
Solving a positive definite system of linear equations via the matrix
exponential

Ammar Hasan, Eric C. Kerrigan, George A. Constantinides

Abstract— We present a new direct algorithm for solving
a system of linear equations with a positive definite matrix
by discretizing a continuous-time dynamical system for a
large sampling time. The obtained algorithm is highly fine-
grain parallelizable and its computational complexity grows
logarithmically with respect to the condition number of the
system of linear equations. When the parallelism is fully
exploited, the algorithm is shown to be more efficient in terms
of computational speed in comparison to other popular methods
for solving a positive definite system of linear equations,
especially for large and ill-conditioned problems.

I. INTRODUCTION

Iterative numerical algorithms can be viewed as discrete-
time dynamical systems [1], [2]. Based on this observa-
tion many authors have proposed to obtain new iterative
algorithms by discretizing a suitably-defined continuous-
time dynamical system [3]–[5]. In contrast to the existing
literature, we present a scheme for obtaining a direct (non-
iterative) algorithm by discretizing a continuous-time dynam-
ical system for a large sampling time. We apply the proposed
scheme to obtain a new algorithm for solving a system of
linear equations with a positive definite matrix.

Systems of linear equations arise in many scientific prob-
lems and are central to many numerical algorithms. Algo-
rithms for the solution of systems of linear equations are an
important topic in numerical analysis and many algorithms
have been developed and continue to be extensively studied.
One of the important properties of an algorithm is the
execution time, i.e. the total time taken by the algorithm
to compute a solution. The execution time of an algorithm
depends on many factors, which include the architecture of
the computational hardware. Advances in parallel computer
architecture allow highly parallel and customized circuits that
can lend to high-speed solutions [6]–[9]. Graphics processing
units (GPUs) and field programmable gate array (FPGA)s are
two examples of the current popular parallel architectures.
The potential parallelism in an algorithm and its exploita-
tion in circuit design is an important factor in increasing
the computational speed of an algorithm. Therefore, for a
parallel computational hardware an algorithm that is easily
parallelized is more suitable.

A. Hasan and G. Constantinides are with the Department of Electrical
and Electronic Engineering, Imperial College London, SW7 2AZ, U.K.
{ammar.hasan07,g.constantinides}@imperial.ac.uk

E. Kerrigan is with the Department of Aeronautics and the Department of
Electrical and Electronic Engineering, Imperial College London, SW7 2AZ,
U.K. e.kerrigan@imperial.ac.uk

This work was funded by the EPSRC under grant number EP/G031576/1,
EP/I020357/1, EP/I010236/1 and the EC FP7 grant EMBOCON.

We show that the algorithm proposed in this paper for
solving a system of linear equations is highly parallelizable.
We compare the proposed algorithm with the conjugate
gradient method and the Cholesky decomposition method in
terms of some of the factors that are important for a parallel
computing architecture. We argue that a fully parallel im-
plementation of the proposed algorithm will provide a faster
computational time in comparison to the other algorithms.

II. DERIVING AN ALGORITHM FROM A
CONTINUOUS-TIME DYNAMICAL SYSTEM

In this section we outline a general scheme for deriving
an algorithm using a continuous-time dynamical system.
Consider a numerical problem with solution x∗ ∈ Rn.
Assume that we can synthesize a continuous-time dynamical
system

d

dt
x(t) = f(x),

where x ∈ Rn is the state and f : Rn → Rn, such
that it has a globally asymptotically stable equilibrium xe

that is equal to the solution x∗ of the numerical problem.
A discretization of such a dynamical system would give a
discrete-time dynamical system that converges to the solution
of the numerical problem for any initial condition. This
discrete-time dynamical system can serve as an iterative
algorithm for the numerical problem.

While discretization for all sampling times can be used
as an algorithm, the discretized system obtained for a larger
time step will converge in fewer iterations to the equilibrium.
We illustrate this with the help of Figure 1. The figure shows
the solution of a linear single-input single-state continuous-
time system and the states of the discretized systems for
sampling times h = 1 and h = 2. As can be seen
the discretized system for h = 2 requires less than half
the number of iterations to get to the same value as the
discretized system with h = 1. Therefore, for a higher
rate of convergence a larger value of h should be used. A
higher rate of convergence is desirable as it could lead to a
computationally fast algorithm.

Following the same argument, in the limit as h → ∞
one should obtain a discretized system that converges to
the solution from any initial condition in just one iteration,
i.e. a direct algorithm. Therefore, by discretizing for a large
enough sampling time we should get an algorithm that gives
an approximate solution after a single iteration.

Many authors have discussed the potential of using
continuous-time dynamical systems to develop iterative algo-
rithms and applied this approach to obtain new algorithms;

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 2299

0 2 4 6 8 10
0

1

2

3

4

time

st
a
te

continuous-time system

discretized system with h = 1

discretized system with h = 2

Fig. 1. Sampling time and the speed of convergence

see [3]–[5] and the references therein. Although not in the
same context, the effect of sampling time on the rate of
convergence has also been identified earlier [3]. However, to
the best of our knowledge, this paper is the first to advocate
the derivation of a direct algorithm by discretizing for a large
enough h or to use a value of h as large as feasible to
obtain a fast converging iterative algorithm. A reason for
this could be that the overhead of discretization for a large
(or arbitrary) h was considered computationally prohibitive.
In the next section we consider an algorithm for solving a
system of linear equations that can be discretized efficiently
using a parallel computing architecture.

III. ALGORITHM FOR SOLVING A SYSTEM OF LINEAR
EQUATIONS

In this section we will derive an algorithm for solving a
system of linear equations

Fx∗ = g, (1)
where F ∈ Rn×n is symmetric and positive-definite, x∗ ∈
Rn is the solution, and g ∈ Rn. Since the matrix F is positive
definite, it is also invertible and a unique solution will exist
for (1).

Consider the linear continuous-time system
d

dt
x(t) = Ax(t) + b, (2)

where x ∈ Rn is the state, A := −F , and b := g. The
eigenvalues of A will be the negative of the eigenvalues
of F . Since F is a positive definite matrix all its eigenvalues
are positive. Hence, all eigenvalues of A will lie in the left
half plane and system (2) will be asymptotically stable. An
equilibrium xe of (2) will satisfy

0 = Axe + b⇔ 0 = −Fxe + g ⇔ Fxe = g.

Since the above equation is the same as (1), system (2) will
have a unique equilibrium that is equal to the solution of (1).
The continuous-time system (2) has also been proposed by
other authors [4] for the solution of (1).

The exact solution of the continuous-time system (2) at
time t = kh for k = 0, 1, 2, · · · , where h is the sampling
interval, is given by [10, Sec. 3.4.2]

x((k+1)h) = exp(Ah)x(kh)+

∫ h

0

exp(A(h−τ))bdτ (3)

for all k, where exp(·) represents the exponential function.
The solution (3) suggests the following discrete-time model
for the continuous-time system:

xk+1 = Φhxk + γh, (4)
where

Φh := exp(Ah), (5)

γh :=

∫ h

0

exp(A(h− τ))bdτ, (6)

and xk := x(kh) is the state at time index k. The obtained
discrete-time system (4) for all sampling times will have the
same equilibrium as the continuous-time system. Since the
equilibrium is equal to x∗, the discrete-time system can be
used as an algorithm for solving (1).

Based on the discussion in the previous section, we will
obtain a faster converging iterative algorithm for a larger
sampling time in comparison to an algorithm obtained for
a smaller sampling time. Moreover, the algorithm should
converge to the solution in a single iteration for h → ∞.
In fact, for (4) we have

lim
h→∞

Φh = 0n×n (7)

and
lim
h→∞

γh = x∗. (8)

Therefore, to solve problem (1) we just have to compute
limh→∞ γh. When A is invertible, which is the case here,
the analytic expression for the integral in (6) is given by

γh = A−1(exp(Ah)− In)b. (9)
Since this analytic expression involves a matrix inverse in
itself, it is not feasible to attempt to evaluate γh in this
manner. In the next section we use another method for
calculating γh. However, the method can only be used for a
finite h. Therefore, we propose to use a large, finite value
of h such that γh ≈ x∗.

A. Computations in discretization

In this section we will present an efficient way of com-
puting γh. Let

X :=

[
A b

01×n 0

]
be an (n+ 1)× (n+ 1) matrix. Using the results in [11] it
can be shown that the exponential of matrix Xh is equal to[

exp(Ah)
∫ h

0
exp(A(h− τ))bdτ

01×n 1

]
=

[
Φh γh
01×n 1

]
.

Therefore, if we calculate the exponential of the matrix Xh,
we will compute γh as well as Φh and hence the complete
discretization.

In the control systems literature we usually discretize
systems for small values of h, in which case several ap-
proximations of matrix exponential are possible, e.g. Tustin’s
approximation, etc. [10]. In contrast, here we are interested
in large values of h, for which these approximations are not
valid.

In numerical analysis, the computation of the matrix ex-
ponential is extensively studied and several algorithms have
been developed. A comprehensive survey of these algorithms
can be found in [12]. One of the most effective techniques of
computing the matrix exponential is the scaling and squaring
method [12]. It is based on the fact that for a matrix Z and
a scalar ζ

exp(Z) =

(
exp

(
Z

ζ

))ζ

. (10)

2300

The scaling factor ζ is chosen so that ρ(Z/ζ) ≤ 1, in which
case the Padé approximant and the Taylor series method are
very efficient methods for approximating exp (Z/ζ) [12].
Here ρ(·) denotes the spectral radius of a matrix, which
is defined as the largest absolute eigenvalue of a matrix.
Although the Padé approximant is considered to be more
efficient than the Taylor series method [12], we will choose
the first order Taylor series approximate for its low computa-
tional complexity. The first order Taylor series approximate
is given by

exp

(
Z

ζ

)
≈ I +

Z

ζ
. (11)

To simplify computations, the scaling factor ζ is often
chosen equal to 2s for some positive integer s. This allows
the matrix power in (10) to be evaluated by squaring s times.

Following the above discussion we approximate our
discrete-time system calculation by

exp(Xh) ≈
(
In+1 +

Xh

2s

)2s

.

B. Values for h and s

In this section we state results that help in choosing the
values of h and s, but first we introduce some notation.
We use ‖ · ‖2 to denote the vector Euclidean norm and
the matrix spectral norm (or the induced matrix 2-norm).
Let us denote the smallest eigenvalue of the symmetric and
positive definite matrix F by λmin(F), the largest eigenvalue
of F by λmax(F), the condition number of F by κ(F) :=
‖F‖2‖F−1‖2, an upper bound for κ(F) by κ(F), a lower
bound on λmax(F) by λmax(F), and an upper bound on
λmax(F) by λmax(F). Since F is a symmetric and positive
definite matrix, κ(F) = λmax(F)/λmin(F), λmax(F) = ρ(F),
and all its eigenvalues are real and positive.

Theorem 1: If x∗ and g are not zero and
h ≥ α/λmin(F) = ακ(F)λmax(F), (12)

where α is any positive scalar, then the approximate solution
γh satisfies

‖x∗ − γh‖2
‖x∗‖2

≤ exp(−α), (13)

‖g − Fγh‖2
‖g‖2

≤ exp(−α). (14)

Proof: See Appendix I.
Corollary 1: If x∗ is not zero and

h ≥ ακ(F)/λmax(F), (15)
for some α > 0, then (13) is satisfied.

The expression on the left hand side of (13) and (14) is
called the relative error and the relative residual, respectively.
Given a desired upper bound on the relative error or the
relative residual, Theorem 1 can be used to choose a value
of h.

As discussed earlier, for a good approximation of the
matrix exponential, the value of s should be chosen such
that ρ(Xh/2s) ≤ 1 [12]. The theorem given below helps the
choice of s.

Theorem 2: If s is an integer such that
s ≥ log2(hλmax(F)) = log2(ακ(F)), (16)

Algorithm 1 New Algorithm for solving (1)
Input: Matrix F , vector g and scalar α > 0
Output: x (an approximation to x∗)

Algorithm:
1: h← ακ(F)/λmax(F)
2: s← dlog2 (hλmax(F))e

3: Y ←
[

In − F (h/2s) g(h/2s)
01×n 1

]
4: for i = 1 to s do
5: Y ← Y 2

6: end for
7: x← Y12

then
ρ(Xh/2s) ≤ 1. (17)

Proof: See Appendix II.
Corollary 2: If

s ≥ log2(hλmax(F)), (18)
then (17) is satisfied.

The bounds for h and s involve the values of κ(F)
and λmax(F). In practice these values may not be readily
available and for computational efficiency it might be desir-
able to avoid their computation. In this case we can use
the corollaries to choose the value of h and s. Possible
expressions for bounds on λmax are

λmax(F)) :=
√
n‖F‖∞,

and
λmax(F)) :=

1√
n
‖F‖∞,

where ‖ · ‖∞ denotes the induced ∞-norm of a matrix.

C. The complete algorithm

We now have all the ingredients to state the complete
algorithm. It is given in Algorithm 1. In the algorithm, Y12

denotes the n× 1 submatrix of Y when partitioned as

Y =:

[
Y11 Y12

Y21 Y22

]
,

where Y11 ∈ Rn×n, Y21 ∈ R1×n, and Y22 ∈ R1×1. Note
that Y is initialized with the value

In+1 +
Xh

2s
,

which is the first order Taylor series approximation of
exp(Xh).

In Step 2 of Algorithm 1, d·e denotes the ceiling function.
It is required because s should be an integer.

IV. COMPARISON OF TIME COMPLEXITY

In this section we find the time complexity of the newly
proposed algorithm and compare it with the time complexi-
ties of the preconditioned conjugate gradient (PCG) method
and the Cholesky decomposition method. The PCG method
and the Cholesky decomposition method are arguably the
best known iterative and direct algorithms, respectively, for
solving a system of linear equations with a positive definite
matrix. Due to limitations on space, we will assume that
the reader has access to the description of these methods,
which can be found in most standard books on linear algebra,

2301

e.g. [13], [14]. We will use the LDL factorization variant of
the Cholesky decomposition method and the Chebyshev pre-
conditioner for the PCG method because they are considered
to be more suitable for parallel computing [9], [15].

The time complexity of an algorithm quantifies the time
taken by an algorithm on a computational hardware. A
common measure of time complexity of algorithms for
sequential computing is the total number of floating point
operations (flops) required by the algorithm. A measure of
time complexity for parallel computing is the least time taken
by an algorithm assuming that 1) all basic floating point
operations take unit time, 2) a sufficiently large number of
processing elements are available, and 3) the communication
between processing elements takes zero time [16, Sec. 1.2].
Here sufficiently large means that enough processing ele-
ments are available such that the parallelization of operations
in the algorithm is not limited by the number of processing
elements. We will follow the method in [16, Sec. 1.2] to find
the time complexity of the algorithms. For the purposes of
clarity, we will only focus on the steps of the algorithms that
are computationally intensive.

1) Cholesky decomposition method: The most compu-
tationally intensive tasks in the Cholesky decomposition
method are the forward/back substitutions of unit triangular
matrices. Forward and back substitution are very similar
algorithms with the same time complexity. Therefore, we
will only analyze the forward substitution. Figure 2 shows
a graph that represents the forward substitution algorithm
for solving a system of linear equations with a unit lower
triangular matrix

Lz = y,

where

L :=

1 0 · · · 0
l2,1 1 · · · 0

...
. . .

ln,1 ln,2 · · · 1

 , z :=

z1
z2
...
zn

 , y :=

y1
y2
...
yn

 .

If we assume that both addition and multiplication take a
unit of time, then using the figure we can find that the time
taken by the forward substitution algorithm is

Tfs(n) := 2(n− 1).

For the back substitution we have
Tbs(n) := Tfs(n).

The Cholesky decomposition method involves forward sub-
stitution for problem sizes of 2 to n and a single backward
substitution of problem size n. Since neither of these for-
ward/back substitutions can be executed in parallel, we add
the time complexities of all forward/back substitutions to get
the time complexity of the Cholesky decomposition method:

Tch(n) :=

n∑
i=2

(Tfs(i)) + Tbs(n) = n2 + n− 2. (19)

2) Preconditioned conjugate gradient: The computation-
ally intensive tasks in the PCG method are the matrix-vector
products and vector dot products. Matrix-vector products
involve n dot products, all of which can be computed in
parallel. Therefore, the time complexity of matrix-vector

x

x

x

x
+

y
1

+

+

+

y
2

y
3

y
4

y
n

x

x

x
+

+

+
x

+

z 1= z2

z3

zn-ln,2 -ln,n-1

-l4,2

-l3,2

-l2,1

-l3,1

-l4,1

-ln,1

Fig. 2. Graph for the forward substitution algorithm

+

x

x

x

x

+

+

+

+

y
1

z1

y
2

z2

y
n-1

zn-1

y
n

zn

y
1 z1

y
2
z
2

y
1 z1 y

2
z
2+

y z.

 log2n .

Fig. 3. Graph for the dot product algorithm

product is the same as that of a vector dot product. Figure 3
shows a graph that represents the dot product algorithm. The
dot product of two vectors y ∈ Rn and z ∈ Rn is defined as

y · z :=
n∑

i=1

yizi,

where yi and zi denote the ith component of the corre-
sponding vector. Using the figure we can find that the time
complexity for the dot product algorithm is

Tdp(n) := 1 + dlog2 ne .
Using the calculated time complexity of the dot product
algorithm, the time complexity of the PCG method turns
out to be

Tpcg(n, σ) := 4σTdp(n) = 4σ(1 + dlog2 ne). (20)
where σ denotes the number of iterations taken by the
algorithm.

3) Proposed algorithm: In the proposed algorithm the
most computationally intensive task is finding the square of
matrix Y . A matrix-matrix multiplication involves n2 dot
products. For the specific structure of matrix Y it can be
shown that only (n2 + 3n)/2 dot products will be required.
All of these dot products can be computed in parallel.
Therefore, the time complexity of computing the square of
the matrix Y is equal to the time complexity of a vector dot
product Tdp(n). Since we have to compute the matrix square
s times, the time complexity of the proposed algorithm is

Tpa(s, n) := sTdp(n) := s (1 + dlog2(n)e) . (21)
4) Comparison: The time complexity of the all the al-

gorithms (19)-(21) are a function of the problem size n.
For the proposed algorithm it also depends on the scaling
factor s. As seen in (16) a suitable value of s is a function
of the condition of the problem and the parameter α. For
the purposes of comparison we will take α =

⌈
− ln 2−52

⌉
,

where ln denotes the natural logarithmic. The constant 2−52

is the machine epsilon for IEEE double precision and our
choice of α will guarantee the relative error due to finite h

2302

2 10 50 200
10

0

10
5

10
1

10
2

10
3

10
4

n

ti
m

e
κ(F) = 102

2 10 50 200
10

0

10
5

10
3

10
1

10
4

10
2

n

κ(F) = 103

2 10 50 200
10

0

10
5

10
1

10
2

10
3

10
4

n

κ(F) = 104

Fig. 4. Time complexity of algorithms as a function of problem size
n. (dash-dot) Cholesky decomposition method, (dashed) preconditioned
conjugate gradient, (solid) proposed algorithm

to be less than or equal to the machine epsilon.
Besides the problem size n, the time complexity of the

PCG method also depends on the number of iterations
σ. The number of iterations in the PCG method can be
bounded by a function of the condition number [15], [17].
The bound depends on the condition number of the original
(unconditioned) matrix, the desired relative residual, and
the order of the Chebyshev preconditioner k. The order of
the Chebyshev preconditioner is often taken between 5 and
10 [15]. In this paper, throughout our analysis we will take
k = 10 or k = n in the case that n < 10. We will find the
bound for a relative residual of less than 10−6, which is the
default value used in MATLAB [18].

Using the values and bounds stated above, we have plotted
the time complexities of all the algorithms for different val-
ues of the condition number and problem sizes in Figure 4.
It can be seen in the figure that for problem sizes less than
about 10, the Cholesky decomposition algorithm has the
lowest time complexity. Whereas, for larger problem sizes
the proposed algorithm has the lowest time complexity.

V. NUMERICAL EXAMPLES

For numerical comparison we consider matrices in the
University of Florida sparse matrix collection [19] as the
matrix F and a unit vector with the nth element equal to 1
as the right hand side vector g. We select all matrices that are
real, symmetric, positive definite and have a size less than or
equal to 200. We limited our selection to matrices of sizes
200 or less because of space limitations and the selection is
enough to show the important trends.

For the purpose of numerical comparison we will apply
the proposed algorithm and the PCG method on the Jacobi
preconditioned system [14, Sec 10.2]. The Jacobi precondi-
tioned system is easy to compute and could potentially have
a lower condition number than the original system.

Table I show a comparison of the time complexities of
the algorithm. The table is sorted in ascending order of
condition number. The lowest time complexity for a problem
is highlighted in bold. It can be seen in the table that for all of
the considered problems the Cholesky decomposition method
has the largest time complexity. For most of the considered
problems, the proposed algorithm gives the lowest time
complexity, especially when the problem is ill-conditioned.
In some cases we see that the CG method is computationally
faster. In these cases either the condition number is very
low or the eigenvalues are clustered, which we found upon
inspection. The CG method is known to perform well when

TABLE I
COMPARISON OF TIME COMPLEXITY OF ALGORITHMS FOR A SUBSET OF

UNIVERSITY OF FLORIDA SPARSE MATRIX COLLECTION

Name κ(F) n s σ Tch Tpa Tpcg

Relative Relative
Residual Residual
Cholesky proposed

mesh1e1 8.2E+00 48 8 3 2350 56 84 5.0E-16 1.9E-16
bcsstm02 8.8E+00 66 6 1 4420 48 32 0.0E+00 0.0E+00
mesh1em6 9.3E+00 48 9 4 2350 63 112 1.4E-16 4.8E-16
bcsstm05 1.3E+01 153 6 1 23560 54 36 0.0E+00 0.0E+00
mesh1em1 3.4E+01 48 10 6 2350 70 168 2.4E-16 7.7E-16
Trefethen 20b 4.4E+01 19 8 2 378 48 48 9.1E-18 1.4E-17
Trefethen 20 9.6E+01 20 9 2 418 54 48 1.1E-16 5.6E-17
Trefethen 200b 7.3E+02 199 8 1 39798 72 36 2.2E-16 2.2E-16
bcsstm22 9.4E+02 138 6 1 19180 54 36 0.0E+00 6.7E-16
Trefethen 150 1.1E+03 150 9 2 22648 81 72 1.1E-16 1.6E-18
Trefethen 200 1.6E+03 200 9 1 40198 81 36 9.0E-19 3.3E-16
nos4 2.7E+03 100 17 24 10098 136 768 5.8E-15 9.7E-15
bcsstk02 1.3E+04 66 18 6 4420 144 192 1.1E-14 1.8E-14
Journals 1.9E+04 124 12 5 15498 96 160 9.4E-16 2.8E-14
bcsstk05 3.5E+04 153 19 44 23560 171 1584 3.5E-15 3.2E-14
lund b 6.0E+04 147 15 20 21754 135 720 2.8E-14 1.1E-12
bcsstk22 1.7E+05 138 19 30 19180 171 1080 5.2E-15 1.1E-13
bcsstk01 1.6E+06 48 17 17 2350 119 476 7.9E-16 9.1E-14
LF10 5.1E+06 18 18 10 340 108 240 8.3E-13 8.7E-11
lund a 5.4E+06 147 21 24 21754 189 864 2.8E-12 8.2E-11
bcsstk04 5.6E+06 132 18 9 17554 162 324 3.6E-16 1.1E-13
bcsstk03 9.5E+06 112 21 33 12654 168 1056 2.0E-15 5.9E-13
ex5 1.3E+08 27 33 52 754 198 1248 1.7E-10 1.5E-09
LFAT5 1.7E+08 14 14 5 208 70 100 1.4E-13 3.9E-09

most of the eigenvalues are clustered together [17, Ch. 4].
However, as evident from the tables, this will not be the case
in general.

Table I also show the accuracy of the obtained solutions
by the Cholesky decomposition algorithm and the newly
proposed algorithm. We have not included the PCG method
in this comparison because the method is usually terminated
earlier at a lower accuracy. The table lists the relative residual
for the obtained solutions. The relative residual indicates how
accurate the obtained solution is; a smaller value means a
more accurate solution. As seen in the table, the relative
residual for the proposed method is generally greater than
the relative residual of the Cholesky decomposition method
by one order of magnitude. This means that the proposed
method is slightly less accurate than the Cholesky decom-
position. However, for most applications the accuracy of the
proposed method would be enough.

Note that for some values of s in Table I, 2s will be
a very large number. While this may not be an issue for
common floating point number representations – the largest
representable power of 2 in IEEE single precision and
IEEE double precision is 2127 and 21023, respectively –
for some number representations the number 2s can exceed
the maximum range of representable numbers. Note that in
Algorithm 1, the number 2s always appears as part of the
expression h/2s, therefore, the explicit calculation of 2s can
be avoided. Moreover, h/2s is not a large number for the
values of h and s used in Algorithm 1.

VI. CONCLUSIONS

By discretizing a synthesized continuous-time dynamical
system for a large sampling time, we have obtained a new
direct algorithm for solving a positive definite system of
linear equations. The newly proposed algorithm is highly
parallelizable and suitable for computational hardware that
can exploit this parallelism.

2303

The proposed method is not suitable for large and sparse
matrices, since the method involves a matrix exponential that
can destroy the sparsity structure in a matrix. However, for
dense problems, the newly proposed algorithm is arguably
the most efficient algorithm in terms of time complexity.

VII. FUTURE WORK

In this paper all analysis is done in IEEE double precision.
The hardware resources utilized grow with the precision.
Due to limited hardware resources it might be desirable to
implement the algorithm in a lower precision. Therefore, it
would be useful to establish that the algorithm is numerically
stable and hence also suitable for lower precisions.

APPENDIX I
PROOF OF THEOREM 1

We will only give the proof for conclusion (13). Proof for
conclusion (14) is similar.

The difference between the exact solution and the approx-
imate solution γh is x∗ − γh. Using the analytic expression
of γh, given in (9), we get

x∗ − γh = x∗ −A−1(exp(Ah)− I)g

= x∗ −A−1 exp(Ah)g +A−1g

= x∗ − exp(Ah)A−1g +A−1g

= x∗ + exp(Ah)x∗ − x∗

= exp(Ah)x∗. (22)
Here we have used the fact that A−1 exp(Ah) =
exp(Ah)A−1, A = −F and x∗ = F−1g. The property of the
exponential can be verified by writing the matrix exponential
in Taylor series form. Taking the 2-norm of both sides of the
equation,

‖x∗ − γh‖2 = ‖ exp(Ah)x∗‖2
≤ ‖ exp(Ah)‖2‖x∗‖2,

⇔ ‖x∗ − γh‖2/‖x∗‖2 ≤ ‖ exp(Ah)‖2.
To complete the proof, we have to show that
‖ exp(Ah)‖2 ≤ exp(−α) for the value of h in (12). The
eigenvalues of the exponential of a matrix are equal to the
exponential of the eigenvalues of the matrix. This can be seen
by multiplying the Taylor series form of a matrix exponential
with an eigenvector of the matrix. Therefore, we have

spec(exp(Ah)) = {exp(λ) : λ ∈ spec(Ah)}
= {exp(−λh) : λ ∈ spec(F)},

where spec(·) denotes the spectrum of a matrix and is defined
as the set of all the eigenvalues of a matrix.

Since the spectral radius is the maximum absolute eigen-
value of a matrix, we have

ρ(exp(Ah)) = max{| exp(−λh)| : λ ∈ spec(F)},
where | · | denotes the absolute value of a scalar. All the
eigenvalues of F are positive, therefore,

ρ(exp(Ah)) = | exp(−λmin(F)h)| = exp(−λmin(F)h).

Substituting the lower bound on h from (12) we get
ρ(exp(Ah)) ≤ exp (−λmin(F) (α/λmin(F))) = exp(−α).
Since F is symmetric, exp(Ah) = exp(−Fh) will also

be symmetric. For a symmetric matrix, the induced 2-norm

is equal to its spectral radius, therefore,
‖ exp(Ah)‖2 ≤ exp(−α).

APPENDIX II
PROOF OF THEOREM 2

Since X is a block diagonal matrix with A and 0 as the
diagonal entries, we have

ρ(X) = max{ρ(A), 0} = ρ(A) = ρ(−F) = ρ(F).

Therefore,
ρ(Xh/2s) = (h/2s)ρ(X) = ρ(F) = λmax(F).

Substituting the lower bound on s in (16), we get

ρ(Xh/2s) ≤ hλmax

2log2(hλmax)
=

hλmax

hλmax
= 1.

REFERENCES

[1] James M. Ortega. Stability of difference equations and convergence of
iterative processes. SIAM Journal on Numerical Analysis, 10(2):268–
282, 1973.

[2] Amit Bhaya and Eugenius Kaszkurewicz. Control Perspectives on
Numerical Algorithms and Matrix Problems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2006.

[3] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear
equations in several variables. Academic Press, 1970.

[4] J. P. Chehab and Jacques Laminie. Differential equations and solution
of linear systems. Numerical Algorithms, 40(2):103–124, 2005.

[5] M. T. Chu. Linear algebra algorithms as dynamical systems. Acta
Numerica, 17:1–87, 2008.

[6] George A. Constantinides. Tutorial paper: Parallel architectures for
model predictive control. In Proceedings of the European Control
Conference, pages 138–143, Budapest, Hungary, 2009.

[7] A. Roldao Lopes and G. A. Constantinides. A high throughput
FPGA-based floating point conjugate gradient implementation. In
Proceedings of Applied Reconfigurable Computing, pages 75–86,
London, UK, 2008.

[8] D. Boland and G. A. Constantinides. An FPGA based implementation
of the MINRES algorithm. In Proceedings of the IEEE International
Conference on Field-Programmable Logic and Applications, pages
379–384, Heidelberg, Germany, 2008.

[9] D. Yang, G. Peterson, and H. Li. High performance reconfigurable
computing for Cholesky decomposition. In Symposium on Application
Accelerators in High Performance Computing, University of Illinois
at Urbana-Champaign, Urbana, Illinois, USA, 2009.

[10] R. H. Middleton and G. C. Goodwin. Digital Control and Estimation:
A Unified Approach. Prentice Hall, 1990.

[11] C. Van Loan. Computing integrals involving the matrix exponential.
IEEE Transactions on Automatic Control, 23(3):395–404, 1978.

[12] C. Moler and Charles Van Loan. Nineteen dubious ways to compute
the exponential of a matrix, twenty-five years later. SIAM Review,
45(1):3–46, 2003.

[13] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The
Johns Hopkins University Press, Baltimore, USA, 1996.

[14] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society
for Industrial and Applied Mathematics, 2000.

[15] Steven F. Ashby, Thomas A. Manteuffel, and James S. Otto. A
comparison of adaptive chebyshev and least squares polynomial pre-
conditioning for hermitian positive definite linear systems. SIAM
Journal on Scientific and Statistical Computing, 13:1–29, January
1992.

[16] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Athena Scientific, 1997.

[17] Anne Greenbaum. Iterative Methods for Solving Linear Systems.
Society for Industrial and Applied Mathematics, 1997.

[18] The Mathworks, inc. MATLAB (R2010a), 2010.
[19] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix

Collection. ACM Transactions on Mathematical Software (to appear),
http://www.cise.ufl.edu/research/sparse/matrices.

2304

