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Abstract—In this paper, inspired by Lagrangian mechanics, a
marine craft is regarded as a mechanical system subject to both
holonomic and nonholonomic constraints. Then, the forces that
secure fulfilment of the constraints are derived. The proposed
method is used to design a controller which makes the craft con-
verge to straight-line paths with an exponential rate. A method
to handle underactuation in sway is also proposed. Simulation
results demonstrate the performance of the proposed method,
and enlighten the effect of the new selection of constraints for
the path-following problem.

I. INTRODUCTION

In many applications, a marine craft has to move along a
given path. Compared to trajectory tracking (TT) [1] in which
a vehicle is forced to track pre-specified time functions of
all states, path following (PF) removes temporal constraints
and reduces the tracking problem to only a subset of states.
In [2], the authors highlight an underlying difference between
TT and PF for non-minimum-phase systems. In addition, the
stability proof of the full-state TT [3] needs yaw velocity to be
persistently exciting, indicating that straight paths cannot be
tracked. The shortest path between any two poses can always
be characterized by a combination of at most two curves
and one straight line [4]. Moreover, in maritime applications,
routes are usually expressed in terms of waypoints [5] and
made up of straight segments. This motivates methods for
straight-line path following.

Many marine craft are underactuated; thus, for practical
purposes, underactuation must be taken into account. Control
of underactuated craft is challenging. According to [6] and [7],
underactuation may place a nonholonomic constraint at the
acceleration level and causes difficulties for classical control
methods, see [8] for more details.

Path following of underactuated ships have been investi-
gated in many papers. Most of works for straight-line PF
are guidance-based and use the line-of-sight (LOS) guidance
method. References [9]–[11] present control methods for
straight-line PF and waypoint tracking that put a lower bound
on the LOS lookahead distance to render the cross-track error
and sway velocity uniformly globally asymptotically stable
(UGAS) at the origin. In [12], a robust and adaptive controller
using backstepping method is developed, which discusses the
LOS lookahead distance for boundedness of the unactuated
dynamics in the presence of external disturbances. Based
on the backstepping technique, [13] proposes a controller
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that forces the heading to follow the desired heading while
stabilizing forward speed. To deal with underactuation, it
assigns dynamics to the stabilizing function, and propose a
dynamic controller. Robustification of the method is carried
out with constant parameter adaptation in [14]. However,
neither analyzes convergence to the desired path.

In [15], a method for formation control of a fleet of fully
actuated marine surface craft is put forward. The idea is to
conceive the control objectives as mechanical constraints and
treat the system as a constrained system. Then, the Lagrange
multiplier method is employed to derive the forces that secure
fulfillment of the constraints. This method deals only with
holonomic constraints which place restriction on position
variables. However, in some applications, it is required to
assign desired values to velocity variables, which imposes
nonholonomic constraints on the system.

The main contribution of the paper is twofold. First, a
systematic approach to simultaneously handle both positional
and velocity constraints is proposed in order to solve various
motion control schemes e.g. PF and formation control. More
precisely, the paper generalizes the recent paper [15] to strate-
gies that include speed assignments.

Second, we aim to show how new constraints can be
included in path following problems and how well it results.
Indeed, the proposed method provides an approach that fa-
cilitates inclusion of new constraints. As a consequence, in
contrast to the previous above-mentioned works, the cross-
track error can be proved uniformly globally exponentially
stable (UGES) regardless of the guidance system parameter.
The controller is in a generic setting so as to have the
capability to control both fully actuated and underactuated
marine craft.

After introduction, a brief review of Lagrangian mechanics
dealing with constrained systems is presented. In Section
III, the problem is formulated. Section IV is devoted to the
proposed control method and summarizes the main result
of the paper. The controller is demonstrated using computer
simulations. The paper ends with conclusion.

II. LAGRANGIAN MECHANICS FOR CONSTRAINED
MOTION

The Lagrangian of a mechanical system [16] in an n-
dimensional configuration space, uniquely described using a
set of generalized coordinates q, is defined as

L(q, q̇) , T (q, q̇)− V(q) (1)

in which T = 1
2 q̇

TM(q)q̇ is the kinetic energy, V(q) is the
potential energy, and the matrix M(q) ∈ Rn×n is the mass
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and inertia matrix. The vector q̇ is the vector of generalized
velocities. The Lagrange-D’Alembert principle states how the
Lagrangian of a mechanical system exposed to the generalized
forces τ connects with the equations of motion:

d

dt

∂L
∂q̇i
− ∂L
∂qi

= τi, i = 1, · · · , n (2)

which are also known as the Euler-Lagrange equations. Equa-
tion (2) results in

M(q)q̈ + n(q, q̇) = τ (3)

where n(q, q̇) =

(
Ṁ(q)− 1

2
q̇T

∂M(q)

∂q

)
q̇ +

∂V(q)

∂q

The Lagrangian mechanics deals with constrained systems
in an appealing way that is discussed in the following.

A. Holonomic Constraints

A system can be subject to k geometric constraints:

G(q, t) = 0 (4)

which are defined on generalized coordinates and usually
called holonomic constraints. They may arise when one part
of the body must be in contact with a specific manifold.
Holonomic constraints are well-defined to be tackled with
Hamilton’s generalized principle which augments the La-
grangian (1) with the constraints according to

L∗ = L+ λTGG (5)

This is done by introducing the Lagrange multipliers λG ∈
Rk. The Euler-Lagrange equations are then applied to the
augmented Lagrangian (5) over the extended set of the in-
dependent coordinates {q,λG}. This leads to the equations of
motion (3) where the generalized force vector changes to

τ = τ ext + τ c (6)

In (6), τ ext denotes the external forces and τ c represents the
forces of constraints which are given by

τ c = −
(
∂G

∂q

)T
λG (7)

This is referred to as the Lagrange multiplier method. Just
bear in mind that it is presumed G = 0 for all t.

B. Nonholonomic Constraints

In addition to geometric constraints, a system may involve
m kinematic constraints. First-order kinematic constraints can
be represented by

K (q, q̇, t) = 0 (8)

If the constraints (8) are integrable, they can be represented
as an algebraic equation consisting of position variables; that
is, they are in essence holonomic. Otherwise, they are said to
be nonholonomic. D’Alembert’s principle and any principles
based on virtual displacement cannot be applied for general
nonholonomic constraints [17].

For vehicles including marine craft, kinematic constraints
usually are linear in velocity

A(q, t)q̇ + B(q, t) = 0 (9)

If the constraint set (9) is driftless and does not explicitly
depend on time, it is called Pfaffian. In the case of inte-
grability of (9), they can be integrated and represented as
the geometric constraints (4). The constraints are then termed
semi-holonomic. Such constraints can be treated as holonomic
constraints with the Lagrange multiplier method developed
from D’Alembert’s generalized principle even though the
integrated form is not known.

However, if the constraints (9) are not integrable, they are
nonholonomic. In this case, augmentation of the Lagrangian
akin to what is carried out for holonomic constraints is not
correct. The proper principle to apply is D’Alembert’s basic
principle [17] which results in the fact that a system with the
equations of motion (3) subject to nonholonomic constraints
(9) is enforced by the vector τ in the form (6) but τ c is
computed using

τ c = −ATλK , λK ∈ Rm (10)

C. Systems subject to both constraints

If a system is subject to m nonholonomic constraints C1,
linear in velocity, and k holonomic constraints C2, the con-
straint force vector τ c is computed using [18]

τ c = −WTλ (11)

in which W , [WT
1 ,WT

2 ]T , is called the Jacobian matrix,
where

W1 = ∂C1/∂q̇, W2 = ∂C2/∂q (12)

and λ , [λT1 ,λ
T
2 ]T with λ1 ∈ Rm and λ2 ∈ Rk.

III. PROBLEM FORMULATION

This paper addresses the problem of path maneuvering to
straight-line paths which involves a LOS guidance system and
a nonlinear controller. The maneuvering problem is divided
into two subproblems [19]:

1) Geometric task which is to reduce the distance between
the vehicle and the path. The LOS guidance system is
in charge of mapping the desired position (xd, yd) into
the desired heading ψd. This objective is primary and
imposes holonomic constraints on the system.

2) Dynamic task which is to make the forward velocity
track the desired speed profile, ud. This objective is of
secondary importance as moving on the path is more
important than moving with the desired speed. It places
nonholonomic constraints on the system.

A. Line-of-Sight (LOS) Guidance System

Here, the LOS projection algorithm, taken from [5], is
presented. It is assumed that the path is characterized using
a predefined set of waypoints, and it is composed of straight-
line segments connecting any two successive waypoints. The
aim of the guidance system is to compute the desired heading
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ψd that the vehicle has to acquire in order for moving toward
the path and after reaching the path, moving along it.

Assume that the waypoints are denoted by pi = [xi, yi]
T

and two active points are indexed by k and k + 1. The slope
of the straight line connecting them is denoted by αk. The
cross-track error, defined as the shortest distance between the
vehicle and the path, is found using

e(t) = − (x− xk) sin(αk) + (y − yk) cos(αk) (13)

where x and y represent the current position of the vehicle.
The desired heading angle is then given by

ψd(t) = atan2 (−e/∆) ∈ (−π, π) (14)

∆ > 0 is called the lookahead distance, which specifies the
point ahead of the ship along the path toward which the ship
is asked to move.

A simple switching criterion is employed to select the active
waypoints. If the along-track error between the vehicle and
waypoint pk is

s(t) = (x− xk) cos(αk) + (y − yk) sin(αk) (15)

and the along-track error between two active waypoints is
denoted by sk, the active waypoints will be k+ 1 and k+ 2 if
s(t)−sk > L where L is a predefined threshold. According to
[5], this is the lookahead-based steering method which aligns
the x-axis of {b} with LOS vector.

B. Standard Model of Surface Marine Craft

A standard model for marine surface craft is considered [5].
The position and the heading of the vessel expressed in the
inertial frame {i} is represented by η = [x, y, ψ]T ∈ R2 ×
S1. The body-fixed velocities are given by ν = [u, v, r]T ∈
R3 which are related to the generalized velocities through the
kinematics

η̇ = R(ψ)ν (16)

where the rotation matrix R(ψ) is

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (17)

The kinetics is described by

Mbν̇ + Cb(ν)ν +Db(ν)ν = τ bp + τ bc (18)

where τ bp denotes the actuator force vector expressed in
body-fixed frame {b}, and τ bc = RT (ψ)τ c represents the
constraint forces (11) transformed from {i} to {b}. In (18),
Mb =MT

b > 0,Ṁb = 0 is the mass and inertia matrix, Cb(ν)
is the Coriolis and centripetal matrix and Db(ν)ν captures
damping forces. They take the following forms:

Mb =

m11 0 0
0 m22 m23

0 m23 m33

 ,Db =

d11 0 0
0 d22 d23

0 d23 d33


Cb =

 0 0 −(m22v +m23r)
0 0 m11u

m22v +m23r −m11u 0


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Fig. 1: Diagram of the proposed framework.

Note that surge is decoupled from sway and yaw due to
symmetry assumption in xz-plane. Kinetics (18) can be rep-
resented in terms of the generalized coordinates and velocities
using (16). In this case, it takes the form of (3) with

M(η) = R(ψ)MbR(ψ)T

n = R(ψ)
(
Cb(ν)ν +Db(ν)ν −MbRT Ṙ

)
R(ψ)T

In the case of underactuation, τv = 0; i.e. τ = [τu, 0, τr]
T .

C. Control Objectives and Constraint Functions

Mathematically, the control objectives are defined here.
Assume that ud(t) > 0, and ud ∈ C1. The first objective is

lim
t→∞

ũ = 0, where ũ(t) , u(t)− ud(t) (19)

In addition, we want to make ψ̃(t) , ψ(t) − ψd(t) converge
to zero while the ship approaches the path; equivalently, the
objectives are:

lim
t→∞

ψ̃(t) = 0 and lim
t→∞

e(t) = 0 (20)

Therefore, one can place these constraints on the system

C1 =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] [
ẋ
ẏ

]
−
[
ud
vd

]
≡ W1(η)η̇ +α1(t)

(21)

C2 =

[
ψ − ψd(t)

e

]
(22)

which implies that C1 is nonholonomic and C2 is holonomic.
The second element of C1 is equivalent to ṽ , v− vd. If the
vessel is fully actuated, vd can be set equal to zero to avoid
moving sideways. In the case of underactuation, as it will be
discussed later, it introduces a differential equation that ensures
boundedness of the unactuated dynamics and assures internal
stability of the closed-loop system.

D. Framework Overview

A schematic diagram of the constrained control framework
is displayed in Fig. 1. Actually, the velocity and position of
the system described by (16) and (18) are restricted to the
manifolds described by the constraints (21) and (22). Hence,
the constraint forces are computed such that the constraints are
always fulfilled; that is, C1 = 0 and C2 = 0. The following
section explains the constraint stabilization block in Fig. 1.
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IV. CONSTRAINT STABILIZATION: CONTROL DESIGN

In this section, a method that makes the ship converge to
a single straight-line segment is proposed. For simplicity, the
inertial frame is rotated such that the x-axis becomes tangent
to the path. Accordingly, αk = 0 and e = y − yk.

Recalling the requirement, stated in III-C, that C2 = 0 has
to hold always, C2 is stabilized using

Ċ2 +K2C2 = 0⇒W2η̇ +α2(t) +K2C2 = 0 (23)

in which K2 = diag(k1, k2) > 0 and α2 = [−ψ̇d, 0]T .
Noting the definitions of the Jacobian matrixes in (12) and the
expression of C1, (21) and (23) are lumped together, which
results in the unified constraint:

Φ =Wη̇ + a(η, t) (24)

in which a(η, t) = [α1,α2 +K2C2]T and α1 = −[ud, vd]
T .

According to (21)-(22), we have

W =

[
R(ψ)T

0 1 0

]
(25)

It is required to stabilize the unified constraints (24) to be sure
that (21) and (23) are satisfied. This is done using a P-type
controller:

Φ̇ +KΦΦ = 0

⇒W(η)η̈ + Ẇ(η)η̇ + ȧ(η, t) +KΦΦ = 0 (26)

in which KΦ = diag{ku, kv, k3, k4} > 0. Solving (3) for η̈
and substituting the solution in (26), an algebraic equation for
the multipliers λ is developed

WM−1WTλ = −WM−1n+ Ẇη̇ + ȧ+KΦΦ (27)

Using (11), the constraint forces are computed as

τ c = −MW†
(
Ẇη̇ + ȧ+KΦΦ

)
+ n (28)

in which W† is the Moore–Penrose pseudo–inverse, which is
given by W† =

(
WTW

)−1WT .
The control problem is solvable if the inversion is possi-

ble. Strictly speaking, the constraint set must include neither
conflicting nor redundant constraints. For the current choice
of constraints, there is no singularity, as det(WTW) = 2.

It is valuable to highlight that W acts like a transformation
matrix to translate λ defined in a 4-D configuration space into
τ defined in a 3-D workspace. Since we need to apply the
forces to the system, the forces are directly derived. For the
current problem, W† is equal to R(ψ)

0
0
0


︸ ︷︷ ︸

Rn

− 1

2

 0 0 0 0
sin(ψ) cos(ψ) 0 −1

0 0 0 0


︸ ︷︷ ︸

Re

(29)

Eq. (29) suggests decomposing the constraint forces into two
parts; hence, expressing (28) in {b}, it follows that

τ bc = τn + τ e (30)

τn, which is the required force to make ũ, ṽ, and ψ̃ converge
to zero, is given by

τn = n−MΩ (ȧ+KΦΦ) (31)

in which Ω = [I3×3, 03×1]. Indeed, (31) is the control force
that linearizes the system. The second part, τ e is

τ e = −MR(ψ)TRe(ψ)
(
Ẇη̇ + ȧ+KΦΦ

)
(32)

τ e is developed from inclusion of the cross-track error in the
design and is to guarantee exponential convergence to the path.

Remark 1. In many articles for linear course control such as
[9]–[14] either convergence to the path is secured based on the
lookahead distance or it is not discussed. They do not consider
the cross-track error directly in the design procedure. However,
in the proposed method, the cross-track error is explicitly
incorporated in the design procedure, and as it follows from
Theorem 1 and Corollary 2, it decays exponentially with no
restrictions on the guidance system. We will discuss how
it affects the speed assignment task in section V where
comparison with a conventional controllers is made.

If the ship is fully actuated, one can set vd = 0 and the
control law (30) secures fulfillment of the control objectives
(22)-(21). Defining the error system ζ , [ũ, ṽ, ψ̃,

˙̃
ψ, e, ė]T ,

Theorem 1 summarizes the outcome.

Theorem 1 (Fully actuated marine craft). Provided ud > 0
and belong to C1, vd = 0 and ψd is computed using (14),
the control law (28) renders the error system ζ globally
exponentially stable (GES) at the origin.

Proof: The proof is given in Appendix A.

Corollary 1. ψ̇d and ψ̈d exist and are globally bounded.

Proof: It follows from Theorem 1 that ë+k7ė+k8e = 0
where k7 & k8 are defined in the next section. Thus, e, ė, & ë
are globally bounded. On the other hand, one can differentiate
(14) w.r.t time to find an upper bound for ψ̇d & ψ̈d. It gives∣∣∣ψ̇d∣∣∣ ≤ |ė|/∆, ∣∣∣ψ̈d∣∣∣ ≤ |ë|/∆ + 2|ėe|/∆2 (33)

The inequalities (33) are globally bounded.

Extension to Underactuated Marine Craft

In case the craft is not actuated in sway, the second element
of (30) must be zero since it cannot be applied to the system;
i.e. τ bc,2 = 0. vd(t) is then taken as a DOF to satisfy the new
constraint prescribed by underactuation. In this regard, τ bc,1 and
τ bc,3 depend on vd. Consequently, the requirement is to assign
a proper value to vd such that the closed-loop control system
is internally stable and the unactuated dynamics is globally
bounded. Setting τ bc,2 = 0 and defining k5 = k1 + k3, k6 =
k3k1, k7 = k2 + k4, and k8 = k4k2, the following differential
equation emerges:(

1− 0.5 cos2(ψ)
)
v̇d + d22vd + h(vd, ζ, t) = 0 (34)

Corollary 2 states the result formally.
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Corollary 2 (Underactuated marine craft). For positive ud ∈
C1 and ψd given by (14), if vd is found by integration of (34),
τ bc,1 and τ bc,3 make the craft converge to the path exponentially
fast while the forward velocity converges to the desired velocity
with an exponential rate. Also, the unactuated dynamics v and
the control forces are globally bounded.

Proof: The proof is given in Appendix B.

V. SIMULATION STUDY

A model of Cyber Ship II, which is a 1:70 scale model of a
supply ship, is chosen to demonstrate the performance of the
proposed controller for waypoint tracking in calm water. The
kinematics and kinetics of the system are given by (16)-(18),
and the parameters are selected as:

m11 = 22.8 m22 = 33.8 m23 = m32 = 1.01 m33 = 2.7
d11 = 2 d22 = 7 d23 = d32 = 0.10 d33 = 0.5

The model includes the Coriolis and centripetal matrix as
expressed in III-B. The ship is unactuated in sway. The desired
forward speed is ud = 0.1 m/s. The maximum surge force and
the yaw moment are 2N and 1.5Nm, respectively. Saturation
blocks are placed in the simulation model, and the controller
gains are picked so as to avoid saturation while reasonable
growth rate of forces and acceptable performance are achieved.
A series of waypoints forms the path. The lookahead distance
is selected as ∆ = 3m, which is almost twice bigger than the
length of the ship, 1.3m. The threshold for switching logic
(L) is 0.35m. The controller parameters are chosen ku = 30,
kv = 10, k1 = k3 = 1 and k2 = k4 = 2. The ship is initially
at rest. We compare two controllers, one of which, resembling
conventional controllers, has only three constraints on surge,
sway, and yaw whereas the other one has four constraints
including the cross-track error. The simulation results are
shown in Fig. 2.

Discussion

To derive the two controllers, the same approach is used;
for each controller, the corresponding constraint functions
and Jacobian matrixes are taken into consideration and the
dynamics describing vd is then developed. Therefore, the only
difference between them is due to inclusion of the cross-track
error. Fig. 2 shows that the controller with four constraints
outperforms. In fact, the geometric task, which is the primary
goal in this scenario, is better achieved when the cross-track
error is included in the design procedure. Figs. 2 also reveals
what happens that results in a better performance. Actually, the
four-constraint controller takes the advantage of the forward
speed to reduce the distance while the other always guarantees
a constant speed for the craft. The fourth constraint causes an
increase in forward speed when the vessel is off the path.
This is the discrepancy between the proposed method and
many articles in the field of waypoint tracking of marine
surface vehicles. Fig. 2b also displays that the sway velocity
is bounded and approaches zero for straight paths as expected.
Incorporation of e results in a quicker action in yaw dynamics
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Fig. 2: The effect of inclusion of e in the design procedure.
Solid blue lines belong to the case that includes e explicitly.

(see Fig. 2c). Fig. 2c shows the control signals are well-
behaved. Incorporating e may lead to reverse thrust, which
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may not be practical in some cases. To avoid this, the speed
controller has to have high gains.

VI. CONCLUSION

The paper successfully exploits the explicit structure of the
Lagrangian formulation to develop a systematic method that
handles both positional and velocity constraints for motion
control of marine craft. It also demonstrates how a path-
maneuvering controller that guarantees exponential conver-
gence to a straight-line path can be designed. The prominent
performance of the controller may be perceived at turning
points where the controller takes the advantage of the forward
speed to move towards the path as fast as an exponential
function. Therefore, the proposed controller can be used in
missions in which accurate path following is crucial and the
speed assignment task can be sacrificed.

APENDIX A: PROOF OF THEOREM 1

Taking V = 0.5ΦTΦ + 0.5CT
2C2 > 0 as the Lyapunov

function, and differentiating along the solutions of (23) and
(26), we get V̇ = −ΦTKΦΦ − CT

2 K2C2 < 0 proving that
(C2,Φ) = 0 is GES. Then, ψ̃, e, ũ, ṽ, ˙̃

ψ + k1ψ̃, and ė + k2e

are GES at the origin; so are ˙̃
ψ and ė.

APENDIX B: PROOF OF COROLLARY 2

It follows from Theorem 1 that ζ is GES and globally
bounded but τ bc depends on vd and τ bc,2 = 0. As ṽ = 0 is
GES, limt→∞ v(t) = vd(t) exponentially fast. The rest of the
proof is devoted to demonstrate global boundedness of vd. The
function σ = 0.5v2

d > 0 is considered and differentiated w.r.t
time. Then, an upper bound for σ̇ is found using (34) and the
fact that the term (1− 1/2 cos2(ψ)) belongs to [0.5, 1]

σ̇ ≤ − 2n22

m22
σ+ |ψ̇d +

˙̃
ψ|σ+ Γ1(|ζ|, t)

√
2σ+ Γ2(t)

√
2σ (35)

where Γ2(t) = 0.5 |u̇d| is uniformly globally bounded (UGB)
because u̇d is UGB. m22Γ1(|ζ| , t) = W T |ζ| where
W T = [0.5m22ku + (m22 + 2m11) |ψ̇d|,m22kv +
0.5m22|ψ̇d| + 2d22 + 2m22kv, 2m23k6, (m22 + 2m11) |u| +
0.5m22|ṽ| + 2d23 + 2m23k5,m22k8 + 2m23k8/∆,m22k7 +
((m22 + 2m11) |ud|+ 2d23 + 2m23k7)/∆ + 4m23|eė|/∆3]

To remove the nonlinearity in (35), the inequality
√

2σ ≤
1 + 2σ is used; it results in

σ̇ ≤ − 2d22
m22

σ + (|ψ̇d +
˙̃
ψ|+ 2Γ1 + 2Γ2)σ + Γ1 + Γ2 (36)

To apply the comparison lemma, the corresponding equality
(comparison system) for (36) is chosen as

δ̇ = − 2d22
m22

δ + g(t, δ, ζ) + uδ(t) (37)

in which uδ(t) = Γ2(t) and

g(t, δ, ζ) = (|ψ̇d +
˙̃
ψ|+ 2Γ1 + 2Γ2)δ + Γ1(|ζ|, t) (38)

Obviously, uδ is UGB while it can be seen as an external
input for the system (37). The unforced system (37), i.e.
when uδ = 0, is a cascade connection of two GES systems
with g(t, δ, ζ) as the coupling term. According to [20], the

cascaded system made up of two UGES systems is UGES
if the coupling term fulfills the linear growth rate condition
which states there exist continuous functions β1, β2 : R+ → R
such that ‖g(t, δ, ζ)‖ ≤ β1 (‖ζ‖)+β2 (‖ζ‖) |δ|. The functions
β1, β2 may be constructed by a look at (38). Therefore, the
unforced system (37) is UGES at the origin. The system is
furthermore globally Lipschitz w.r.t ([δ, ζ], uδ) uniformly in
t. Consequently, the system (37) is input-to-state stable (ISS)
[21] from uδ to δ, and there exists a positive c > 0 such
that |δ| ≤ c < ∞. According to the comparison lemma
[21], one concludes σ ≤ δ. It follows that |vd| ≤

√
2c.

That is, the ordinary differential equation (34) describes a
globally bounded signal vd, to which the unactuated dynamics
converges. It also implies that the control forces are UGB and
the control system is internally stable.
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