
  

  

Abstract— In this paper, identification and fault diagnosis 

methods for uncertain Multiple Input Multiple Output (MIMO) 

Linear Parameters Varying (LPV) models is presented. The 

fault detection methodology is based on checking if 

measurements are inside the prediction bounds provided by a 

MIMO LPV model identified using real data and the parity 

equations approach. The proposed approach takes into account 

existing coupling between the different measured outputs. 

Modeling and prediction uncertainty bounds are handled using 

zonotopes. An identification algorithm that provides model 

parameters and their uncertainty such that all measured data 

free of faults will be inside the predicted bounds is also 

proposed. The fault isolation and estimation algorithm is based 

on the use of residual fault sensitivity. Finally, a case study 

based on a four tank system is used to illustrate the effectiveness 

of the proposed approach. 

I. INTRODUCTION 

ODEL-BASED fault diagnosis is based on the use of 

mathematical models of the monitored system. 

Currently, most of the existing approaches that have been 

investigated and developed over the last few years are based 

on linear models (see, e.g, [1], [2] and [3]). However, 

physical systems are inherently non-linear. This has 

motivated the interest of researchers in the development and 

application of non-linear Fault Detection and Isolation 

(FDI) methods [4]. LPV models can be used to efficiently 

represent some non-linear systems. This is the reason why 

they have recently attracted the attention of the FDI research 

community to develop model-based methods using this kind 

of models. But, even with the use of LPV models, modeling 

errors are present. Reliability and performance of fault 

diagnosis algorithms depend on the quality of the model 

used. Thus, since modeling errors introduce uncertainty in 

the model, they interfere with the fault detection.  A fault 

detection algorithm able to handle uncertainty is called 

robust and its robustness is the degree of sensitivity to faults 

compared to the degree of sensitivity to uncertainty. In this 

work, the description of the noise is based on what is known 

as “unknown but bounded noise” description [5]. Moreover, 

not only noise but also bounded modeling errors are 

considered. Fault detection methods that only require 

knowledge about bounds in noise and parameters are known 

as set-membership and follow the passive robust approach 
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[2] by enhancing the fault detection robustness at the 

decision-making stage using an adaptive threshold.  

The contribution of this paper is to propose new 

identification and fault diagnosis approaches for systems that 

can be described by MIMO LPV models with uncertainty. 

The identification approach provides model parameters and 

their uncertainty such that all measured data free of faults 

will be inside the predicted bounds. The fault detection 

methodology is based on extending the parity equations 

approach proposed by [1] to this kind of systems. The fault 

detection procedure consists in comparing on-line the real 

behavior of the monitored system obtained by means of 

sensors with the estimated behavior using the uncertain 

MIMO LPV model. In case of a significant discrepancy 

(residual) is detected between the model and the 

measurements obtained by the sensors, the existence of a 

fault is assumed. In particular, in this work the parametric 

uncertainty is bounded by a zonotope and propagated to the 

residuals determining their alarm limits bounded by a 

zonotope as well. When the residuals are outside of the 

zonotope that define the alarm limits, it is argued that model 

uncertainty alone can not explain the residual and therefore 

the presence of a fault is proved.  

Finally, a fault isolation approach based on the residual 

fault sensitivity [6] that provides an estimation of the fault 

magnitude is proposed.  

The structure of this paper is the following: Section II 

introduces LPV parity equations with uncertainty and the 

consistency test used for fault detection. In Section III, a 

parameter estimation procedure that allows bounding the 

parametric uncertainty is described. Section IV presents a 

fault detection methodology based on the use of LPV parity 

equations and zonotopes. Section V presents the fault 

isolation and estimation methodology. Finally, in Section VI, 

a four tank system is used to assess the validity of the 

proposed approach. 

II. LPV PARITY EQUATIONS WITH UNCERTAINTY 

A. LPV parity equations with uncertainty 

In this paper, the system to be monitored is assumed that 

can be described by a MIMO LPV model 

ˆ( ) ( ) ( ) ( ) ( ) ( )kk k k k k= + = +Φ θ py e y e                      (1) 

where 

- ( )ky  is the output vector of dimension 1yn × . 

- ( )kΦ  is the regressor matrix of dimension yn nθ×  which 

can contain any function of inputs ( )ku  and outputs ( )ky . 

- ( )k kp p≜  is a vector of measurable process variables of 

dimension 1pn ×  that defines the system operating point. 
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- ( )k k∈θ p Θ  is the LPV parameter vector of dimension 

1nθ ×  whose values can vary according to the system 

operating point following some known function ( )kg p , 

usually named as scheduling function. 

- kΘ  is the set that bounds parameter values that can vary 

according to the system operating point as well. 

- ( )ke  is a vector of dimension 1yn ×  that contains the 

sensor additive noises whose components have known 

bounds ( )i ie k σ≤ , 1,..., yi n= . 

 
 

In this paper, the uncertain parameter set kΘ  is described 

by a zonotope centered in the nominal LPV model 

{ }0 0( ) ( ) :n n
k k k= ⊕ = + ∈Θ θ p H θ p Hz zB B                (2) 

where  

- 0 ( )
n

k ∈θ p ℝ θ  is the nominal LPV model.  

-
n nθ×∈H ℝ  is the shape of the zonotope. 

-
1n n×∈ℝB  is a unitary box composed by n unitary 

( [ ]1,1= −B ) interval vectors.   

- ⊕ denotes the Minkowski sum. 

B. Consistency Test 

Given a MIMO LPV model (1), the output measurement 

vector ( )ky  will be consistent with the output predicted by 

the model when  

( ) ( )k k∈ ϒϒϒϒy                                (3) 

where ( )kϒϒϒϒ  is the output predicted set. When the uncertain 

parameter set kΘ  is described by means of a zonotope, as in 

(2), then ( )kϒϒϒϒ  can be expressed as follows 

0 ˆˆ( ) ( ) ( )k k k= ⊕ϒ Γϒ Γϒ Γϒ Γy                               (4) 

with 
0 0ˆ ( ) ( ) ( )

k
k k= Φ θ py                              (5) 

and 

( )ˆ ( ) ( )  yn n
k k

+
= Φ H E BΓΓΓΓ                       (6) 

where ( )1
, ,

yn
diag= σ σ⋯ΕΕΕΕ .  

Notice that ( )kϒϒϒϒ  is a zonotope centered in the nominal 

output estimation 0ˆ ( )ky  and with a shape defined by ˆ ( )kΓΓΓΓ . 

Thus, condition (3) can be rewritten as  
0 ˆ( ) ( )k k∈ ΓΓΓΓr                              (7) 

where 0 ( )kr  is the MIMO nominal residual defined by 

0 0ˆ( ) ( ) ( )k k k= −r y y                       (8) 

III. UNCERTAIN PARAMETER ESTIMATION 

A. Problem definition 

The problem of the uncertain parameter estimation can be 

formulated as follows: Let us consider a sequence of M 

regressor matrix values ( )kΦ , output measurements ( )ky  in 

a fault free scenario, the model of the system to be monitored 

parameterized as in (1) and the parameter set kΘ  as in (2). 

The aim is to estimate a nominal parameter vector 0 ( )kθ p  

and their uncertainty (model set) defined by the matrix H  in 

such a way that all measured data in a fault free scenario 

satisfy condition (7). 

Nominal LPV parameters 0( )kθ p  could be obtained using 

LPV identification algorithms as the ones proposed by [7] 

using real data. As a result of this process, some modeling 

uncertainty (2) in the LPV parameters appears. Then, once 

the nominal LPV parameters 0( )kθ p  have been calibrated 

the problem of computing the uncertainty in the parameters, 

defined by matrix H , can be formulated as an optimization 

problem. In order to maximize the model sensitivity to faults, 

the objective function of the optimization problem can be the 

volume of the output predicted set (4) 

1

( ( ( ))
M

k

J vol k
=

=∑ ϒϒϒϒ                              (9) 

and whose constraints are defined by condition (7). This 

optimization problem with no assumptions about the 

knowledge of matrix H  is in general very hard to solve even 

in the single output case [8]. In order to reduce the 

complexity, the zonotope that bounds kΘ  can be 

parameterized such that 0= λH H , as proposed in [8] for the 

single output case, that corresponds to a zonotope with 

predefined shape (determined by 0H ) and a scalar 0λ ≥ . 

0H  can be obtained using physical knowledge of the system 

or extracting this information from the identification. 

B.  Uncertainty shape 0H  

Matrix 0H  determines the weight and relations between 

the different parameter uncertainties. In this section, a data-

based procedure to find a suitable 0H  is presented. In the 

following,  it will be described how to find a convex set 

∆Θ  considering consistency test condition (7) for all the 

identification data with model (1) and parameter vector  

( )k k∈θ p Θ  with  

                            0 ( )k k= + ∆Θ θ p Θ                               (10) 

Notice that this parameterization of the parametric 

uncertainty is more general than the parametric uncertainty 

bounded by a zonotope given in (2), as a zonotope is a 

particular case of convex set.   
 

Then, the matrix 0H  will be computed in such a way that 

the zonotope centered in the origin defined by 0H  include 

the set ∆Θ   

                                      0
n∆ ⊆Θ H B                              (11) 

 

Step 1. Finding convex set ∆Θ  

At every instant k, the regressor matrix ( )kΦ  and the 

measured output y(k) define two half-spaces k∆Θ and k∆Θ  

in nθℝ  that fulfill  

3057



  

 { }0ˆ: ( ) ( ) ( ) , 1,..,
n

k i i i i yk y k y k i nθ σ∆ = ∆ ∈ ∆ ≥ − − ∀ =Θ θ φ θℝ  

{ }0ˆ: ( ) ( ) ( ) , 1,..,
n

k i i i i yk y k y k i nθ σ∆ = ∆ ∈ ∆ ≤ − + ∀ =Θ θ φ θℝ   (12) 

where ( )i kφ denotes the row i of  the regressor matrix 

( )kΦ . Then, the sets ∆Θ  and ∆Θ  that fulfill conditions 

(12), for all the instants k, are defined by  

1

M

kk=
∆ = ∆Θ Θ∩  and 

1

M

kk=
∆ = ∆Θ Θ∩           (13) 

Notice that: ∆Θ  and ∆Θ  are H-polyhedrons defined by the 

intersection of half-spaces represented by linear inequalities 

[9]. And finally, the set ∆Θ  that fulfills condition (7) 

1,...,k M∀ =  satisfies   

  and   ∆ ∩ ∆ ≠ ∅ ∆ ∩ ∆ ≠ ∅Θ Θ Θ Θ               (14) 

Condition (14) implies that at least one point of every H-

polyhedron defined in (13) belongs to the uncertain set ∆Θ . 

These two points will be denoted as ∆θ   and ∆θ  belonging 

to the H-polyhedrons ∆Θ  and ∆Θ , respectively. In addition 

to condition (14), the set ∆Θ has to minimize the volume of 

the output predicted set defined in (9). ∆θ  and ∆θ  can be 

computed solving two linear optimization problems that 

minimize the uncertainty of the output estimation  subject to  

(12). 

 

Step 2.  Bounding convex set ∆Θ using a zonotope 

Once ∆θ  and ∆θ  have been calculated, the zonotope 

centered in the origin that contains these two points can be 

determined as the box (particular case of zonotope) whose 

opposite vertex are ∆θ  and ∆θ . This zonotope fulfills (11) 

and is defined by 0H  with 

                    ( )0 1,1 ,diag H Hn nθ θ
=H ⋯                       (15) 

where ( ),H max ( θ ), ( θ )i i i iabs abs= ∆ ∆  1,..,i nθ=  

In order to benefit of the richness of the zonotope 

representation of the uncertain parameter set, that allows to 

take into account possible dependencies between the 

different components of the parametric uncertainty, the data 

can be  divided depending on the direction of the regressor 

matrix in Dn  groups. Then, the parameter sets (13) can be 

obtained for every set of data ( j∆Θ and j∆Θ  1,.., Dj n= ). 

And, in the same way, optimal parameters ( j∆θ  and j∆θ  

1,.., Dj n= ) can be calculated. Then, the zonotope centered 

in the origin that contains these 2 Dn  points can be calculated 

considering  

                       ( )0 1 1, , nD nD= α αH d d⋯                         (16) 

where jd  1,.., Dj n=  are the unitary vectors (dimension 

1nθ × ) that define the directions of the data sets, and 0jα ≥  

1,.., Dj n=  are the coefficients to be computed. The problem 

of computing jα  1,.., Dj n=  can be formulated as a linear 

programming optimization problem. 

 

Once the matrix 0H  has been determined, the problem of 

uncertainty identification can be reformulated as an 

optimization problem that minimizes (9) subject to (7) 

considering 0= λH H . This problem is a non-linear 

polynomial optimization problem that can be solved globally 

using GloptiPoly tool developed by [10]. 

IV. FAULT DETECTION METHODOLOGY 

The fault detection methodology is based on the residual 

evaluation obtained from the difference between 

measurements and LPV model prediction using (1) 

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kk k k k k k k= − − = − −θ pΦΦΦΦr y y e y e     (17) 

Residual (17) corresponds to a Moving Average (MA) 

parity equation [1]. Ideally, when modeling errors and noise 

are neglected, residual (17) should be zero in a fault-free 

scenario and different from zero, otherwise. However, 

because of modeling errors and noise, residual can be 

different from zero in a non faulty scenario. In order to take 

into account uncertainty in parameters and additive noise, the 

effects of these uncertainties will be propagated to the 

residual, defining the region of admissible residuals ( )kΓΓΓΓ . 

Then consistency test (3) is equivalent to check  

( )k∈0 Γ                                  (18) 

where 0 is a vector ( 1yn × ) of zeros   ( )= 0 0
t

0 ⋯ . 

Taking into account (17), (8) and (4), ( )kΓ can be 

parameterized as a zonotope  

 0 ˆ( ) ( ) ( )k k k= ⊕rΓ ΓΓ ΓΓ ΓΓ Γ                         (19) 

where 0 ( )kr  and ˆ ( )kΓΓΓΓ  are defined as in (8) and (6). Then, 

test (18) involves checking if the point 0 belongs to the 

zonotope ( )kΓΓΓΓ  and can be formulated as the following 

system of yn equalities  

0

1 1 1 1

0

ˆ( ) ( ) ( ) ( ) ( ) 0

ˆ( ) ( ) ( ) ( ) ( ) 0
y y y yn n n n

y k y k k k e k

y k y k k k e k

− − − =

− − − =

φ Hz

φ Hz

⋮            (20) 

Checking the satisfaction of conditions (20) can be 

formulated as the feasibility of a linear programming 

problem without objective function. 

V. FAULT ISOLATION AND ESTIMATION METHODOLOGY 

A. Fault Sensitivity 

Residuals (17) can be expressed in a compact form using 

the fault sensitivity transfer function matrix, defined as 

         1( ) ( , ( ), ) ( ) ( )kk q k + k−= S θ pr f f e                   (21) 

where 

- ( )kf  is the vector of possible faults of dimension 1fn × . 

- 1q−  is the shift operator. 
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- 1( , ( ), )kq−S θ p f  is the fault sensitivity matrix of 

dimension y fn n×  that can be calculated as 

1
( , ( ), )

f

k

1 n

q
f f

−
 ∂ ∂ ∂
 = =
 ∂ ∂ ∂ 

S θ p ⋯
r r r

f
f

               (22) 

On the other hand, nominal multi-output residual (8) can be 

expressed as  

            0 1 0( ) ( , ( ), ) ( )kk q k−S θ pr f f≃                   (23) 

where 1 0( , ( ), )kq−S θ p f  is the sensitivity matrix (22) 

particularized for the nominal parameter vector 0 ( )kθ p . 

B. Fault Isolation and Estimation Algorithm 

Considering (23), the problem of fault isolation and 

estimation can be formulated as a least squares problem. 

Assuming abrupt faults,  

0

,       
( )

,     

fault

fault

k < k
k

k k


= 

≥

0
f

f
                   (24) 

i.e, faults have appeared at instant faultk  and 0
fn∈ℝf . This 

problem can be implemented by solving Problem 1, once the 

fault has been detected. 
 

Problem 1: “Fault isolation and estimation (general case)”  

{ }0 ( ) arg min ( )k J ,k=
f

f f  

subject to 

( )
{ }

2
0 1 0

max , 1

( ) ( ) , ( ),

fault

k

i

i k k

J ,k i q−

= − +

= −∑ S θ p

ℓ

f r f f  

where ℓ  is a time moving horizon 

 

The role of the time moving horizon ℓ  is to minimize the 

noise and parameter uncertainty effects: since the longer the 

moving horizon is, the smaller these effects will be. 

However, increasing the moving horizon will lead to slower 

fault isolation. 

 

Problem 1 can be simplified when single faults are 

considered, this is ( )
t

0 0( ) 0 1 0k f= ⋯ ⋯f  in (24). 

Then the problem of fault isolation and estimation can be 

solved through Algorithm 1 that implies solving nf  least 

squares error optimization problem, one for every possible nf  

single faults. The most probable fault ( )I k  at time k is 

determined as the fault that gives the minimum cost function  

( , )jJ f k  after solving the set of least squares problems for 

the set of considered single faults. 

 

Algorithm 1:“Fault isolation and estimation (single faults)”  

1:  for 1, , fj n= ⋯  do 

2: ( )( ), ( ) min ( , )opt opt
j j j

f
J k f k J f k←    

      subject to 

     

{ }

2
0 0

max , 1

( ) ( )

fault

k

j _, j

i k k

J f,k i f

= − +

= −∑
ℓ

r s      

      where 

      
0 0

/_, j jf= ∂ ∂s r  is the j
th

 column of ( )1 0, ( ),kq−S θ p f  

3: end for   

4: 
{ }

{ }
1, ,

( ) arg min ( )
f

opt
j

j n
I k J k

=
=

⋯
  

5: 0 ( )( ) ( )
opt
I kf k = f k    

VI. CASE STUDY: FOUR TANK SYSTEM 

A. Description of the system 

A quadruple tank process, proposed by [11], will be used 

to illustrate the results presented in this paper. The process 

inputs are 1v  and 2v  (input voltages to the pumps) and the 

outputs are the tank levels 1h , 2h , 3h  and 4h . The equations 

that describe the system are 

31 1 1 1
1 3 1

1 1 1

2 2 4 2 2
2 4 2

2 2 2

3 3 2 2
3 2

3 3

4 4 1 1
4 1

4 4

2 2

2 2

(1 )
2

(1 )
2

adh a k
gh gh v

dt A A A

dh a a k
gh gh v

dt A A A

dh a k
gh v

dt A A

dh a k
gh v

dt A A

γ

γ

γ

γ

= − + +

= − + +

−
= − +

−
= − +

         (25) 

where 2
1 3 0.071a a cm= = , 

2
1 3 28A A cm= = , 1 0.7=γ , 

3
1 3.33 /k cm Vs= , 2

2 4 0.057a a cm= = , 
2

2 4 32A A cm= = , 

2 0.6=γ  
3

2 3.35 /k cm Vs= , 
2981 /g cm s=   and assumed 

constants.  
 

Eq. (25) can be discretized by the Euler method with 

sampling time 1t s∆ =  and it can be expressed as in (1) 

through the following parameterization 

 

( )
t

1 2 3 4( ) ( ) ( ) ( ) ( )k h k h k h k h k=y , ( )1 2( ) ( ) ( )k k k=Φ Φ Φ    

1

2

( )
( )

k
k

 
=  
 

θ p
θ p

θ
, ( )

t

1 2 3 4( ) ( ) ( ) ( ) ( )k e k e k e k e k=e    

with 

1 3

2 4
1

3

4

( 1) ( 1) 0 0 0 0

0 0 ( 1) ( 1) 0 0
( )

0 0 0 0 ( 1) 0

0 0 0 0 0 ( 1)

h k h k

h k h k
k

h k

h k

− − 
 

− − =
 −
 

− 

Φ

 

 1

2
2

2

1

( 1) 0 0 0

0 ( 1) 0 0
( )

0 0 ( 1) 0

0 0 0 ( 1)

v k

v k
k

v k

v k

− 
 

− =
 −
 

− 

Φ
,  

1,1

2,2

2
3,1

4,2

b

b

b

b

 
 
 =
 
  
 

θ  
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( )
t

1 1,1 1,3 2,2 2,4 3,3 4,4( ) ( ) ( ) ( ) ( ) ( ) ( )k k k k k k ka a a a a a=θ p p p p p p p

where ( )
t

1 2 3 4( 1) ( 1) ( 1) ( 1)k h k h k h k h k= − − − −p  ,    

1 1
1,1

1

k
b

A

γ
= , 2 2

2,2
2

k
b

A

γ
= , 2 2

3,1
3

(1 )k
b

A

− γ
= , 1 1

4,2
4

(1 )k
b

A

− γ
=  

,

2
( ) 1 ( )i

i i k i k
i

a g
a g

A
p p= −= −= −= −  1, , 4i = …  3

1,3 3
1

2
( ) ( )k k

a g
a g

A
p p====  

and 4
2,4 4

2

2
( ) ( )k k

a g
a g

A
p p====                                         (26) 

 

Additive errors ( )ie k  contain the noise effect and 

discretization error of the level sensors 

( 0.05cmiσ = , 1, , 4i = … ). The parameter uncertainty is 

assumed to be located in parameters ,j ia  because are 

functions of the measurements through the scheduling 

functions ( )i kg p , 1, , 4i = …   

0( ) ( ) ( )i k i k ig g g k+ ∆p p====                  (27) 

where 

0 1
( )

( 1)
i k

i

g
h k

p ====
−−−−

                    (28) 

and  ( )ig k∆  is the uncertainty. 

 

Then, the LPV parameter vector ( )kθ p can be expressed as 

0
1 1

2

( ) ( )
( )

0

k
k

k   ∆
= +     

  

θ p θ
θ p

θ
                        (29) 

with nominal parameters 

( )
t

0 0 0 0 0 0 0
1 1,1 1,3 2,2 2,4 3,3 4,4( ) ( ) ( ) ( ) ( ) ( ) ( )k k k k k k ka a a a a a=θ p p p p p p p

where 
0
, ( )j i ka p  are obtained with  (26)  considering 

0( ) ( )i k i kg gp p==== . 

 

Thus, parametric uncertainty 1 ( )k∆θ  can be expressed 

using a zonotope as in (2) as follows 

1( ) nk∆ ∈θ HB                              (30) 

B.  Identification 

In order to apply identification techniques presented in 

Section III, input/output data in a fault free scenario applying 

a pseudorandom binary sequence (PRBS) as pump input that 

sweep all the operation range ( [ ]1 2.4, 3.8 Vv ∈  and 

[ ]2 2.3, 3.5 Vv ∈ ) has been used. 

 

In order to take into account physical relations in 

parametric uncertainties and for the sake of simplicity the 

following parameterization of  matrix H in (30) is used 

 

t g=H H H                                 (31) 

with  

1

1

2

2

3 3

1 3

4 4

2 4

0 0 0 0 0

0 0 0 0 0

2

0 0 0 0

0 0 0 0

t

a

A

a

A
g

a a

A A

a a

A A

− 
 
 
 −
 
 =
 −
 
 
 −
  
 

H
           (32)  

and 
4 n

g
×∈H ℝ  is the matrix to be identified that defines the 

zonotope that bounds parameters ( )k∆g , that is 

( )t

1 2 3 4( ) ( ) ( ) ( ) ( )
n

gk g k g k g k g k∆ = ∆ ∆ ∆ ∆ ∈ Hg B (33) 

The parametric uncertainty 1( )k∆θ  in (34) can be viewed a 

linear transformation of ( )k∆g . 

1( ) ( )tk k∆ = ∆θ H g                      (34) 

considering 
0g

= λH H , with 0H is obtained as it is 

described in Section III.B by dividing the data in four 

different directions. Once 0H  has been calculated,  λ  is 

computed as described in Section III. 

C.  Fault detection, isolation and estimation 

In order to illustrate the fault detection, isolation and 

estimation procedures described in Sections IV and V in 

several fault scenarios, two different kinds of faults have 

been considered: additive faults (in input and output sensors: 

uf  and yf ) and multiplicative faults (in parameters: θf ). 

Only single faults have been considered. The time moving 

horizon used in the fault isolation and estimation procedure 

is 20s=ℓ . This horizon has been selected as a trade-off to 

minimize the noise effect and to follow possible fault 

changes. 

Fault isolation and estimation method presented in Section 

V is based on the fault sensitivity transfer function matrix 

(22). In our case study, with 4 residuals and 12 possible 

different faults to be detected, the dimension of the matrix 

(22) is 4 12× .  

In the following, a fault scenario has been simulated and 

the results of the fault detection, isolation and estimation 

procedures are presented. 
 

Fault scenario: “ 1y  sensor additive fault of 
1

0.8yf cm=  at 

t=9500s” 

Figures 1a) and b) show the result of the detection test in 

this fault scenario. The fault is detected at the appearance 

time (t=9500s). At this time, the residual admissible space 

ΓΓΓΓ  does not contain the origin in the 1 3r r−  projection, thus 

condition (18) is not fulfilled what proves the existence of a 

fault. 

Once the fault has been detected, the fault isolation and 

estimation procedure is activated by solving optimization 

Algorithm 1 considering the 12 different possible single 

faults. Figure 2 shows the inverse of the optimization cost 

function for the different considered faults, obtained solving 

Algorithm 1 since the fault  detection time (t=9500s). 
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Figure 1: Residual admissible space ΓΓΓΓ  projections a)  1 3r r−  

and b) 2 4r r− , at the fault time detection (t=9500s). 
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Figure 2. Inverse of optimization cost function ( 1J − ) of 

different considered faults. 
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Figure 3. Fault estimation of 

1y
f   

As the objective function ( J ) corresponding to
1y

f is 

smaller than the objective function corresponding to the 

other considered faults, the fault isolation algorithm 

determines that the fault is an additive fault affecting output 

sensor 1y . The fault magnitude estimation corresponding 

to
1y

f , determined also as result of the solution of Algorithm 

1, is presented in Figure 3. The time origin of Figures 2 and 

3 corresponds with the fault detection time (t=9500s). 

 

8. CONCLUSIONS 

In this paper, identification and fault diagnosis methods for 

systems that can be modeled by uncertain MIMO LPV 

models have been presented. The identification procedure is 

formulated as an optimization problem that determines a 

zonotope that encloses the parametric uncertainty given a 

model structure and additive error bounds. The fault 

detection methodology is based on checking if measurements 

are inside the prediction bounds provided by the LPV model, 

parametric uncertainty and additive error. It has been 

formulated as the feasibility problem that can be solved 

using linear programming techniques. The fault isolation and 

estimation algorithm is based on residual fault sensitivity 

analysis. This methodology allows increasing fault isolability 

by considering the residual fault sensitivity as additional 

information to the relationship between residuals and faults. 

Moreover, it allows obtaining fault estimation. Finally, 

satisfactory results have been obtained using a case study 

based on a four tank system. 
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