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Solving Constrained LQR Problems by Eliminating the Inputs from the QP
Giulio M. Mancuso and Eric C. Kerrigan

Abstract— In this paper a new approach to formulate the
constrained Linear Quadratic Regulator (LQR) problem as a
Quadratic Programming (QP) problem is introduced. The new
approach takes advantage of the (Moore-Penrose) generalized
inverse to eliminate control inputs as decision variables, hence
the optimization is performed only over the states belonging to
the prediction horizon. This allows one to save on computation
if an interior point method is used to solve the QP problem
compared to using existing formulations, where the optimization
is done over the states and inputs.

I. INTRODUCTION

Model predictive control (MPC), has become a very
successful control policy. This success is given by the fact
that it is an optimal control policy that takes into account
physical constraints of the real system to control [1]. At each
sampling instant MPC solves a constrained LQR problem.
After the optimization process, only the first optimal control
value is updated in to the system. Although the MPC allows
great performance on control real systems, it require lots of
computation to calculate the opportune control action, since
a considerable optimization problem has to be solved at each
sampling instant.

In practice, the constrained LQR problem is commonly
formulated as a quadratic programming (QP) problem. There
are different ways to formulate the QP starting from the
same LQR problem. Substantially all the approaches in
the literature use as decision variable the control inputs
(condensed formulation) [1]–[3] or both inputs and states
(non-condensed formulation) [1]–[3].

There are several work that point out how different formu-
lation are suitable for some kind of systems respect to other
in terms of computational complexity and coditioning of the
QP problem [2], [4].

In this work we present a new approach to formulate the
QP in terms of only the states. Our formulation has been
derived by removing the control inputs and taking advantage
of the generalized inverse of the input matrix B, when the
linear system is described by xk+1 = Axk +Buk and B is
full column rank.

For long prediction horizons, it has been shown [4] that,
in terms of computational complexity, the non-condensed
formulation with both inputs and states allows better per-
formance compared to the condensed formulated with the
inputs only.
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We will demonstrate that the new approach leads to a
sparse and symmetric formulation of the QP similar to the
non-condensed formulation. Moreover, we will show that,
for long horizons, the new approach allows one to save
computation when an interior point algorithm is used to solve
the QP, compared to the non-condensed approach.

The paper is organized as follows. Section 2 gives a
statement of the problem and discusses some existing results.
Section 3 introduces some basics of the Moore-Penrose gen-
eralized inversed that will be useful for our new formulation.
The new approach with only the states as decision variables
is fully discussed in Sections 4 and 5. Finally, Section 6
shows the advantages from the computational point of view
when using our approach in combination with an interior
point method.

II. LINEAR QUADRATIC MPC PROBLEM

The optimal control problem to solve is

min
u0, . . . , uN−1

x0, . . . , xN

V (·) := 1

2
x′NPxN+

1

2

N−1∑
k=0

(
x′kQxk + u′kRuk

)
(1)

subject to:

x̂ = x0

xk+1 = Axk +Buk, ∀ k ∈ I
yk = Cxk, ∀ k ∈ I

umin ≤ uk ≤ umax ∀ k ∈ I
ymin ≤ yk ≤ ymax ∀ k ∈ I ∪ {N}

where I := {i ∈ N |i = 0, 1, . . . , N − 1}, P ≥ 0,Q ≥ 0,
R > 0 and x̂ is an estimate or measurement of the current
state. The cost to minimize is a function of the states and
inputs over the horizon with length N . The system matrices
are A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. From now on
we will assume that the matrix B is full column rank, with
n ≥ m, i.e. the number of states is greater than or equal to
the number of inputs.

A. Existing Results

In practice, the optimal control problem (1) is translated
in a quadratic programming problem of the form

min
θ

V (θ) := 1
2θ
′Hθ + θ′h

subject to Fθ = f
Gθ ≤ g

(2)

There are two main approaches used to convert the optimal
control problem into a QP problem. Even if they solve the
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same problem they differ in many aspects, such as the size
of the problem, conditioning, etc. We are going to call the
two approaches non-condensed and condensed.

1) In the condensed form the decision variables are only
the inputs, i.e. θ =

[
u′0 u′1 . . . u′N−1

]′
and the

final QP problem will have no equality constraints. The
corresponding problem to solve will be of the form

min
θ

V (θ) = 1
2θ
′Hθ + θ′Dx̂

subject to Gθ ≤ g(x̂)

2) In the non-condensed form the decision vari-
ables are both the inputs and the states, i.e.
θ =

[
x′0 u′0 x′1 u′1 x′2 . . . u′N−1 x′N

]′
.

The corresponding problem to solve will be of the form

min
θ

V (θ) = 1
2θ
′Hθ

subject to Fθ = f(x̂)
Gθ ≤ g

(3)

The dimensions of the matrices resulting from the two
approaches are reported in Table

III. BRIEF OVERVIEW OF THE (MOORE-PENROSE)
GENERALIZED INVERSE

To introduce the new approach based only on the states, we
need to briefly review some basic concepts on the (Moore-
Penrose) generalized inverse [5].

Definition 1: Let Z ∈ Fn×m (with F we denote either
C or R). If Z is nonzero, by singular value decomposition,
there exist orthogonal matrices S1 ∈ Fn×n and S2 ∈ Fm×m
such that

Z = S1

[
D 0
0 0

]
S2, (4)

where D := diag[σ1(A), σ2(A), . . . , σr(A)], r := rank(Z),
and σ1(A) ≥ σ2(A) ≥ · · · ≥ σr(A) ≥ 0 are the singular
values of Z. The (Moore-Penrose) generalized inverse Z+

of Z is the m× n matrix

Z+ = S∗2

[
D−1 0

0 0

]
S∗1 , (5)

where S∗ denote the conjugate transpose of S.
A property that will be useful later is that ZZ+Z = Z,

which can be verified directly from the definition. Note that
the previous property does not imply that ZZ+ = Z+Z = I .
The following statements also hold:

R(Z) = N (I − ZZ+), (6a)
N (Z ′) = R(I − ZZ+), (6b)

where R(Z) and N (Z ′) denote, respectively, the range of Z
and the null space of its transpose. Given the linear system
Zx = b the following statements are equivalent:

1) There exists a vector x ∈ Fm satisfying Zx = b
2) rankZ = rank[Z b]
3) ZZ+b = b

To prove the equivalences we can note that

b = Zx =

Z︷ ︸︸ ︷
(ZZ+Z)x = ZZ+b = Z

x︷︸︸︷
Z+b (7)

and the value of x will consequently be

x = Z+b. (8)

Moreover, if Z is full column rank, the solution of the linear
system, if it exists, is unique and given by (8).

IV. DYNAMIC CONSTRAINT AND STATE FORMULATION

In the MPC problem the dynamic constraint has a double
purpose. First, it denotes a constraint between the input uk
and the next state xk+1. Second, it denotes a relation between
the current state xk and the next state state xk+1. The latter
relation comes up, in general, from the impossibility of the
dynamic system to move the states from an initial state to
any other state in the state space in only one step, even if the
system is reachable. A discrete-time system needs at most n
steps to reach all the space. All those observations come out
from the definition of reachability for discrete-time systems.
Now we want to explicitly derive both relations separately.

Proposition 1: If the triple (xk+1, xk, uk) is feasible, i.e.

xk+1 = Axk +Buk, (9)

and the matrix B satisfies

rankB = m, where B ∈ Rn×m with n ≥ m, (10)

then the dynamic constraint xk+1 = Axk+Buk is equivalent
to

uk = B+(xk+1 −Axk) (11)

(I −BB+)(xk+1 −Axk) = 0. (12)

The above equations, once we have fixed xk, represent the
relations between uk and xk with xk+1.
Note that (11) can be found by observing that the dynamic
constraint can be written as

Xk︷ ︸︸ ︷
(xk+1 −Axk) = Buk, (13)

where Xk ∈ Rn is a vector. This equation can be interpreted
as a linear system of equations. If the triple (xk+1, xk, uk)
is feasible, i.e. xk+1 = Axk + Buk, and B is full column
rank, the input uk exists, is unique, and given by (11). If xk is
fixed, the last equation gives us an injective relation between
the input uk and the next state xk+1.

Under the assumption stated in Proposition 1, (12) can be
derived by replacing (11) in the dynamic equation (9).

If B is full rank and n = m, then (12) is always true
(BB+ = I), which means that it can be removed as a
constraint, since the system is reachable in one step, i.e.
there always exists an input uk that drives the system from
an initial point xk to any point in Rn.

It has to be noted that if B is full row rank and n < m (this
means that we have more inputs than states), the input is not
necessary uniquely determined by fixing xk and xk+1. In this
case (11) will represent the minimum-norm input that drives
the system from xk to xk+1. If B is full row rank the current
approach cannot be applied, because of the non-uniqueness
of the solution to (13).
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V. FROM (1) TO A QUADRATIC PROGRAM: A
PSEUDOINVERSE APPROACH

In this section we are going to show how the use of the
generalized inverse allows us to formulate the constrained
LQR problem as a function of only the states over the
prediction horizon.

A. Cost function

The quadratic objective function (1) can be expressed as
the sum of N terms, i.e. `k := x′kQxk + u′kRuk.

Each term can be rewritten, taking advantage of (11), as

`k = x′kQxk + u′kRuk =

= x′kQxk + (xk+1 −Axk)′

VR︷ ︸︸ ︷
(B+)′RB+(xk+1 −Axk) =

=

[
xk
xk+1

]′ [
Q+A′VRA (−A′VR)
(−A′VR)′ VR

] [
xk
xk+1

]
(14)

For easy readability we define

VR := (B+)′RB+, VQ := Q+A′VRA, VM := −A′VR,

`k =

[
xk
xk+1

]′ [
VQ VM
V ′M VR

] [
xk
xk+1

]
.

If we define the vector

x :=
[
x′0 x′1 . . . x′N−1 x′N

]′
, (15)

then the overall cost function can be written as

V (x) =
1

2
x′Hx, (16)

where

H :=


VQ VM
V ′M VQ + VR VM

V ′M
. . . VM
V ′M VR + P


and H ∈ R (N+1)n × (N+1)n has half bandwidth 2n. The
matrix H is symmetric if matrices Q, R and P are sym-
metric. The convexity of (16) is a direct consequence of the
convexity of (1).

B. Equality Constraints

Since (11) has been taken into account in the cost func-
tion (16), the only remaining equality constraint will be (12),
which that can be written as[

−(I −BB+)A (I −BB+)
] [ xk

xk+1

]
= 0. (17)

From now on we will refer to some properties of
the linear system (17) as properties of the matrix
[−(I−BB+)A (I−BB+) ] ∈ Rn×2n.

It is easy to verify that rank( [−(I−BB+)A (I−BB+)] ) =
rank([I −BB+]). It has to be noted that if (10) holds,
the square matrix (I − BB+) ∈ Rn×n does not have
full rank; this can be verified from the property of the
pseudoinverse (6a), which tells us that the null space of

(I −BB+) is not empty and equal to the range of B. This
implies that (17) does not have full rank.

To find the value of rank(I − BB+) we can use the
rank-nullity theorem [6, p. 199], which in our case, if
(10) holds, i.e. rank(B) = m = dim(R(B)), tells us
that dim(N (B′)) = n − m. From the property (6b)
dim(N (B′)) = n−m = rank(I −BB+). To remove the
redundancy different methods can be applied, like singular
value decomposition, QR factorization, etc. [7]. We rewrite
the equality constraint (17) without redundancy as[

B̂ B
] [ xk

xk+1

]
= 0,

where with [B̂ B] ∈ R(n−m)×2n we denote the ma-
trix [−(I −BB+)A (I −BB+)] without redundancy. In
terms of the unknown vector x, the equality constraints can
be written as

Fx = f(x̂), (18)

where

F :=


I

B̂ B
. . .
B̂ B

 , f x̂ :=


x̂
0
...
0

 ,
F ∈ R (N+1)n × N(n−m)+n , f ∈ R (N+1)n and F has
bandwidth 2n.

C. Inequality Constraints

The inequality constraints are

umin ≤ ui ≤ umax ∀ k ∈ I,
ymin ≤ yi ≤ ymax ∀ k ∈ I ∪ {N},

that, taking advantage of (11), the constraint on uk can be
translated into a constraint between xk and xk+1:

uk = B+(xk+1 −Axk) ≤ umax ∀ k ∈ I
−uk = −B+(xk+1 −Axk) ≤ −umin ∀ k ∈ I.

All the inequality constraints can be written in a single
matrix form

Gx ≤ g, (19)

where

G :=



−B+A B+

B+A −B+

C 0
−C 0

. . .
−B+A B+

B+A −B+

C 0
−C 0

C
−C


, g :=



umax

−umin

ymax

−ymin

...
umax

−umin

ymax

−ymin

ymax

−ymin


with G ∈ R 2(p+m)N+2p × (N+1)n having bandwidth 2n, and
g ∈ R 2(p+m)N+2n.
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VI. QP SOLUTION VIA AN INTERIOR POINT METHOD

Different methods can be used to compute the solution
of a QP problem. In practice, the most used algorithms
that offer the best performance are: active set methods and
interior point methods. Sometimes interior point methods
are preferable because they posses polynomial computational
complexity and it is an algorithm where the matrices have
a fixed structure. A well stated reference in the computation
of MPC with both algorithms is [1]. In this section we
will focus on primal-dual interior point methods with an
infeasible starting point [8].

It is common to pose the general QP problem in a standard
form:

min
θ

1
2θ
′Hθ + θ′h

subject to Fθ = f
Gθ ≤ g

(20)

To solve problem (20) we can apply the Karush-Kuhn-Tucker
necessary conditions that, in the case of a convex QP, give
us both necessary and sufficient conditions.

Let us define the Lagrangian

L(θ, ν, λ) :=
1

2
θTHθ + hT θ + νT (Fθ − f) + λT (Gθ − g),

(21)
where ν and λ are the Lagrangian multiplier with opportune
dimensions. A primal-dual solution (θ∗, ν∗, λ∗) of problem
(20) satisfies the equations

Hθ∗ + FT ν∗ +GTλ∗ + h = 0 (22a)
Fθ∗ − f = 0 (22b)

Gθ∗ + s∗ − g = 0 (22c)
λ∗i s
∗
i = 0 ∀ ∈ I ∪ {N} (22d)

(λ∗, s∗) ≥ 0 (22e)

where s∗ is a slack variable to convert the (22d) into
an equality constraint, and θ∗ is the solution of the main
problem (2). The solution of the optimization problem can
be found by finding a root of the set of nonlinear equations

F (θ, ν, λ, s) =


Hθ + FT ν +GTλ+ h

Fθ − f
Gθ + s− g

ΛSe


(λ, s) ≥ 0

(23)

where Λ := diag(λ1;λ2; . . . ), S := diag(s1; s2; . . . ) and
e := [1 1 . . . 1]′.

The primal-dual interior method is an iterative algorithm
that takes advantage of a variant of Newton’s method for
finding a primal-dual solution (θ∗, ν∗, λ∗, s∗) of the con-
ditions (22). It is beyond the scope of this paper to give
a complete introduction to interior point methods; a good
reference that covers the topic is [8]. Here we just intro-
duce basic concepts linked to the Newton method used in
the optimization algorithm, emphasizing the computational
aspects.

A. Newton Method for IPM

As we said before, the search direction procedure has its
origins in Newton’s method for the nonlinear equations (23).
Newton’s method, at each iteration i, forms a linear model of
F (·) around the current point and obtains the search direction
(∆θi,∆νi,∆λi,∆si) by solving, in the case of an infeasible
starting point [8], the following system of linear equations:

J(θi, νi, λi, si)


∆θi

∆νi

∆λi

∆si

 = −


riH
riF
riG
riS

 ,
where J(·) is the Jacobian of F (·) and the vector of residuals[
riH
′
riF
′
riG
′
riS
′
]′

is defined as
riH
riF
riG
riS

 :=


Hθi + FT νi +GTλi + h

Fθi − f
Gθi + si − g

ΛiSie

 .
The next feasible point will be

θi+1

νi+1

λi+1

si+1

 =


θi

νi

λi

si

+ α


∆θi

∆νi

∆λi

∆si

 , (24)

where α ∈ R[0 1] := {α ∈ R |0 ≤ α ≤ 1} is an opportune
step size. If the current point is strictly feasible, the Newton
step equations become (for easy readability, from now on,
we omit the index i)

H FT GT 0
F 0 0 0
G 0 0 I
0 0 S Λ




∆θ
∆ν
∆λ
∆s

 = −


rH
rF
rG
rS

 . (25)

We now perform block elimination twice to reduce the size
of the linear system. The final system to solve is[

H +G′W (λ, s)G F ′

F 0

] [
∆θ
∆ν

]
=

[
rθ

rν

]
, (26)

where W (λ, s) := diag(λ1/s1, λ2/s2, . . . ) is a diagonal
matrix with entries λ/s, and we have defined[

rθ

rν

]
:= −

[
−rH +G′W (Gθ − g)

rF

]
. (27)

The remaining vector can be found from

∆s = Λ−1(rS − S∆λ)

∆λ = S−1Λ(rG + Λ−1rS +G∆x).

For easy readability we define

A :=

[
H +G′W (λ, s)G F ′

F 0

]
X :=

[
∆θ
∆ν

]
B :=

[
rθ

rν

]
(28)

so, at each Newton iteration we have to compute the matrices
Ai, Bi and find the solution of the linear system:

AiX i = Bi. (29)

This procedure is the most time consuming part of an interior
point method.
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B. Computation of the Solution to (29)

At the end of this section we will show that our new
approach allows one to save computation in terms of flops
(floating-point operations). With a single flop we mean an
addition, subtraction, multiplication or division.

It is beyond the scope of this paper to go deeply into
numerical solvers, so we use some existing results about
both direct and iterative solvers to compare the computational
cost (flops) needed to compute the solution with the three
different approaches: non-condensed, condensed and the new
approach.

Let’s start comparing the condensed and non-condensed
approaches. In this work we consider the case in which N
is large. In the non-condensed approach the A can be rear-
ranged in banded form with dimension proportional to N and
bandwidth independent of N . The complexity of the solution
of the QP problem for the non-condensed form is O(N). In
the condensed form the H in (28) of the reduced system
is dense, so the computational cost is proportional to N3,
hence the complexity of solving the QP problem is O(N3),
hence it is not suitable for large N . Good references for
computational issues in model predictive control are [4], [9],
[10].

Now we want to only compare the non-condensed ap-
proach with our pseudoinverse approach when N is large,
since we have already stated that the condensed approach
is not suitable in this case. First of all we will prove that
the resulting matrix A in the pseudoinverse approach can
be rearranged as a symmetric banded matrix. Since both H
and G are banded the matrix H + G′W (λ, s)G is always
banded and of course symmetric. If we partition the matrix
H +G′W (λ, s)G in blocks as

H +G′W (λ, s)G =


D0 V ′1
V1 D1 V ′2

V2
. . . V ′N
VN DN

 , (30)

where Di ∈ Rn×n and Vi ∈ Rn×n are suitable defined
matrices with Di also symmetric, then

A :=



D0 V ′1 I B̂′

V1 D1 V ′2 B′

V2

. . . V ′N
. . . B̂′

VN DN B′

I

B̂ B

B̂ B
. . .
B̂ B



TABLE I: Approaches comparison

Linear System Dimensions
Approach Size of the System Half-Bandwidth

Non-Condensed 2N(n+m) + 2n 2n+m
New approach 2(N + 1)n 3n−m

can be rearranged as

Apse :=



I

I D0 B̂′ V ′1
B̂ 0 B′

V1 B
. . . B′

B DN B̂′ V ′N
B̂ 0 B′

VN B DN


where X :=

[
∆θ′1 · · · ∆θ′N ∆ν′1 · · · ∆ν′N

]′
and

B :=
[
rθ1
′ · · · rθN

′
rν1
′ · · · rνN ′

]′
now become Xpse :=[

∆ν′1 ∆θ′1 ∆ν′2 ∆θ′2
... ∆ν′N ∆θ′N

]′
and Bpse :=[

rν1
′ rθ1

′
rν2
′ rθ2

′ ... rνN
′ rθN

′
]′

.

The size of the square matrix Apse is 2(N+1)n×2(N+1)n
with half bandwidth 3n−m. Moreover, Apse is symmetric.

For the non-condensed approach, it can be shown [2] that
the dimension of the linear system is 2N(n+m) + 2n with
half bandwidth 2n+m. As we can see, in the pseudoinverse
approach, the dimension of the linear system is always
smaller. Indeed if we define as Nncon the size of the linear
system when the non-condensed approach is used, and as
Npse when our new approach is used, if we consider their
ratio we find

Nncon
Npse

=
2N(n+m) + 2n

2(N + 1)n
∼=

2N(n+m)

2Nn
=

(n+m)

n
> 1.

(31)
Since the ratio (31) is always bigger than one, it means that
Npse < Nncon always hold.

Regarding the half bandwidth, if we define in an analog
way Bncon and Bpse as the half bandwidth of, respectively,
the non-condensed and pseudoinverse approach, we find

Bncon
Bpse

=
2n+m

3n−m
.

which is bigger than one iff m > n/2. We can conclude that
for large N and m > n/2 our approach may perform better
than the non-condensed approach since both size and half
bandwidth of the linear system are smaller. To compare the
non-condensed and pseudoinverse approaches we compare
flops of some of the most commonly used linear solvers
[11], [2]: LU factorization, Cholesky factorization, LDL′

factorization and Conjugate Gradient method. If we define
as Nl the size of the linear system with half bandwidth Bl,
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(a) LU factorization
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(b) Cholesky factorization
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(c) Conj. Gradient method

Fig. 1: Speedup between Non-Condensed and Pseudoinverse flops.

the corresponding flops are

LU factorization FLU = 4Nl Bl
2 + 6Nl Bl

Cholesky factorization FCh = 4Nl Bl
2 + 4Nl Bl

LDL′ factorization FLDL = 4Nl Bl
2 + 6Nl Bl

Conj. Gradient method FCG = 2Bl Nl
2

In Figure 1 are shown the speedups, defined as

speedup :=
number flopsnon−condensed−approach

number flopsnew−approach
, (32)

between the non-condensed and pseudoinverse approaches
when N = 30. In the figures the dark shade represent the
values of number of inputs and states in which the new
approach performs better then the non-condensed approach.
Darker means more speedup. As we can see the non-
condensed method is better when the difference between
the number of states and number of inputs is very big i.e.
n � m. A suitable application where this approach could
perform better can be found in aeronautics, indeed aeroplanes
have many control inputs and relatively few states compared
to the number of actuators.

VII. CONCLUSION AND FUTURE WORK

In the current paper the authors have introduced a new ap-
proach, based on the generalized inverse of the input matrix
B. This formulation allows one to find the MPC solution
as the solution of a Quadratic Programming problem, where
the variable to optimize is only the state trajectory over the
prediction horizon. In this paper we have shown that we can
save on computational effort when using an interior point
method, compared to the existing approaches in the literature.
We have demonstrated the improvement in terms of flops
with different linear solvers. However, there exist still some
cases where n� m, in which the non-condensed approach
has better performance.

We believe that, from the computational point of view,
a formulation in only the states as decision variables could
have many advantages. However there are many open issues
and possible extensions, for example, how one should for-
mulate a soft-constrained problem in this framework.

Warm-starting is another important issue, since the deci-
sion variables are linked to each other by the dynamics of
the linear system.

From a numerical point of view a better analysis of the
conditioning of the problem is needed to assure stability of
the optimization algorithm.
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