorithm from the strategies based on

the Alternating Direction Method of Multipliers (ADMMs)

whose asynchronous implementation is more involved and

cannot easily handle time-varying topologies [22], [4].

Finally, despite an existing literature on second-order based

distributed optimization techniques, see e.g. [31], [32], at

the best of our knowledge the proposed strategy is the

unique method (among the primal decomposition methods)

s.t. the local estimates evolve as driven by a Newton-Raphson

procedure.

In the following we present our algorithm under a number

of simplificative assumptions. In particular we consider

smooth convex scalar cost functions and synchronous

communication schemes. Finally we complement the

analytical results with some numerical simulations and

comparison with DSM and ADMM optimization schemes

on a ring communication graph. In the interest of space all

the proofs of the offered propositions are included in the

companion technical report [33].

II. PROBLEM FORMULATION

We assume that in a network of N agents, each agent is

endowed with a local strictly convex cost function fi : R 7→
R. We define the global cost function as

f : R 7→ R f (x) :=
1

N

N
∑

i=1

fi (x) (1)

and we assume that the goal of each agent is to distributedly

minimize f , i.e. compute

x∗ := argmin
x

f (x) (2)

through low-complexity distributed optimization schemes.

The communication network is modeled as a graph G =
(V, E) whose vertexes V = {1, 2, . . . , N} represent the

agents and the edges (i, j) ∈ E represent the available

communication links. We assume that the graph is undirected

and connected. We say that a stochastic matrix P ∈ R
N×N ,

i.e. a matrix whose elements are non-negative and P1 = 1

where 1 = [1 1 · · · 1]T ∈ R
N , is consistent with a graph

G if Pij > 0 only if (i, j) ∈ E . If P is also symmetric

and includes all edges, i.e. Pij > 0 if (i, j) ∈ E , then

limk→∞ P k = 1
N
11

T . Such matrix P is also often referred

as consensus matrix.

For the purposes of the paper, we define the shorthands

gi (xi (k)) := f ′′

i (xi (k)) · xi (k)− f ′

i (xi (k)) (3)

hi (xi (k)) := f ′′

i (xi (k)) (4)

x (k) :=







x1 (k)
...

xN (k)






(5)

g (x(k)) :=







g1 (x1 (k))
...

gN (xN (k))






(6)

h (x(k)) :=







h1 (x1 (k))
...

hN (xN (k))






(7)

where we used the shorthand notation f ′ := df
dx

and f ′′ :=
d2f
dx2 , bold fonts to indicate vectors, and plain italic fonts

to indicate scalars. In general we will use the fraction bar

to indicate the Hadamard division, i.e. the component-wise

division of vectors:

g (x(k))

h (x(k))
:=

[

g1 (x1 (k))

h1 (x1 (k))
, . . . ,

gN (xN (k))

hN (xN (k))

]T

. (8)

We will also use bold fonts to indicate vectorial quantities

or functions which range is vectorial, plain italic fonts to

indicate scalar quantities or functions which range is a scalar.

To simplify the proofs, in the following we will exploit

the succeeding assumptions:

Assumption 1. The functions fi ∈ C2, ∀i, i.e. they

are continuous up to the second derivatives, their second

derivatives f ′′

i are strictly positive, bounded, and they are

defined for all x ∈ R. Moreover the global minimizer x∗

does not take on the extended values ±∞.

We notice that from the strictly convexity assumptions it

follows that x∗ is unique. Moreover the assumption x∗ 6=
±∞ is to obtain convergence proofs that do not require

modifications of the standard multi-time-scales approaches

for singular perturbation model analysis [34], [35, Chap. 11].

5918

III. DISTRIBUTED NEWTON-RAPHSON CONSENSUS

It is well known that if the cost functions are quadratic,

then it is possible to distributively compute the optimal

solution x∗ using the output of two average consensus

algorithms [36], [37]. In fact, consider fi(x) =
1
2ai(x− bi)

2

where ai > 0. Then straightforward computations show that

the minimizer is given by

x∗ =

∑N
i=1 aibi

∑N
i=1 ai

=
1
N

∑N
i=1 aibi

1
N

∑N
i=1 ai

i.e. it is the ratio of two averages. Therefore if each agent

defines the following local variables yi(0) := aibi and

zi(0) := ai, and then updates them based on two average

consensus algorithms:

y(k + 1) = Py(k)
z(k + 1) = Pz(k)

x(k) =
y(k)

z(k)

then limk→∞ x(k) = x∗
1 where P is a consensus matrix.

This means that each xi(k) = yi(k)/zi(k) corresponds to

the local estimate at time k that each agent has about the

global minimizer x∗. If the cost functions are not quadratic,

then the previous strategy cannot be applied as it is but needs

to be modified. First of all, it is important to notice that

aibi = f ′′

i (x)x− f ′

i(x) = gi(x), ai = f ′′

i (x) = hi(x)

for all x. However we cannot simply run the previous strategy

with initial conditions yi(0) = gi(xi(0)) and zi(0) =
hi(xi(0)), since xi(k) changes over time and therefore

one should change accordingly the initial conditions of

the consensus algorithms. Therefore, it is necessary to

modify the consensus algorithm to track the changing

signals gi(xi(k)) and hi(xi(k)). Secondly, setting xi(k) =
yi(k)/zi(k) might be too aggressive since the estimate is

not correct at the beginning, therefore only a small step

should be taken towards the estimated global minimum

yi(k)/zi(k). These observations have been used to propose

the following Algorithm 1, where initialization given in line 4

is critical for convergence to the global minimizer, lines 6-7

are local operations that make sure that the Newton-Raphson

computation is done based on the current estimate xi(k)
location, lines 9-10 perform the consensus operations, and

line 11 is again a local operation which performs a convex

combination between the past estimate xi(k−1) and the new

estimate yi(k)/zi(k).
To explain why Algorithm 1 distributedly computes the

global optimum x∗, we rewrite it as






























v(k) = g(x(k − 1))
w(k) = h(x(k − 1))
y(k) = PM

(

y(k − 1) + g(x(k − 1))− v(k − 1)
)

z(k) = PM
(

z(k − 1) + h(x(k − 1))−w(k − 1)
)

x(k) = (1− ε)x(k − 1) + ε
y(k − 1)

z(k − 1)
.

(9)

Algorithm 1

(storage allocation and constraints on parameters)

1: x(k),y(k,m), z(k,m)∈R
N ,m=0, . . . ,M ; k=0, 1, . . .

2: P ∈ R
N×N , positive and doubly stochastic

3: ε ∈ (0, 1)

(initialization)

4:
set: x(0) = 0, g (x(−1)) = h (x(−1)) = 0,

y(0,M) = z(0,M) = 0

(main algorithm)

5: for k = 1, 2, . . . do

6: y(k, 0) = y(k−1,M)+g (x(k − 1))−g (x(k − 2))
7: z(k, 0) = z(k−1,M)+h (x(k − 1))−h (x(k − 2))
8: for m = 1, . . . ,M do

9: y(k,m) = Py(k,m− 1)
10: z(k,m) = Pz(k,m− 1)

11: x(k) = (1− ε)x(k − 1) + ε
y(k,M)

z(k,M)

Consider then the continuous-time system






























εv̇(t) = −v(t) + g (x(t))
εẇ(t) = −w(t) + h (x(t))
εẏ(t) = −Ky(t) + (I −K) [g (x(t))− v(t)]
εż(t) = −Kz(t) + (I −K) [h (x(t))−w(t)]

ẋ(t) = −x(t) +
y(t)

z(t)

(10)

with K := I−PM . By construction the matrix K is positive

semidefinite and its kernel is generated by the vector 1, and

its eigenvalues are 0 = λ1 < Re[λ2] ≤ · · · ≤ Re[λN] < 2. It

is immediate to check that system (9) is a discretized version

of (10), i.e. (9) can be derived from (10) through an Euler

discretization with time interval T = ε, thus qualitatively

behaving in the same manner for sufficiently small ε. In this

form, it is immediate to recognize the existence of a two-

time scales dynamical system regulated by the parameter ε.

Therefore, we can split the dynamics in the two time scales

and study them separately for sufficiently small ε. The fast

dynamics, i.e. the first four equations of system (10), imply

that y(t) ≈
(

1
N
1
Tg(x(t))

)

1 and z(t) ≈
(

1
N
1
Th(x(t))

)

1.

If these equations are inserted into the slow dynamics,

i.e. the last equation of system (10), then it follows that

x(t) ≈ x(t)1 where the quantity x(t) evolves with good

approximation following the ordinary differential equation

ẋ(t) = −
f
′

(x(t))

f
′′

(x(t))
(11)

corresponding to a continuous Newton-Raphson algorithm

that, under our simplificative Assumption 1, converges to the

global optimum x∗1. These observations are formally stated

in the following:

Proposition 2. Consider Algorithm 1, which is equivalent

to system (9) with initial conditions v(0) = w(0) = y(0) =

1Asymptotic properties of the continuous time Newton-Raphson method
can be found e.g. in [38], [39].

5919

z(0) = 0. If Assumption 1 holds true, then there exists

an ε ∈ R+ s.t. if ε < ε then Algorithm 1 distributedly

and asymptotically computes the global optimum x∗, i.e.

limk→+∞ x(k) = x∗
1.

The claim of the previous proposition is valid only for the

specific initial conditions defined in line 4 of Algorithm 1.

Although these are initial conditions of an algorithm and

therefore can be arbitrarily designed, nonetheless it is

important to evaluate the robustness of the algorithm for

different initial conditions, since this gives suggestions

about its robustness to numerical errors and communication

noise. It turns out that the initial conditions on the initial

estimates xi(0) can be arbitrary, however initial conditions

vi(0), wi(0), yi(0), zi(0) can change the final convergence

point and might even lead to instability for sufficiently large

values. This is formally stated in the next proposition:

Proposition 3. Consider system (10) with arbitrary initial

conditions v(0),w(0),y(0), z(0),x(0), and define the

following scalars:

α(0) :=
1

N
1
T (y(0)− v(0))

β(0) :=
1

N
1
T (z(0)−w(0)) .

(12)

If Assumption 1 holds true, then there exists an ε, α, β ∈
R+ such that if ε < ε, |α(0)| < α, |β(0)| < β then

limt→+∞ x(t) = ξ(α(0), β(0))1 where ξ(α(0), β(0)) is a

scalar continuous function of its arguments and has the

property that ξ(0, 0) = x∗.

IV. NUMERICAL EXAMPLES

We consider a ring network where agents can

communicate only to their left and right neighbors

through the symmetric circulant consensus matrix

P =















0.5 0.25 0.25
0.25 0.5 0.25

. . .
. . .

. . .

0.25 0.5 0.25
0.25 0.25 0.5















. (13)

We also assume that agents perform only one consensus

step per cycle of the algorithm, i.e. that M = 1. The local

objective functions are randomly generated as

fi(x) = cie
aix + die

−bix, i = 1, . . . , N (14)

where ai, bi ∼ U [0, 0.2] and ci, di ∼ U [0, 1].
Fig. 1 compares the evolution of the local states xi of

the continuous system (10) for different values of ε. When

ε is not sufficiently small, then the trajectories of xi(t) are

different even if they all start from the same initial condition

xi(0) = 0 (top panel). As ε decreases, the difference between

the two time scales becomes more evident and all trajectories

of xi(t) become closer to the trajectory given by the slow

Newton-Raphson dynamics x(t) defined in (11), which is

guaranteed to converge to the global minimizer x∗ (middle

and bottom panels).

0 1 2 3 4 5

−0.5

0

0.5

x i
(t
)

ε = 0.01

0 1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

x i
(t
)

ε = 0.001

0 1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

t

x i
(t
)

ε = 0.0001

Fig. 1. Temporal evolution of system (10) for different values of ε (N =
15). The black dashed line indicates x∗. The dashed-dotted line indicates
the slow dynamics x(t). As ε decreases. the difference between the time
scale of the slow and fast dynamics increases, and the local states xi(t)
converge to the manifold of x(t).

Fig. 2 shows that, as stated in Proposition 3, if α(0) =
β(0) = 0, then local states xi(t) converge to the optimal

solution x∗ for arbitrary initial conditions xi(0).

0 50 100 150 200 250 300 350 400

−2

−1

0

1

2

3

4

x i
(k
)

Fig. 2. Time evolution of the states xi(k), i = 1, . . . , N , for N = 30,
ε = 0.01, v(0) = w(0) = y(0) = z(0) = 0 and xi(0) ∼ U [−2, 2].

Finally, Fig. 3 illustrates the robustness of the computation

of the global optimum with respect to perturbed initial

conditions v(0),w(0),y(0), z(0). More precisely we apply

Algorithm 1 to a set of independently generated f , injecting

each time artificial and independent perturbations on the

initial conditions s.t. α(0), β(0) ∼ U [−σ, σ]. Fig. 3 shows

the boxplots of the errors xi(+∞)−x∗ for different σ’s (300

Monte Carlo runs, ε = 0.01, N = 30).

5920

0.05

0

−0.05
10−5 10−4 10−3

σ

x i
(+

∞
)−

x∗

Fig. 3. Empirical distribution of the errors xi(+∞)−x∗ under artificially
perturbed initial conditions α(0), β(0) ∼ U [−σ, σ] for different σ values.

V. COMPARISON WITH ALTERNATIVE DISTRIBUTED

ALGORITHMS

We now compare our Newton-Raphson consensus (NRC)

algorithm with the DSM and the ADMM methods,

considering again an undirected ring graph with N = 30
nodes and a synchronous implementation.

DSM, as proposed in [29], alternates consensus steps

on the current estimated global minimum xi(k) with

subgradient updates of each xi(k) towards the minimum

of the local cost fi. To guarantee the convergence, it is

required to appropriately decrease the amplitude of the local

subgradient steps. Algorithm 2 presents a synchronous DSM

implementation, where ρ is a tuning parameter and P is

defined in (13).

Algorithm 2 DSM [29]

(storage allocation and constraints on parameters)

1: x(c)(k),x(ℓ)(k) ∈ R
N for k = 0, 1, . . .

2: ρ ∈ R+

(initialization)

3: set: x(ℓ)(0) = 0

(main algorithm)

4: for k = 0, 1, . . . do

5: x(c)(k) = Px(ℓ)(k)
6: for i = 1, . . . , N do

7: x
(ℓ)
i (k + 1) = x

(c)
i (k)−

ρ

k
f ′

i

(

x
(c)
i (k)

)

The ADMM instead requires the augmentation of the

system through additional constraints which do not change

the optimal solution but allow the usage of Lagrange

multipliers. There exist different implementations of such

algorithm in a distributed context [22], [4]. Here we consider

the following problem, equivalent to (1)-(2) and consistent

with an undirected ring communication graph:

minx1,...,xN ,z1,...,zN

∑N
i=1 fi(xi)

s.t. zi = xi−1 = xi = xi+1, i = 1, . . . , N

where x0 := xN and xN+1 := x1. Algorithm 3 presents

a distributed implementation of the previous optimization

problem which has been obtained following [8, pp. 253-261],

where δ is a tuning parameter.

Fig. 4 shows a comparison of the three strategies

where the tuning parameters ε, ρ and δ have been

Algorithm 3 ADMM [8, pp. 253-261]

(storage allocation and constraints on parameters)

1: x(k), z(k), y(ℓ)(k), y(c)(k), y(r)(k) ∈ R
N for k =

0, 1, . . .
2: δ ∈ (0, 1)
3: Li(xi, k):= fi (xi) + y

(ℓ)
i (k) (xi − zi−1(k))+

+y
(c)
i (k) (xi−zi(k))+y

(r)
i (k) (xi − zi+1(k))+

+ δ
2 |xi − zi−1(k)|

2
+ δ

2 |xi − zi(k)|
2
+

+ δ
2 |xi − zi+1(k)|

2

(initialization)

4:

set: x(0) = 0

y(ℓ)(0) = y(c)(0) = y(r)(0) = 0

z(0) = 0

(main algorithm)

5: for k = 0, 1, . . . do

6: for i = 1, . . . , N do

7: xi(k + 1) = argmin
xi

Li(xi, k)

8:

zi(k + 1) = 1
3δ (y

(ℓ)
i+1(k)+y

(c)
i (k)+y

(r)
i−1(k))+

+ 1
3xi−1(k+1)+ 1

3xi(k+1)+
+ 1

3xi+1(k + 1)

9: y
(ℓ)
i (k+1) = y

(ℓ)
i (k)+δ (xi(k+1)− zi−1(k+1))

10: y
(c)
i (k+1) = y

(c)
i (k) + δ (xi(k+1)− zi(k+1))

11: y
(r)
i (k+1) = y

(r)
i (k)+δ (xi(k+1)− zi+1(k+1))

manually optimized for fastest convergence. For this specific

simulation DSM is the slowest to converge, while ADMM

is the fastest one. Despite being slower in this synchronous

implementation, our NRC strategy can be easily adapted

in an asynchronous scenarios where the topology of

graph is time-varying. Differently, even if ADMM can be

implemented asynchronously with some effort, it can hardly

cope with time-varying topologies since the dual variables yi
strongly depend on the specific constrain imposed between

the variables zi and xi.

VI. CONCLUSIONS AND FUTURE WORKS

In this work we proposed a novel distributed convex

optimization strategy that combines a Newton-Raphson

optimization strategy with few parallel consensus algorithms.

We also provided analysis of robustness in terms of initial

conditions under some simplifying assumptions, like the

use of scalar smooth convex functions and synchronous

implementations. Finally we provided some numerical

simulations confirming the properties of the proposed

algorithm and we compared it with popular distributed

optimization strategies. Although in these comparisons it did

not score as the best algorithm, we believe that its strength

will be more evident in an asynchronous implementation in

time-varying network topologies since it inherits all the good

features of consensus algorithms.

Many future research directions are open, such as the

extensions to multivariable settings, to non-smooth convex

functions and to asynchronous implementations. Also of

5921

paramount importance is the design of on-line strategies for

tuning parameter ε which affects the speed of convergence

as well as stability.

0 50 100 150 200

−6

−4

−2

0

2

4

x i
(k
)

0 50 100 150 200 250 300 350 400
−10

−5

0

5

10

x i
(k
)

0 20 40 60 80 100
−0.5

0

0.5

1

k (time steps)

x i
(t
)

Fig. 4. Time evolution of the states xi(k), i = 1, . . . , N for the case
N = 30. First panel, NRC (Algorithm 1, ε = 0.8). Second panel, DSM
(Algorithm 2, ρ = 100). Third panel, ADMM (Algorithm 3, δ = 0.1). The
black dashed lines indicate the position of the global optimum x∗. Note the
axes have different scales in each plot.

REFERENCES

[1] D. Puccinelli and M. Haenggi, “Wireless sensor networks: applications
and challenges of ubiquitous sensing,” IEEE Circuits and Systems

Magazine, vol. 5, no. 3, pp. 19 – 31, 2005.
[2] A. Ipakchi and F. Albuyeh, “Grid of the future - are we ready to

transition to a smart grid?” IEEE Power Energy Magazine, vol. 7,
no. 2, pp. 52 – 62, 2009.

[3] P. J. Huber, Robust statistics. John Wiley & Sons Inc, 2009.
[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed

Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers,” Stanford Statistics Dept., Tech. Rep., 2010.

[5] J. N. Tsitsiklis, “Problems in decentralized decision making and
computation,” Ph.D. dissertation, MIT, 1984.

[6] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar, Convex Analysis and

Optimization. Athena Scientific, 2003.
[7] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge

University Press, 2004.
[8] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed

Computation: Numerical Methods. Athena Scientific, 1997.
[9] D. P. Bertsekas, Network Optimization: Continuous and Discrete

Models. Belmont, Massachusetts: Athena Scientific, 1998.
[10] K. C. Kiwiel, “Convergence of approximate and incremental

subgradient methods for convex optimization,” SIAM J. on Optim.,
vol. 14, no. 3, pp. 807 – 840, 2004.

[11] B. Johansson, “On distributed optimization in networked systems,”
Ph.D. dissertation, KTH Electrical Engineering, 2008.

[12] A. Nedić and D. P. Bertsekas, “Incremental subgradient methods for
nondifferentiable optimization,” SIAM J. on Optim., vol. 12, no. 1, pp.
109 – 138, 2001.

[13] D. Blatt, A. Hero, and H. Gauchman, “A convergent incremental
gradient method with a constant step size,” SIAM J. on Optim., vol. 18,
no. 1, pp. 29 – 51, 2007.

[14] S. S. Ram, A. Nedić, and V. Veeravalli, “Incremental stochastic
subgradient algorithms for convex optimzation,” SIAM J. on Optim.,
vol. 20, no. 2, pp. 691 – 717, 2009.

[15] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental
subgradient method for distributed optimization in networked
systems,” SIAM J. on Optim., vol. 20, no. 3, pp. 1157 – 1170, 2009.

[16] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and
optimization in multi-agent networks,” IEEE TAC, vol. 55, no. 4, pp.
922 – 938, 2010.

[17] A. Nedić, “Asynchronous broadcast-based convex optimization over a
network,” IEEE TAC, vol. PP, no. 99, pp. 1 – 1, 2010.

[18] M. Rabbat and R. Nowak, “Distributed optimization in sensor
networks,” in IPSN, 2004.

[19] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson,
“Subgradient methods and consensus algorithms for solving convex
optimization problems,” in CDC, December 2008, pp. 4185 – 4190.

[20] M. G. Rabbat, R. D. Nowak, and J. A. Bucklew, “Generalized
consensus computation in networked systems with erasure links,” in
Sig. Proc. Advances in Wireless Comm., June 2005, pp. 1088 – 1092.

[21] L. Xiao, M. Johansson, and S. Boyd, “Simultaneous routing and
resource allocation via dual decomposition,” IEEE Trans. on Comm.,
vol. 52, no. 7, pp. 1136 – 1144, 2004.

[22] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc
WSNs with noisy links - part I: Distributed estimation of deterministic
signals,” IEEE Trans. on Sig. Proc., vol. 56, pp. 350 – 364, 2008.

[23] C. Fischione, “F-Lipschitz optimization with Wireless Sensor
Networks applications,” IEEE TAC, vol. to appear, pp. –, 2011.

[24] C. Fischione and U. Jönsson, “Fast-Lipschitz optimization with
Wireless Sensor Networks applications,” in IPSN, 2011.

[25] J. Van Ast, R. Babška, and B. D. Schutter, “Particle swarms in
optimization and control,” in IFAC World Congress, 2008.

[26] E. Alba and J. M. Troya, “A survey of parallel distributed genetic
algorithms,” Complexity, vol. 4, no. 4, pp. 31 – 52, 1999.

[27] R. O. Saber, J. Fax, and R. Murray, “Consensus and cooperation in
multi-agent networked systems,” Proceedings of IEEE, vol. 95, no. 1,
pp. 215–233, January 2007.

[28] F. Garin and L. Schenato, Networked Control Systems. Springer,
2011, ch. A Survey on distributed estimation and control applications
using linear consensus algorithms, pp. 75–107.

[29] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE TAC, vol. 54, no. 1, pp. 48 – 61, 2009.

[30] ——, “On the rate of convergence of distributed subgradient methods
for multi-agent optimization,” in CDC, 2007.

[31] A. Jadbabaie, A. Ozdaglar, and M. Zargham, “A distributed Newton
method for network optimization,” in CDC, 2009.

[32] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie, “Accelerated
dual descent for network optimization,” in ACC, 2011.

[33] F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, and L. Schenato,
“Newton-raphson consensus for distributed convex optimization,”
http://paduaresearch.cab.unipd.it/, Tech. Rep., 2011.

[34] P. Kokotović, H. K. Khalil, and J. O’Reilly, Singular Perturbation

Methods in Control: Analysis and Design, ser. Classics in applied
mathematics. SIAM, 1999, no. 25.

[35] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2001.
[36] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor

fusion based on average consensus,” in IPSN, 2005, pp. 63– 70.
[37] S. Bolognani, S. D. Favero, L. Schenato, and D. Varagnolo,

“Consensus-based distributed sensor calibration and least-square
parameter identification in wsns,” International Journal of Robust and

Nonlinear Control, vol. 20, no. 2, pp. 176–193, 2010.
[38] K. Tanabe, “Global analysis of continuous analogues of the Levenberg-

Marquardt and Newton-Raphson methods for solving nonlinear
equations,” Annals of the Institute of Statistical Mathematics, vol. 37,
no. 1, pp. 189–203, 1985.

[39] R. Hauser and J. Nedić, “The continuous Newton-Raphson method
can look ahead,” SIAM J. on Optim., vol. 15, pp. 915 – 925, 2005.

5922

