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Abstract— An event-based method to perform the set-point
following task for second order processes with time delay
(SOPTD) is investigated in this work. The aim of the research
is to extend an event-based controller that has been tested
previously in processes responding to the first-order with time
delay (FOPTD) model. The controller is based on feedforward
and feedback actions to do the two main tasks of a controller,
set-point following and disturbances rejection, with an event
triggered paradigm. This work is mainly focused on the
feedforward part of the controller, with the goal of establishing
a method to calculate the control signal and the conditions that
must be satisfied to update it.
Index Terms— Event-based, PID control, feedforward

I. INTRODUCTION

Event-based strategies are advantageous when the nature

of the control problem impose restrictions over the number

of control actions to be applied. This is due to the fact

that, in periodic control systems, communications are done

regardless of the state of the plant, and thus much of

the information flow can be unnecessary. In [1] periodic

and event-based sampling for first order stochastic systems

are compared. From the implementation point of view,

frequently the data acquisition hardware is designed to be

used in periodic sampling systems. It is thus necessary in

these cases to perform periodic sampling at high frequency

and then to implement by software the event detection

mechanism. Moreover, in many cases the energy efficiency

is a key issue, as it occurs with wireless sensor network (see

[2]), where the elements have autonomous power supply. In

this cases the communication must be optimized to obtain

the maximum life of the batteries.

Different types of event-based PID control algorithms

have been proposed in recent works. In [3] and [4] a send-

on-delta sampling is incorporated to the controller. In [5]

a state-feedback approach with a disturbance estimator is

investigated.

Our approach is similar to that described in [6], where

the two main controller tasks, i.e. set-point following and

disturbances rejection, are performed with decoupled event-

based feedforward and feedback actions. The controller is

extended to the case of second order processes, because

although the FOPTD model is simple and describes the

dynamics of many industrial processes, there are situations

when it is convenient to consider other models, and the

SOPTD model is a natural generalization of the FOPTD

model. In these cases where the first order model is not

enough, we can take advantage of the second order model

capabilities while maintaining the same approach of the

method. The idea is to use the feedforward actions to perform

the set-point following task with the minimum number of

control actions, and the feedback actions to cope with the

disturbances. Thus it is necessary to solve different design

problems: the first one is to find a method to generate

the control signals, and since an event-based paradigm is

considered, it is also needed to define the conditions that

trigger the feedforward part events. The second problem is

to describe the disturbances rejection task by defining the

control law and the events conditions that determine how and

when the control signal must be updated. In addition, it is

necessary to perform the coupling of the two parts. Though

both tasks are important, this work is mainly focused on

the event-based feedforward design problem. Finally, with

the purpose of illustrating the described algorithm and to

show that the developed methods are applicable in real

situations, several examples with simulations and real plants

are presented. In these examples, as in the theory, the two

problems are considered independently: set-point following

and disturbances rejection tasks.

The organization of this paper is as follows: Section

II describes the design of the feedforward algorithm, and

Section III describes the feedback part. Section IV presents

the results obtained both in simulation and in practice.

Finally, Section V contains the conclusions obtained from

the results and some future lines of research to improve the

method.

II. FEEDFORWARD ACTION

The main idea of the algorithm is to apply a feedforward

control signal that moves the process output to the set-

point value, and then a feedback control action to reject

disturbances. It is assumed that, starting from null initial

conditions, a change in the process output from 0 to ysp
is required. In [6], a feedforward controller for FOPTD

processes is designed, applying only two control actions to

move the process to the reference. In this case, since we

are considering a second order model, two actions are not

enough to obtain the same response as in the FOPTD. To

achieve the desired response three control actions are needed.
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A. SOPTD process

We start from the second order plus dead time (SOPTD)

model,

G(s) =
K

(1 + Ts)(1 + ηTs)
e−Ls (1)

where T and ηT are the poles of the sistem, K the gain and

L the dead time. It is assumed, without loss of generality,

that 0 < η ≤ 1. Two different cases have to be considered

separately: 0 < η < 1, and η = 1. Applying the inverse

Laplace transform to (1), the expression of the process step

response in the time domain can be described as,

y(t) =











Ku(1− 1
1−η

e−
t−L
T − η

η−1e
−

t−L
ηT ) η 6= 1

Ku(1− e−
t−L
T − t

T
e−

t−L
T ) η = 1

(2)

where u is the amplitude of the input step.

The feedforward control signal desired is generated with

the following scheme,

uff (t) =























Kff1
ysp

K
t ≤ τ1

Kff2
ysp

K
τ1 < t < τ2

ysp

K
t > τ2

(3)

where control signal levels have been expressed as a function

of ysp in order to obtain the values of Kff
1

and Kff
2

for

the controller independently of the amplitude of the set-point

step. Initially, a first action Kff
1

ysp

K
is applied to move the

controlled variable to approach the desired set-point. Then,

when the process output crosses a certain level ∆1 (at a

time t = τ1), the control signal is switched to the second

value, Kff
2

ysp

K
. Since we are considering a second order

process, after the initial phase the first derivative of the output

cannot be reset instantaneously, and thus it is necessary to

apply this second control action to decelerate the process

output. Finally, when a level ∆2 (at t = τ2) is crossed, a

control action
ysp

K
is applied to maintain the output at the

set-point value. Figure 1 shows a graphical representation of

the described behaviour.

In summary, two are the constraints that must be satisfied,

1) The process output at t = τ2 +L must be equal to the

set-point, y(τ2 + L) = ysp, and

2) At time t = τ2 + L, the first derivative of the process

output must be null: ẏ(τ2 + L) = 0

The analysis of the two cases is detailed in the following

paragraphs.

First case(η 6= 1). Applying the control action (3) to the

system, the process output can be described with a piecewise

function composed of four segments. Due to the time delay,

the process output is zero until time t = L. In the time

interval L ≤ t ≤ τ1+L, the process begins to be affected by

the first control action, and the output (and its first derivative)

can be obtained from the step response of the process starting

from null initial conditions,

Fig. 1. Behaviour of the event-based feedforward algorithm for SOPTD
processes

y(t) = Kff1(1−
1

1− η
e−

t−L
T −

η

η − 1
e−

t−L
ηT )ysp (4)

and

ẏ(t) =
Kff1ysp

1− η
(e−

t−L
T − e−

t−L
ηT ) . (5)

The third part of the output corresponds with the effect

of the second control action in the time interval τ1 + L <

t ≤ τ2 + L. The expression is the same as in the previous

interval, but with the initial conditions given by (4) and (5)

at time t = τ1 + L,

y(t) =
(

Kff2 −
Kff2

−y1−ηT ẏ1

1−η
e−

t−τ1−L

T

−η
Kff2

−y1−T ẏ1

η−1 e−
t−τ1−L

ηT

)

ysp
(6)

where y1 = y(τ1 + L) and ẏ1 = ẏ(τ1 + L). Note that using

y1 + ηT ẏ1 = Kff
1
(1 − e−

t
T ) and y1 + T ẏ1 = Kff

1
(1 −

e−
t

ηT ). The first derivative of the output can be obtained

from,

ẏ(t) =
(

Kff2
−y1−ηT ẏ1

T (1−η) e−
t−τ1−L

T

−
Kff2

−y1−T ẏ1

T (1−η) e−
t−τ1−L

ηT

)

ysp .
(7)

Finally, for all t >= τ2 + L the process output is equal to

ysp. In order to simplify the notation, the variable changes

t′ = t
T

, and L′ = L
T

are introduced. Note that from now on,

the time variable in the equations is normalized. However,

this does not have to be considered further because t is used

only as an intermediate variable to obtain the switching levels

for the event-based controller. For the same reason, t′ and the

normalized switching time τ ′1 = τ1
T

will be represented as

t and τ1, respectively. After the changes mentioned before,

the expression of the process output can be written as,
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y(t) =


























































0 0 < t < L

Kff
1

(

1− 1
1−η

e−(t−L)

− η
η−1e

−
t−L
η

)

ysp

L ≤ t

t < τ1 + L

(

Kff
2
−

f(K̄ff ,τ1)
1−η

e−(τ−τ1−L)

−
f(K̄ff ,

τ1
η
)

η−1 e−
τ−τ1−L

η

)

ysp

τ1 + L < t

t ≤ τ2 + L

ysp τ2 + L < t

(8)

where f(K̄ff , t) = Kff
2
− Kff

1
(1 − e−t), and K̄ff =

(

Kff
1
Kff

2

)T
.

The first derivative of the output (8) with respect to the

time is,

ẏ (t) =






























































0 0 < t < L

Kff1

1−η

(

e−(t−L) − e−
t−L
η

)

ysp
L ≤ t

t < τ1 + L

(

f(K̄ff ,τ1)
1−η

e−(t−τ1−L)

−f(K̄ff ,
τ1
η
)e−

t−τ1−L

η

)

ysp

τ1 + L ≤ t

t < τ2 + L

0 τ2 + L < t

. (9)

Then the value of the process output at t = τ2 + L is,

y(τ2 + L) =
(

−
Kff2

−Kff1
(1−e−τ1 )

1−η
e−(τ2−τ1)

−
Kff2

−Kff1
(1−e

−

τ1
η )

η−1 e−
τ2−τ1

η +Kff2

)

ysp
(10)

and its first derivative,

ẏ(τ2 + L) =
(

−
Kff2

−Kff1
(1−e−τ1 )

1−η
e−(τ2−τ1)

−
Kff2

−Kff1
(1−e

−

τ1
η )

η−1 e−
τ2−τ1

η +Kff2

)

ysp
. (11)

In order to do a smooth transition to the stationary value, the

first derivative of the output must be equal to zero at τ2+L.

Introducing this constraint in (11), and after reordering the

equation, it can be expressed as,

(

Kff
2
−Kff

1
(1− e−τ1)

)

e−(τ2−τ1) =
(

Kff
2
−Kff

1
(1− e−

τ1
η )
)

e−
τ2−τ1

η
. (12)

From (12) the value of τ2 can be obtained as a function of

τ1,

τ2 = τ1 +
η

1− η
ln

(

Kff2 −Kff1(1 − e−τ1)

Kff2 −Kff1(1− e−
τ1
η )

)

. (13)

Substituting (13) in (10), we obtain the following expression,

y(τ2 + L)

ysp
= Kff

2
−

(

Kff
2
−Kff

1
(1− e−τ1)

)

2η−1

η−1

(

Kff
2
−Kff

1
(1− e−

τ1
η )
)

η
η−1

(14)

The expression (14) gives the value of the process output

depending on the two control signal levels and the first

switching time τ1. As the reference must be reached at

t = τ2 + L, thus combining (14) with y(τ2 + L) = ysp,

Kff
2
−

(

Kff
2
−Kff

1
(1− e−τ1)

)

2η−1

η−1

(

Kff
2
−Kff

1
(1− e−

τ1
η )
)

η
η−1

= 1 . (15)

Here, the values of Kff
1

and Kff
2

are left as design

parameters. After fixing these parameters, equation (15) can

be solved numerically for τ1 to find the switching time.

Evaluating (13) with τ1 yields the value of the time τ2.

Finally, the levels ∆1 and ∆2 can be obtained by evaluating

y(t) at the switching times τ1 and τ2.

As a particular case, the value of Kff
2

can be chosen to be

zero. This leads to a simplification of the equations derived

above. To see this, introducing Kff
2
= 0 in (10) and (13)

gives,

y(τ2 + L) = Kff
1
(1− e−

τ1
η )

(

1− e−τ1

1− e−
τ1
η

)
1

1−η

ysp (16)

and

τ2 = τ1 +
η

1− η
ln

(

1− e−τ1

1− e−
τ1
η

)

. (17)

Second Case(η = 1). This is the case of a transfer function

with two equal poles.

The same reasoning as in the previous case yields the

expressions,

1 = Kff
2

(

1− (1 + τ2 − τ1)e
−(τ2−τ1)

)

+Kff
1
(1 + τ1 − (1 + 2τ1)e

−τ1) e−(τ2−τ1)
(18)

τ2 − τ1 = L+
Kff

1
τ1e

−τ1

Kff
1
(1− e−τ1) +Kff

2

(19)

where τ2+L is the time at which the process output reaches

the set-point.

Introducing (19) in (18) leads to a complex expression.

Thus it is proposed to simplify the problem by choosing

Kff
2
= Kff

1
. Then, (19) reduces to t = τ1 which after

substituting in (18) yields,

Kff
1

(

(1− 2τ1) e
−2τ1 − 1

)

= 1 . (20)

After fixing the value of Kff
2
, the equation (18) must

be solved for τ1 to find the switching time. Note that the

previous discussion implies that the reference value can be

reached with only two control actions as in the case of

FOPTD processes.

B. Processes with a pure integrator

The method can also be applied to systems with a pure

integrator which can be modeled by the transfer function,

P (s) =
K

s(Ts+ 1)
e−Ls . (21)

The expression of the process step response in the time

domain can be expressed as,

y(t) = Ku
(

t− L− T (1− e−
t−L
T )
)

(22)
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where u is the amplitude of the input step.
Applying the control signal (3), the output of the process

is described by the following expression,
y(t) =



















































0 0 ≤ t < L

Kff
1
(t− L− T (1− e−

t−L
T ))ysp

L ≤ t

t < τ1 + L

(

Kff
1
τ1 +Kff

2
(t2 − T )−

T (Kff
2
−Kff

1
(1 − e−

τ1
T ))e−

t2
T

)

ysp

τ1 + L ≤ t

t < τ2 + L

ysp τ2 + L ≤ t
(23)

where t2 = t−τ1−L. And the first derivative of the process

is ẏ(t) =






























































0 0 ≤ t < L

Kff
1
(1− e−

t−L
T )ysp

L ≤ t

t < τ1 + L

(

Kff
1
(1− e−

τ1
T )e−

t−τ1−L

T

Kff
2
(1 + e−

t−τ1−L

T )ysp

)

τ1 + L ≤ t

t < τ2 + L

0 τ2 + L ≤ t

. (24)

Following the same reasoning as in previous cases, the

first derivative of the process output is forced to be zero at

t = τ2 + L and the equation is solved for the variable τ2,

which is expressed as a function of the first switching time

τ1. Then the solution of τ2 is introduced in the expression

of the process output and equated to ysp. This yields an

equation with only τ1 as unknown.

The expressions of the process output and its first deriva-

tive at t = τ2 + L are,

y(τ2 + L) = Kff
1
τ1 +Kff

2
(τ2 − τ1 − T )

−T (Kff
2
−Kff

1
(1− e

τ1
T ))e

τ2−τ1
T

(25)

and

ẏ(τ2+L) = Kff
2
+(Kff

2
−Kff

1
(1− e

τ1
T ))e

τ2−τ1
T . (26)

Then, the time corresponding to the second switch τ2 is,

τ2 = τ1 + T ln

(

1−
Kff

1

Kff
2

(1− e−
τ1
T )

)

. (27)

Substituting (27) in (23) we have,

y(τ2 + L) =
(

Kff
2
T ln

(

1−
Kff1

Kff2

(1− e−
τ1
T )
)

+Kff
1
τ1
)

ysp .
(28)

Forcing the process output (28) to be equal to ysp at time

τ2 + L we have,

Kff
1
τ1 +Kff

2
T ln

(

1−
Kff

1

Kff
2

(1− e−
τ1
T )

)

= 1 . (29)

The equation (29) can be solved numerically for τ1. Finally,

evaluating the process output at the switching times, τ1 and

τ2, yields the values of the switching levels ∆1 and ∆2.

C. Algorithm

The algorithm can be described as,

Precalculations.

1) Choose the values of the controller parameters, Kff
1

and Kff
2
.

2) Find the first switching time τ1.

3) Use the value of τ1 to calculate the second switching

time τ2.

4) Determine the switching levels ∆1 and ∆2 by evalu-

ating y(τ1) and y(τ2).

Feedforward action.

1) if ysp 6= yspprev
(first event).

a) ff enabled = true (enable the feedforward part).

b) uff (t) = Kff
1

ysp

K
(first feedforward action).

2) if ff enabled

a) if |e| = |ysp −∆1| (second event). g

i) uff (t) = Kff
1

ysp

K
(second ff. action).

b) if |e| = |ysp −∆2| (third event).

i) uff (t) = Kff
2

ysp

K
(final ff. action).

c) else

i) uff (t) = uff(t− Ts) (hold the last action).

ii) if e=0 then ff enabled=false

3) else

a) uff (t) = uff(t− Ts) (hold the last action).

D. How to choose Kff1 and Kff2

One important practical issue is how to choose approp-

priate values of Kff
1

and Kff
2
. A possible approach is

to fix the gains considering the saturation of actuators. In

real applications the maximum set-point change allowed

is limited by yspmax
. Then the gains can be chosen to

always generate a control signal between the maximum and

minimum values admitted by the actuator (as in the example

of Section 3.3.).

Another different approach could be to use an optimization

algorithm to choose the values that obtain the best perfor-

mance, for example to minimize the impact of disturbances

effects or model uncertainties in the process response.

III. FEEDBACK

The previous discussion and the experimental results pre-

sented in Section IV show that the algorithm described

works well in absence of disturbance and model uncer-

tainty. However, in real systems there exists uncertainties,

unmodelled dynamics, external disturbances, etc. Therefore

it is needed to consider the disturbance rejection task. The

solution adopted is taken from [6], i.e., a PI controller

with an event-triggered sampling. The control law is up =
Kp · e (t) +Ki · IE (t), where Kp, Ki are the proportional

and integral gains, and IE(t) =
∫ t

0 e (t) dt is the integrated

error. The proportional part, Kp · e (t), is updated when

|e (t)− e (tprev)| > δP and the integral part, Ki · IE (t)
is updated when |IE (t)− IE (tprev)| > δI , where δP and

δI are the event triggering thresholds for proportional and

integral events, respectively.
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IV. RESULTS

To illustrate the methods discussed before, some examples

are presented for the cases considered in the theory. Some

of them have been tested in simulation and others with a DC

Motor.

A. Identification

In order to apply the algorithm described, it is needed to

obtain a representation of the plant as a SOPTD model. The

method applied in this work is known as 123c (see [7]), and

it is based on the determination of three characteristic points

in the step response of the process.

B. Simulation

A fourth-order process with a time delay is modeled with

the following transfer function,

F (s) =
1

(s+ 1)4
e−0.2s.

As mentioned before, it is necessary to obtain a SOPTD

model of this process in order to apply the algorithm de-

scribed. Thus, applying the model order reduction method

of previous section the transfer function is,

F (s) =
1

(1.1227s+ 1)(2.0812s+ 1)
e−1s.

We assume that the maximum and minimum values of

the control signal admitted by the actuator of this plant

are umax = 3.0 and umin = 0.0, and the reference is

in the range (0,1). Then, the controller gains are fixed as

Kff
1
= umax and Kff

2
= umin. The model obtained with

the identification method has two different poles, i.e. η 6= 1.

Thus the method applied is that described on Section 2.1.

Solving the equations of the method described above, the

values of the switching levels can be obtained,

∆1 = 0.1216,∆2 = 0.6564 .

The simulation of the controller applied to the fourth order

process can be seen in Figure 2. The FOPTD method is also

applied to the fourth order process in order to compare the

performance. Applying the identification method to obtain an

FOPTD model, the process is approached with the following

transfer function,

F (s) =
1

3.5434s+ 1
e−1s.

The values of the controller parameters which have been

calculated by the method described in [6] are,

Kp = 2.3272,∆= 0.5705 .

Figure 3 shows a comparison between the SOPTD method

and a time-based PI, and Figure 4 shows the response of the

SOPTD method applied to the reduced order model and to

the original process. The time-based PI was tuned to obtain

a minimum value of the integrated absolute error. It can be

seen how the SOPTD method achieved a better performance

with the use of only three control actions. The performance

has been compared by calculating the Integrated Absolute

Error (IAE) for the three controllers. The results are showed

in Table I.
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n
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3 levels (Input)

PI (output)

PI (input)

Fig. 2. Response obtained in simulation for the fourth-order process (solid
line) with the three-levels feedforward controller and with a classic time
based PI controller (dotted line) with Kp = 1.2081 and Ti = 3.7482.
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Fig. 3. Response obtained in simulation for the fourth-order process with
the SOPTD event-based feedforward controller (solid line) an the FOPTD
event-based controller (dash dotted line)

TABLE I

VALUE OF THE INTEGRATED ABSOLUTE ERROR (IAE)

FOR THE FOPTD AND SOPTD METHODS

Method IAE

Time-based PI 3.5503
Event-based FOPTD 4.3878
Event-based SOPTD 2.4841

C. Model uncertainty

To investigate the impact of the plant uncertainty, different

simulations were realized varying the plant time constants

and time delay at ±40%, while the gain was constant. Figure

4 shows the simulation results.

D. Example

The plant consists of a DC Motor with two sensors which

read periodically (with sampling period Ts = 0.01s) the

position of the rotor and the angular velocity. The control
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Fig. 4. Impact of the model uncertainty on the controller performance for
the fourth-order process. Differents simulation are showed for values of the
parameters varying at ±40%.

system is implemented as a wireless system, where the

sensors and actuator are connected to a wireless module and

controller is implemented over another module. The plant

can be modeled with the following transfer function,

F (s) =
0.91

s(1.94s+ 1)
e−0.2s .

where the delay is due to the wireless communication

modules. The actuator admits a control signal in the range:

(umin = −3.5V , umax = 3.5V ). Since we are controlling

the rotor position, the maximum change in the set-point is

limited to π. In order to not saturate the actuator, it must be

verified that,

Kff
1
≤

K

π
umax ≈ 1.01,Kff

2
≥

K

π
umin ≈ −1.01 .

Then, choosing Kff
1
= 1 and Kff

2
= −1 and solving the

equations (27), the values of the switching levels obtained

are,

∆1 = 0.6149,∆= 0.9903

and the control signal levels for ysp = 1 are,

u1 = Kff
1

ysp

K
= 1.0989, u2 = Kff

1

ysp

K
= −1.0989 .

Figure 5 shows the response of the real plant with the

controller, with a set-point step change ysp = 1. Note also

that the values of the switching levels have to be calculated

only once, but keeping in mind that, as it occurs with

the control actions, they must be scaled by the amplitude

of the set-point step. As an example, for ysp = 0.5 the

switching levels must have been ∆1ysp = 0.30745 and

∆2ysp = 0.49515.

V. CONCLUSIONS

In this work an event-based algorithm has been developed

to perform the set-point following task in second order pro-

cesses with time delay with only two control actions, in ab-

sence of disturbance. Then, an event-based feedback is added
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Fig. 5. Set-point step change applied to the DC motor. The graph shows
the control signal (dashed line), the angle of the rotor (solid line) and the
angular velocity (dash dotted line)

to the controller to realize the disturbance rejection task.

This algorithm was tested firstly in simulation, obtaining

good results, and finally in a real plant, in order to compare

and validate them. The motivations for the research in this

algorithm were to extend the solution described in [6], and

experimentally tested in [8], to a slightly more complicated

model, with the purpose of having more flexibility in the

representation of the process model under control. However,

more research is still needed in some aspects. Though model

uncertainties was considered in simulation, a thorough study

of the robustness of the method is still required. It would be

also convenient to generalize the solution to n-order models

with time delay. Finally, the development of a tuning rule

for the disturbances rejection task is still an open issue.
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