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Abstract— System identification with binary or quantized
measurements is a problem relevant to a number of applications
in different fields. While identification of FIR models has been
studied in depth, more complex model structures still need to
be investigated. In this paper, identification of ARX models
with quantized measurements is addressed in a set member-
ship setting. In particular, the problem of characterizing and
bounding the feasible parameter set (FPS), i.e., the set of model
parameters which are compatible with the available data, is
tackled. Being the FPS in general nonconvex, an algorithm
is proposed for constructing an outer approximation. The pro-
posed technique relies on quasiconvex relaxations of the original
problem, based on generalized linear fractional programming.
Structural properties of the FPS and convergence issues are
analyzed, and numerical examples are presented to validate
the proposed procedure.

I. INTRODUCTION

System identification in presence of binary valued or

quantized measurements has received an increasing attention

since the seminal work by Wang, Zhang and Yin [1], which

introduced a general framework dealing with both stochastic

and deterministic uncertainty representations. Binary data is

generated by binary sensors which are widespread devices

characterized by a threshold according to which the output

is digitized. Similarly, multi-threshold sensors or banks cas-

caded of binary sensors generate quantized measurements,

with a quantization error depending on the number of thresh-

olds or binary sensors.

Motivation for this identification approach can be found

in several engineering areas. Communication systems show

contexts like ATM networks where traffic information, e.g.,

bit rate, queue length, is measured through binary sensors

characterized by appropriate thresholds. Typical sensors used

in monitoring and control systems of industrial production

plants are binary devices, popular examples being chemical

process sensors in gas and oil industry, or sensors monitoring

liquid or pressure levels. Binary valued or quantized mea-

surements can be easily found in a number of automotive

applications, including switching sensors for exhaust gas

oxygen, shift-by-wire and ignition systems, photoelectric

sensors for position detection, Hall-effect sensors for speed

and acceleration measurement, ABS, and others.

In recent years, a number of relevant issues have been

addressed in the stochastic setting, including optimal in-

put design and time complexity [1], consistency analysis

of weighted least squares estimators [2], identification of
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Wiener systems [3], identification and tracking of linear

systems with time-varying parameters [4], Expectation Max-

imization identification of FIR systems [5], design of state

observers [6] (see [7] for a complete treatment and an

extensive reference list for identification with either binary or

quantized data). Statistical quantization theory is exploited in

[8] to compute the likelihood function and the Cramer-Rao

bound for models with quantized measurements.

When an unknown-but-bounded description of uncertainty

is adopted, the identification problem is naturally formulated

in the set-membership framework (see e.g., [9], [10]). Results

on input design and time complexity for FIR systems, in

presence of binary or quantized measurements, have been

given in [11]–[13], while a framework taking into account the

features of both the stochastic and the deterministic settings

has been introduced in [14]. In this context, a key concept

is represented by the so-called feasible parameter set, which

is the set of all the model parameters that are compatible

with the available information. While this problem is well

understood for FIR models, for which the feasible set is a

convex polytope, it has not been addressed so far for more

complex model structures such as ARX. The main difficulty

in the latter case comes from the fact that the nonlinearity

present in the sensor, generates feasible sets which in general

are nonconvex sets with nonlinear boundaries. The problem

is similar to the one arising in the set-membership framework

when dealing with errors-in-variables identification. In this

context, an approach based on LMI relaxations has been

proposed in [15], [16].

In this paper, we present an approach for bounding the

feasible parameter sets of ARX models, for set-membership

identification with quantized measurements. For given N
input/output pairs and a priori information on the model

parameters, the aim of this work is to construct an outer box

approximation of the feasible set. The proposed technique

relies on quasiconvex relaxations of the original bounding

problem, based on generalized linear fractional programming

[17]. An iterative algorithm is devised to progressively

reduce the model parameter uncertainty set estimate.

The paper is organized as follows. Section II introduces

notation and problem formulation. In Section III the problem

of computing an outer box approximation of the feasible

set is tackled, while in Section IV an algorithm showing

faster convergence is proposed. In Section V, some structural

properties of the feasible set in presence of binary measure-

ments are analyzed. Numerical examples are presented in

Section VI, while concluding remarks and future perspectives

are reported in Section VII.
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II. PROBLEM FORMULATION

Let R
N denote the N -dimensional Euclidean space. A

sequence of real numbers {x(t), t = 1, . . . , N} is identified

by a vector x ∈ R
N .

Let us consider an ARX SISO linear time-invariant model

y(t) =

n
∑

i=1

ai y(t− i) +

m
∑

j=1

bj u(t− j + 1) + d(t) (1)

where y(t) is the model output, u(t) is the input signal

and d(t) denotes the equation error. The disturbance d(t)
is assumed to be bounded by a known quantity, i.e., |d(t)| ≤
δ, t = 1, 2, . . .. Observations at the system output are taken

by a multi-valued sensor with P ≥ 1 known thresholds

C1, . . . , CP , such that

s(t) = σ(y(t)) ,



















0 if C0 < y(t) ≤ C1

1 if C1 < y(t) ≤ C2

...

P if CP < y(t) ≤ CP+1

(2)

where C0 , −∞, CP+1 , +∞. The special case P = 1
refers to a binary sensor, where the only information given

by a measurement is y(t) ≤ C1 or y(t) > C1.

Let θ = [a1, . . . , an, b1, . . . , bm]′ ∈ R
n+m denote the

ARX parameter vector and φ(t) = [y(t − 1), . . . , y(t −
n), u(t), . . . , u(t − m + 1)]′ the regressor vector. Then, (1)

can be expressed in the standard regression form

y(t) = φ′(t) θ + d(t). (3)

Let Θ0 represent the prior information available on the

ARX parameter vector. In this paper, it is assumed that Θ0

is a box, i.e., θ ∈ Θ0 means ai ∈ [ai, ai], i = 1, . . . , n and

bj ∈ [bj , bj ], j = 1, . . . ,m.

Let us denote by u, s ∈ R
N the input signal {u(t), t =

1, . . . , N} and the sequence of quantized measurements

{s(t), t = 1, . . . , N}, respectively. For a given input-output

realization {u, s} of length N , the feasible parameter set

(FPS) is defined as:

F =

N
⋂

t=1

{θ ∈ Θ0 : φ′(t) θ ≤ C1 + δ , if s(t) = 0;

C1 − δ < φ′(t) θ ≤ C2 + δ , if s(t) = 1;

...

CP − δ < φ′(t) θ , if s(t) = P}.

(4)

It is worth remarking that if the system outputs y(t) were

known, the FPS in (4) would be a convex polytope. If only

the quantized measurements s(t) are available, the FPS (4)

is still a convex polytope if a FIR model is considered (i.e.,

n = 0). In fact, in such a case the regressor φ(t) is known.

On the contrary, when an ARX model structure is considered,

only quantized information on the autoregressive part of the

regressor is available. Hence, the FPS turns out to be the

projection on the parameter space of the augmented feasible

set

Ω =
N
⋂

t=1

{[θ′ Y ′]′ ∈ Θ0 × R
N : φ′(t) θ ≤ C1 + δ , if s(t) = 0;

C1 − δ < φ′(t) θ ≤ C2 + δ , if s(t) = 1;
...

CP − δ < φ′(t) θ , if s(t) = P}.
(5)

where Y ′ = [y(1), . . . , y(N)].
The set (5) is in general a nonconvex set in R

n+m+N and

therefore also the FPS (4) turns out to be nonconvex, and

possibly even disconnected.

III. FEASIBLE SET APPROXIMATION

The aim of this paper is to construct an outer box

approximation of the feasible set F for given N input/output

pairs and a priori information on the model parameters.

Let us state the following technical assumptions which

will be enforced throughout the paper.

Assumption 1: There exists t1 6= t2 (1 ≤ t1 ≤ N , 1 ≤
t2 ≤ N ) such that s(t1) 6= s(t2).

Assumption 2: The prior information on the parameters

ai is such that ai ∈ [ai, ai], where ai > −∞ and ai < ∞,

i = 1, . . . , n. The a priori information on bj is such that

bj ∈ [bj , bj ], where bj ≥ −∞ and bj ≤ ∞, j = 1, . . . ,m.

Assumption 3: Thresholds C0 = −∞ and CP+1 = ∞ are

replaced by C0 = M and CP+1 = M , where −∞ < M <
M < ∞.

All these assumptions are very mild. Assumption 1 re-

quires that the system output cannot be the same for all time

points t=1,. . . ,N , while Assumption 2 states that an a priori

knowledge on the bounds of parameters ai must be available.

Assumption 3 defines a bound on the output signal y(t).
From a practical point of view, thanks to prior knowledge

on the system, it is not difficult to set these bounds properly.

For a measured output s(t), let us denote by y(t) and y(t)
the lower and upper bounds of the signal y(t), respectively. In

other words, if s(t) = k, according to (2), one has y(t) = Ck

and y(t) = Ck+1, and so y(t) ∈ [y(t), y(t)].1

Assuming to have information on the system output from

t ≥ 1, it is easy to show that the feasible set F is the set of

θ satisfying the following constraints:






















−δ≤y(t)−
n∑

i=1

ai y(t − i)−
m∑

j=1

bj u(t−j+1) ≤ δ , t=r+1, . . . , N

y(t) ∈ [y(t), y(t)] , t = 1, . . . , N

ai ∈ [ai, ai] , i = 1, . . . , n

bj ∈ [bj , bj ] , j = 1, . . . ,m

(6)
where r = max{n,m− 1}.

Since the first constraints of (6) are nonlinear in the

variables ai and y(t − 1), the resulting feasible set F is

in general nonconvex (see Section VI for some examples of

feasible sets).

Let us denote by B∗ = {θ : ai ∈ [a∗i , a
∗

i ], bj ∈ [b∗j , b
∗

j ]}
the minimum outer box containing the set F , i.e., for any

set B(k) = {θ : ai ∈ [a
(k)
i , a

(k)
i ], bj ∈ [b

(k)
j , b

(k)

j ]} such that

B(k) ⊇ F , one has B∗ =
⋂

k B
(k).

1With a slight abuse of notation we will always denote feasible sets by
closed intervals.
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Now, the aim is to find a box B which contains the optimal

outer approximation B∗, through a suitable convex relaxation

of problem (6).

Let us define for i = 1, . . . , n , t = 1, . . . , N

wi(t) = (ai − ai)(y(t)− y(t))

= aiy(t)− aiy(t)− aiy(t) + aiy(t). (7)

Notice that, thanks to Assumption 2 and 3, ai and y(t)
are finite. By introducing the new variables wi(t), the set of

inequalities (6) can be rewritten as


















































−δ≤y(t)−

n
∑

i=1

(

wi(t−1)+aiy(t−1)+aiy(t−1)−aiy(t−1)
)

−

m
∑

j=1

bj u(t−j+1) ≤ δ , t=r+1, . . . , N

y(t) ∈ [y(t), y(t)] , t = 1, . . . , N

ai ∈ [ai, ai] , i = 1, . . . , n

bj ∈ [bj , bj ] , j = 1, . . . ,m

wi(t) = (ai−ai)(y(t)−y(t)) , i=1, . . . , n , t=1, . . . , N
(8)

where the nonlinear constraints are now embedded in the

new variables wi(t).
For each i=1, . . . , n, t=1, . . . ,N, let us relax the equality

wi(t) = (ai − ai)(y(t)− y(t)) to the following inequalities

0 ≤ wi(t) ≤ (ai − ai)(y(t) − y(t)) (9)

0 ≤ wi(t) ≤ (ai − ai)(y(t)− y(t)). (10)

By substituting (9)-(10) to the definition of wi(t) in (8),

one obtains a set of linear constraints. Let us now introduce

the following optimization problem which allows one to

compute a lower bound on a∗i (a similar problem can be

formulated to compute an upper bound on a∗i ).






















































































inf max

{

max
t=1,...,N

{

wi(t)

(y(t)− y(t))

}

, (ai − ai)

}

s.t.:

−δ≤y(t)−

n
∑

i=1

(

wi(t−1)+aiy(t−1)+aiy(t−1)−aiy(t−1)
)

−

m
∑

j=1

bj u(t−j+1) ≤ δ , t=r+1, . . . , N

y(t) ∈ [y(t), y(t)] , t = 1, . . . , N

ai ∈ [ai, ai] , i = 1, . . . , n

bj ∈ [bj , bj ] , j = 1, . . . ,m

0 ≤ wi(t) ≤ (ai−ai)(y(t)−y(t)) , i=1, . . . , n , t=1, . . . , N

0 ≤ wi(t) ≤ (ai−ai)(y(t)−y(t)) , i=1, . . . , n , t=1, . . . , N
(11)

where the optimization variables are y(t), wi(t), ai, bj , for

t = 1, . . . , N , i = 1, . . . , n, j = 1, . . . ,m.

Problem (11) is a so-called generalized linear fractional pro-

gramming (GLFP) problem [17, p. 152]. In fact, the objective

function is the maximum of ratios of affine functions of the

problem variables, while all the constraints are linear. Thus,

(11) turns out to be a quasiconvex optimization problem.

To solve this problem it is customary to use a bisection

algorithm. For a given tolerance ε > 0, this method requires

the solution of ⌈log2((ai−ai)/ε)⌉ linear feasibility problems.

Let us state a proposition which follows directly from the

previously discussed relaxation.

Proposition 1: For any θ∈F , there exist wi(t), i=1,. . . ,n,

t = 1, . . . , N such that problem (11) is feasible. Moreover,

if âi is the solution of problem (11), one has âi ≤ a∗i .

In general, due to the relaxations of the equality constraint

on wi(t), the solution of (11) provides a conservative lower

bound on a∗i . This procedure must be repeated for all i =
1, . . . , n. Since the parameter update is performed for one

parameter at a time, in order to reduce conservatism it is

convenient to iteratively repeat the entire procedure until

convergence. To this purpose, a simple procedure written in

pseudo-code is reported in Algorithm 1.

Algorithm 1 Compute bounds on a

1: Set tolerance ǫ
2: q ← a; q ← a+ 2 ǫ;
3: while (norm([q; q]− [a; a],’inf’)> ǫ) do

4: q ← a; q ← a;
5: for i← 1 : n do

6: ai ←LOWER BOUND(i, a, a, b, b, u, δ, y, y);

7: ai ←UPPER BOUND(i, a, a, b, b, u, δ, y, y);

8: end for

9: end while

Let us define a = [a1, . . . , an]
′, a = [a1, . . . , an]

′, b =
[b1, . . . , bm]′ and b = [b1, . . . , bm]′. The stopping condition
in line 3 corresponds to

∥

∥

∥

∥

[

q

q

]

−

[

a

a

]∥

∥

∥

∥

∞

≤ ǫ . (12)

So, if no parameter improves more than ǫ w.r.t. the previous

iteration, the algorithm stops providing the final bounds a, a.

In lines 5-8, a loop for each i = 1, . . . , n is performed

for improving bounds on ai. Here, function LOWER BOUND

(and a similar function UPPER BOUND for updating the

bound on ai) denotes a function able to solve problem (11)

by standard bisection techniques.

Once Algorithm 1 is over, the final values of ai, ai
are available for all i. It remains to compute bounds on

parameters bj . This can be done by solving 2m LP problems.

Such problems have the same constraints of (11), while the

objective function is inf bj to compute the lower bound on

b∗j (and sup bj for the upper bound on b
∗

j ), for j =1, . . . ,m.

In general, the obtained bounds are not tight due to conser-

vatism of the proposed relaxation of the FPS constraints.

IV. IMPROVING CONVERGENCE OF THE BOUNDING

PROCEDURE

In the previous section, an algorithm has been proposed

to iteratively refine the bounds on the parameters ai of the

ARX model. Unfortunately, Algorithm 1 may execute several

iterations before the stopping condition (12) is satisfied, thus

requiring the solution of a large number of LPs.

In this section, a new algorithm is proposed in order to

improve the convergence rate of the bounding procedure

reducing the number of LPs to be solved (see the numerical

tests presented in Section VI). Moreover, this alternative

procedure is proven to provide tight bounds in the case of

first-order ARX models.
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The new algorithm is based on the solution of a sequence

of LPs of the type






































































inf ai

s.t.:

−δ≤y(t)−
n
∑

i=1

(

wi(t−1)+aiy(t−1)+aiy(t−1)−aiy(t−1)
)

−
m
∑

j=1

bj u(t−j+1) ≤ δ , t=r+1, . . . , N

y(t) ∈ [y(t), y(t)] , t = 1, . . . , N

ai ∈ [ai, ai] , i = 1, . . . , n

bj ∈ [bj , bj ] , j = 1, . . . ,m

0 ≤ wi(t) ≤ (ai−ai)(y(t)−y(t)) , i=1, . . . , n , t=1, . . . , N

0 ≤ wi(t) ≤ (ai−ai)(y(t)−y(t)) , i=1, . . . , n , t=1, . . . , N.
(13)

Notice that (13) has the same constraints of (11), while

its solution provides a lower bound to the solution âi of

problem (11). Hence Proposition 1 holds also for (13). Propo-

sition 1 provides necessary conditions for the feasibility of

a given θ, i.e., if (13) is not feasible for a given θ, then

θ /∈ F . This is a key information which will be exploited to

speed up convergence of the bounding procedure. For ease

of presentation, let us define the following function returning

a solution of (13):

[feas, opt]=solve lp(obj, a, a, b, b, u, δ, y, y)

where obj denotes the objective function to be minimized or

maximized (e.g., obj = ‘ inf ai’ in (13)), feas can be true or

false depending on the feasibility of the problem, while opt
contains the optimal solution (in case of feasible problems).

Algorithm 2 describes a procedure which returns a lower

bound on the regression parameter ai (a similar procedure

can be devised for the upper bound).

Algorithm 2 Improved lower bound on parameter ai

1: function LOWER BOUND IMPR(i, ε, a, a, b, b, u, δ, y, y)

2: q ← a; q ← a; step← (qi − q
i
)/2;

3: while (step ≥ ε/2) do

4: qi ← q
i
+ step;

5: [feas, opt]=solve LP(‘inf ai’,q, q, b, b, u, δ, y, y)

6: if feas then

7: step← step/2; q
i
← opt;

8: else

9: q
i
← qi;

10: end if

11: end while

12: ai ← q
i
;

13: return a
14: end function

The scalar step denotes the size of the interval on pa-

rameter ai which will be analyzed at the current iteration.

Throughout Algorithm 2, q = a, q = a, except for the i-
th component q

i
and qi which denote the current estimated

bounds on the lower bound ai, i.e., ai ∈ [q
i
, qi] at the current

iteration. In line 5, the LP (13) is solved in the interval

[q, q]. If it is feasible, the lower bound q
i

is updated with

the solution of the LP, while the value of step is divided by

two. If it is infeasible, q
i

is set to qi.
In order to analyze the convergence properties of Algo-

rithm 2, let us first introduce the following assumption.

Assumption 4: There exists a constant ε > 0 such that,

if ai − ai < ε and [ai, ai] ∩ [a∗i , a
∗

i ] = ∅, then the set of

constraints in the LP (13) is infeasible.

Note that Assumption 4 is not restrictive, because when

the constant ε approaches zero, by (9)-(10), also wi(t) = 0,

∀t, and hence the relaxed constraint set (13) boils down to

the exact one (8) (said another way, infeasibility of a given

ai can be checked exactly by solving a single LP).

Theorem 1: Algorithm 2 converges in a finite number of

iterations. Moreover, if n = 1 and Assumption 4 holds, then

the lower bound a1 returned by Algorithm 2 is tight, i.e.,

a∗1 − a1 ≤ ε.

Proof: In Algorithm 2, every time the LP solved in line

5 is feasible, the variable step is halved. Hence, being the

stopping condition step < ε/2, in order to prove that such a

condition is eventually satisfied, it is sufficient to show that

infeasibility of the LP cannot occur indefinitely. This directly

follows by the fact that the lower bound q
i

is increased by

step every time infeasibility occurs (see lines 9 and 4). Now,

let n = 1 and assume that the tolerance ε in Algorithm 2 is

chosen according to Assumption 4. Whenever a∗1 − q
1
> ε,

in Algorithm 2 either q
1

is increased by step > ε, or the

variable step is halved. This will eventually lead either to a

value of q
1

satisfying a∗1 − q
1
≤ ε, or to step ≤ ε. In the

latter case, Assumption 4 guarantees that all the subsequent

LPs with the constraint a1 ∈ [q
1
, q

1
+step] will be infeasible

as long as q
1
+ step < a∗1. Therefore, feasibility will finally

occur only when a∗1−q
1
≤ step ≤ ε, and then step is halved

for the last time and the stopping condition is satisfied.

Theorem 1 states that for first-order ARX models one

can find the exact bounds on the parameter a1 by executing

a single run of Algorithm 2. Although this property does

not hold for general ARX models, it is expected that us-

ing Algorithm 2 to bound each parameter ai may reduce

the number of iterations needed to achieve convergence.

Therefore, for a generic ARX of order n it is proposed to

use Algorithm 1, with the function LOWER BOUND replaced

by the function LOWER BOUND IMPR described by Algo-

rithm 2 (and similarly for the function UPPER BOUND). In

Section VI, it will be shown by numerical tests that this

allows to significantly reduce the overall number of LPs to

be solved in the bounding procedure.

V. STRUCTURAL PROPERTIES OF THE FPS FOR BINARY

SENSORS

In this section, we analyze some structural properties of

the FPS, for the case of a binary sensor

s(t) = σ(y(t)) ,

{

0 if y(t) ≤ C
1 if y(t) > C

(14)

Theorem 2: For any output sequence s ∈ {0, 1}N , any

input sequence u ∈ R
N and any noise level δ, the set

{θ ∈ Θ0 : b1 = b2 = · · · = bm = 0;
∑n

i=1 ai = 1} (15)

is always contained in the feasible set F .

Proof: Let ǫ > 0 and set

y(t) =

{

C + ǫ if s(t) = 1
C − ǫ if s(t) = 0

. (16)
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Then, for every t, the second constraint in (6) is satisfied

by construction, while the first constraint boils down to

−δ≤C ± ǫ−
n
∑

i=1

ai (C ± ǫ)−
m
∑

j=1

bj u(t−j+1) ≤ δ. (17)

By setting b1= . . .= bm=0 and a1+a2+ · · ·+an=1, (17)

becomes −δ≤±ǫ−
∑n

i=1±ai ǫ≤ δ which is satisfied for any

δ > 0, provided that a sufficiently small ǫ is chosen.

Remark 1: Theorem 2 shows that, in the case of binary

sensors, the hyperplane defined by the equality constraints in

(15) is always contained in the FPS, unless this is excluded

by suitable a priori information on the system dynamics (i.e.,

by choosing Θ0 so that the set (15) is empty). Notice that

the constraint
∑n

i=1 ai = 1 implies that the system transfer

function has a pole in 1, which corresponds to the fact that

the system can “hold” indefinitely the constant value C even

with no input signal, thus letting an arbitrarily small noise

generate any binary output sequence s.

Now, let us consider the special case of an ARX(1,1) model

y(t) = a1y(t−1)+b1u(t)+d(t). The following result holds.

Corollary 1: Let u, s ∈ R
N be given and u = mint u(t),

u = maxt u(t). Define the set

I = {θ ∈ Θ0 : 1−
δ

C
≤ a1 +

u

C
b1 ≤ 1 +

δ

C

1−
δ

C
≤ a1 +

u

C
b1 ≤ 1 +

δ

C

}

.

(18)

Then, I ⊆ F .

Proof: As in the proof of Theorem 2, choose y(t) as

in (16). The first constraint in (6) becomes

−δ ≤ C ± ǫ− a1(C ± ǫ)− b1u(t) ≤ δ

which is equivalent to

1−
δ

C
≤ a1 +

u(t)

C
b1 + g(ǫ) ≤ 1 +

δ

C
(19)

where g(ǫ) = ±a1
ǫ
C
∓ ǫ

C
. For ǫ → 0, the inequalities (19)

represent a strip in the (a1, b1)-plane. The intersections of

such strips for t = 1, . . . , N provides the set I in (18).

Corollary 1 highlights that, for a given data set, there

is always a set of nonzero measure contained in the FPS

(namely, a parallelogram), which does not depend on the

output provided by the binary sensor, but only on the extreme

values taken by the input signal. Notice that for arbitrarily

large input signals and arbitrarily small δ, the set I boils

down to the point {θ : b1 = 0, a1 = 1}, in accordance

with Theorem 2. The result in Corollary 1 can be easily

generalized to ARX models of arbitrary order.

VI. EXAMPLES

In this section, three examples are reported to show the

effectiveness of the proposed work.

Example 1: Consider the following ARX system of order 1

y(t) = 0.6 y(t− 1) + 0.15 u(t) + d(t) .

Let us assume that the prior knowledge on the system is a1 ∈
[−10; 10] and |d| ≤ 0.1. The system output y(t) is measured

by a binary sensor with threshold C = 1. An identification

experiment of length N = 200 is performed by choosing

0 20 40 60 80 100 120 140 160 180 200
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Fig. 1. Example 1. Unknown output sequence y(t) and corresponding
binary measurements s(t), t = 1, . . . , 200.

an input signal u(t) uniformly distributed in [-10;10]. The

noise d(t) has been generated with a uniform distribution

in [-0.1;0.1]. A priori bounds on the output are taken as

M = −10 and M = 10 (see Assumption 3). In Fig. 1, the

unknown signal y(t) and its corresponding binary sequence

s(t) are reported. By applying the procedure proposed in

Section IV with tolerance ε = 10−6, one obtains the outer

box a1 ∈ [0.49884; 1.10000], b1 ∈ [−0.01037; 0.23891],
while the minimum outer box containing the feasible set

is a1 ∈ [0.49884; 1.10000], b1 ∈ [−0.01033; 0.20099]. The

true feasible set and the computed approximating box are

reported in Fig. 2. In order to draw the feasible set, a gridding

technique has been used. As stated by Theorem 1, the bounds

on parameter a1 are tight. The total number of solved LPs is

67 for a computation time of about 1.2 seconds. The number

of solved LPs by using the procedure described in Section III

turns out to be 649 for a computation time of about 12

seconds.2

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
−0.05

0

0.05

0.1

0.15

0.2

0.25

a1

b 1

Fig. 2. Example 1. Feasible set, computed outer box (solid) and minimum
outer box (dashed). The true parameter vector is marked by ‘*’. The striped
region corresponds to the set I in (18).

Example 2: Consider the following ARX system

y(t) = 1.55y(t−1)−0.86y(t−2)+3.25u(t)+1.83u(t−1)+d(t).

Let quantized measurements be given in the range [−30; 30]
with a resolution of 1. Prior information on the system

are a1, a2 ∈ [−100; 100] and |d| ≤ 1. An identification

experiment of length 100 is performed by applying a uni-

formly distributed input in [−1; 1]. In Table I, a comparison

between tight bounds (computed by gridding) and computed

bounds are reported. The total number of solved LPs is 236

2Computations have been performed under Matlab by using CPLEX [18],
[19] to solve the LPs, on an Intel Core i5 M520 at 2.40 GHz with 4 GB of
RAM.

2810



TABLE I

EXAMPLE 2. TIGHT AND COMPUTED BOUNDS FOR THE FEASIBLE SET.

tight bounds computed bounds
min max min max

a1 1.457 1.649 1.450 1.650

a2 -0.966 -0.773 -0.969 -0.772

b1 1.943 4.634 1.855 4.683

b2 0.326 2.689 0.298 2.847

1.4 1.45 1.5 1.55 1.6 1.65 1.7
−1

−0.95

−0.9

−0.85
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2
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Fig. 3. Example 2. Projection of the feasible set on the plane (a1, a2)
[left] and (b1, b2) [right]. Computed outer box (solid) and minimum outer
box (dashed). The true parameter vector is marked by ‘*’.

for a computation time of about 2.8 seconds. In Figure 3,

the projection of the true feasible set on the plane (a1, a2)
and (b1, b2) are reported along with the computed bounds.

Notice that, in order to make the computational burden

acceptable, it has been necessary to coarsen significantly the

grid (especially w.r.t. parameters bj).

Example 3: Consider an ARX system with n= m= 4. Let

quantized measurements be given in the range [−350; 350].
Prior information on the system are ai ∈ [−100; 100],
i = 1, . . . , 4 and |d| ≤ 1. An identification experiment

of length N = 300 is performed by applying a uniformly

distributed input in [−5; 5].
In Table II, the true parameter values and the computed

outer boxes are reported assuming a sensor resolution of 0.5
and 5, respectively. For both cases, the computation time is

less than 6 minutes. The true bounds cannot be computed

in this case because for an 8-dimension parameter space the

gridding approach is not computationally tractable.

VII. CONCLUSIONS

In this paper, an algorithm for bounding the feasible

parameter set of ARX models in presence of binary or

quantized measurements has been proposed. The measure-

TABLE II

EXAMPLE 3. TRUE PARAMETER VALUES AND COMPUTED BOUNDS FOR

THE FEASIBLE SET.

computed bounds computed bounds
true values (sensor resolution 0.5) (sensor resolution 5)

min max min max

a1 1.33 1.291 1.364 1.105 1.552

a2 -0.66 -0.724 -0.598 -1.026 -0.361

a3 0.58 0.527 0.649 0.256 0.923

a4 -0.41 -0.443 -0.385 -0.572 -0.256

b1 8.25 8.108 8.410 7.180 9.190

b2 3.83 3.556 4.153 1.989 5.641

b3 5.15 4.889 5.511 3.029 7.461

b4 -3.12 -3.326 -2.901 -4.148 -1.658

ment noise is assumed to be unknown but bounded and a

worst-case approach has been adopted. Convergence issues

have been analyzed and the proposed algorithm turns out

to be computationally feasible for ARX systems of rea-

sonable order. Another result concerns the characterization

of some structural properties of the feasible parameter set

when measurements are obtained through binary sensors.

The investigation of similar properties in the case of multi-

threshold sensors is the subject of ongoing research.
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