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Abstract— The classical passivity theorem states that the
negative feedback interconnection of passive systems is again
passive. The converse statement, - passivity of the intercon-
nected system implies passivity of the subsystems -, turns
out to be equally valid. This result implies that among all
feasible storage functions of a passive interconnected system
there is always one that is the sum of storage functions
of the subsystems. Sufficient conditions guaranteeing that all
storage functions are of this type are derived. Closely related
is the question when and how the stability of the closed-loop
interconnected system implies passivity of the subsystems. We
recall a folklore theorem which was proved for SISO linear
systems, and derive some preliminary results towards a more
general result, using the theory of simulation relations.

I. INTRODUCTION

The notion of passivity has been of crucial importance in
many areas of systems and control, as well as in network
analysis and design. The fundamental passivity theorem,
rooted in physical systems and network theory, states that the
negative feedback interconnection of passive systems results
in an interconnected system that is again passive. Further-
more, a feasible storage function of the interconnected sys-
tem is the sum of storage functions of the subsystems. Thus
in a very fundamental sense, passivity is a compositional
property.

In this paper we aim to take a fresh look at the composi-
tional properties of passivity. We start with a basic result that
seems to have been overlooked before: if an interconnected
system is passive with regard to external inputs and outputs
corresponding to all interconnection constraints, then the
subsystems are passive as well. This converse result allows us
to further study the feasible storage functions of a passive
interconnected system. It is well-known that usually there
is a whole class of feasible storage functions, possessing a
minimal and generally a maximal element. The converse re-
sult implies that among all feasible storage functions there is
always an additive storage function, that is, a function that is
the sum of storage functions of the subsystems. Furthermore,
it is well-known that lossless systems generally have a unique
storage function. The converse result allows us to prove that
if at least one subsystem of the interconnected system is
lossless then, under additional accessibility conditions, all
storage functions of the interconnected system are additive.

In the last section we explore a closely related, but differ-
ent problem. For linear SISO systems it has been proved that
if the closed (no external inputs anymore) negative feedback

F. Kerber and A.J. van der Schaft are with the Johann Bernoulli
Institute for Mathematics and Computer Science, University of
Groningen, 9700 AK Groningen, The Netherlands {f.j.kerber,
a.j.van.der.schaft}@rug.nl

interconnection of a system with any passive system is
stable then the system itself is necessarily passive. This
is an interesting statement which seems to be valid for a
general class of systems. We provide a preliminary result
in this direction which is motivated by recent work on
compositional reasoning using simulation relations.

II. INTERCONNECTION OF PASSIVE SYSTEMS AND
PASSIVE INTERCONNECTED SYSTEMS

Throughout this paper we will consider input-affine square
nonlinear systems Σ with an equilibrium x∗

Σ :

ẋ = f (x)+g(x)u = f (x)+∑
m
j=1 u jg j(x)

0 = f (x∗)

y = h(x),

(1)

x ∈X , u ∈U , y ∈ Y ,

where X is an n-dimensional manifold, and U and Y are
linear input and output spaces, both of dimension m.

We throughout assume smoothness of the vector fields
f ,g1,g2, · · · ,gm and the mapping h.

Definition 1: [9] A state space system Σ is passive if there
exists a function V : X → R+, called the storage function,
such that for all x0 ∈X , all t1 ≥ t0, and all input functions
u : [t0, t1]→U

V (x(t1))≤V (x(t0))+
∫ t1

t0
uT (t)y(t)dt (2)

where x(t0) = x0, and x(t1) denotes the state at time t1
resulting from initial condition x(t0) = x0 and the input
function u : [t0, t1]→U . If (2) holds with equality, then Σ is
lossless.

If the storage function V is differentiable, the differential
version of the dissipation inequality (2) is given by [1], [9]

V̇ (x) =Vx(x)ẋ≤ uT y (3)

for all (x, ẋ,u,y) satisfying (1). Here Vx(x) denotes the row
vector of partial derivatives

Vx(x) =
(

∂V
∂x1

(x) . . . ∂V
∂xn

(x)
)

The differential dissipation inequality is equivalent [3], [6] to
the following conditions for passivity, cq. losslessness, which
will be used in the rest of the paper.

Proposition 2: Let Σ be a nonlinear system of the form
(1) and let V (x) be a differentiable storage function of Σ.
Then Σ is passive (lossless) if and only if

Vx(x) f (x) ≤ 0(= 0)

Vx(x)g(x) = hT (x)
(4)
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It is well-known that in general the storage function for a
passive system is intrinsically non-unique. In fact [9], the set
of storage functions is convex, has a minimum (the available
storage), and, if the system is reachable from some state, has
a maximum (the required supply). If the system is lossless
and reachable from some state then the storage function is
unique (up to a constant).

Given two nonlinear systems Σi, i= 1,2, with equal dimen-
sion of their input and output spaces we define their negative
feedback interconnection

u1 =−y2 + e1 , u2 = y1 + e2

where e1,e2 are new external inputs.
The resulting interconnected system, with inputs e1,e2 and

outputs z1 = y1,z2 = y2, is given as[
ẋ1
ẋ2

]
=

[
f1(x1)−g1(x1)h2(x2)
f2(x2)+g2(x2)h1(x1)

]
+

[
g1(x1)e1
g2(x2)e2

]
[

z1
z2

]
=

[
h1(x1)
h2(x2)

]
(5)

and will be denoted as Σ1‖Σ2.
A fundamental result in passivity theory is that the

property of passivity is preserved under negative feedback
interconnection, while the sum of any storage functions for
each subsystem serves as a feasible storage function for
the interconnected system (additivity of ’energy’). For later
reference we summarize this in the following theorem, and
provide for completeness its proof.

Theorem 3: For any two passive (lossless) nonlinear sys-
tems Σi, i = 1,2, with storage functions Vi, i = 1,2, the
interconnected system Σ1‖Σ2 with inputs e1,e2 and outputs
z1 = y1,z2 = y2 is passive (lossless) with storage function
V1(x1)+V2(x2).

Proof: Since the two systems Σi, i = 1,2, are passive,
their storage functions Vi(xi) satisfy

V̇i(xi)≤ uT
i yi, i = 1,2 (6)

Hence the system Σ1‖Σ2 satisfies

V̇1(x1)+V̇2(x2) ≤ (−y2 + e1)
T y1 +(y1 + e2)

T y2

= eT
1 z1 + eT

2 z2
(7)

which proves that Σ1‖Σ2 is passive, with storage function
V1(x1)+V2(x2). The argument immediately extends to the
lossless case.
The converse statement of the fundamental passivity theorem
3, i.e., passivity of the interconnected system Σ1‖Σ2 implying
passivity of the two subsystems Σi, i= 1,2, seems not to have
been investigated in the literature, but turns out to be equally
valid.

Theorem 4: Consider two nonlinear systems Σi, i = 1,2,
such that Σ1‖Σ2 is passive (lossless). Then also the compo-
nent systems Σi, i = 1,2, are passive (lossless).

Proof: We will only prove the passive case, the same
arguments hold for the lossless case. The interconnected

system Σ1‖Σ2 being passive is equivalent to the existence
of a storage function V : X1×X2→ R+ for Σ1‖Σ2, that is

Vx1(x1,x2)( f1(x1)−g1(x1)h2(x2))+ (8)
Vx2(x1,x2)( f2(x2)+g2(x2)h1(x1)) ≤ 0

Vx1(x1,x2)g1(x1) = hT
1 (x1) (9)

Vx2(x1,x2)g2(x2) = hT
2 (x2) (10)

This results in

Vx1(x1,x2) f1(x1)−Vx1(x1,x2)g1(x1)︸ ︷︷ ︸
=hT

1 (x1)

h2(x2)+

+Vx2(x1,x2) f2(x2)+Vx2(x1,x2)g2(x2)︸ ︷︷ ︸
=hT

2 (x2)

h1(x1) =

=Vx1(x1,x2) f1(x1)+Vx2(x1,x2) f2(x2)≤ 0

(11)

Now define the non-negative functions

V1(x1) :=V (x1,x∗2) , V2(x2) :=V (x∗1,x2) (12)

as candidate storage functions for the component systems
Σi, i = 1,2. For x2 = x∗2, (11) then becomes

Vx1(x1,x∗2) f1(x1)+Vx2(x1,x∗2) f2(x∗2) =

=Vx1(x1,x∗2) f1(x1) =V1x1(x1) f1(x1)≤ 0 ,
(13)

since f2(x∗) = 0, while (9) becomes

Vx1(x1,x∗2)g1(x1) =V1x1(x1)g1(x1) = hT
1 (x1) (14)

Hence, V1(x1) =V (x1,x∗2) satisfies conditions (4) and thus is
a storage function for Σ1. The same reasoning leads to Σ2
being passive with storage function V2(x2) :=V (x∗1,x2).

An important implication of Theorems 3 and 4 is therefore
the following

Corollary 5: If the interconnection Σ1‖Σ2 of two nonlin-
ear systems Σ1,Σ2 is passive then there exists an additive
storage function

V1(x1)+V2(x2) (15)

where Vi(xi) are storage functions of the components Σi, i =
1,2.
Indeed, since Theorem 4 states that the component systems
Σi, i = 1,2, are passive with storage functions V1(x1),V2(x2)
it follows from Theorem 3 that V1(x1)+V2(x2) is a storage
function for the interconnected system Σ1‖Σ2.

Note that in general

V1(x1)+V2(x2) 6=V (x1,x2),

where V (x1,x2) is the storage function of the interconnected
system Σ1‖Σ2 that we started with. Of course, this is in
accordance with the fact that storage functions for a passive
system are in general not unique.

Finally, Theorems 3 and 4 can be combined into
Corollary 6: Σ1‖Σ2 is passive (lossless) if and only if Σ1

and Σ2 are passive (lossless).
Theorems 3 and 4 and their corollaries can be generalized

to interconnections of multiple systems in the following way.
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Theorem 7: Consider nonlinear systems Σi, i = 1, · · · ,k,
interconnected to each other by interconnection constraints
of the form1

ui = Fi(y1, · · · ,yk)+ ei, i = 1, · · · ,k, (16)

where the functions Fi satisfy
k

∑
i=1

Fi(y1, · · · ,yk)yi = 0, for all y1, · · · ,yk, (17)

Denote the resulting interconnected system with inputs
e1, · · · ,ek and outputs z1 = y1, · · · ,zk = yk by Σint. Then

1) Suppose that the systems Σi, i = 1, · · · ,k, are passive
(lossless) with storage functions Vi, i = 1, · · · ,k. Then
the interconnected system Σint is passive (lossless),
with storage function Vint =V1 + · · ·+Vk.

2) Suppose that the interconnected system Σint is pas-
sive (lossless). Then also the component systems
Σi, i = 1, · · · ,k, are passive (lossless). In particular,
let Vi(xi), i = 1, · · · ,k, be storage functions for the
component systems then V1(x1)+ · · ·Vk(xk) is a storage
function for the interconnected system Σint.

Proof: The first statement follows, like Theorem 3,
from classical passivity theory [9], [6]. For the second
statement we consider any storage function V (x1, · · · ,xk) for
the interconnected system Σint, satisfying

Vx1(x1, · · · ,xk)[ f1(x1)+g1(x1)u1]+ · · ·+

+Vxk(x1, · · · ,xk)[ fk(xk)+gk(xk)uk]≤ eT
1 y1 + · · ·eT

k yk

where u1, · · · ,uk,y1, · · · ,yk,e1, · · · ,ek are related by (16, 17).
It follows that

Vxi(x1, · · · ,xk)gi(xi) = hT
i (xi), i = 1, · · · ,k (18)

together with (leaving out all arguments xi)

Vx1( f1 +g1F1)+ · · ·+Vxk( fk +gkFk)≤ 0 (19)

Substitution of (18) in (19) thus yields

Vx1 f1 + · · ·Vxk fk +
k

∑
i=1

Fi(y1, · · · ,yk)yi ≤ 0,

which in view of (17) yields

Vx1(x1, · · · ,xk) f1(x1)+ · · ·Vxk(x1, · · · ,xk) fk(xk)≤ 0 (20)

Then define the non-negative functions

V1(x1) :=V (x1,x∗2, · · · ,x∗k), V2(x2) :=V (x∗1,x2, · · · ,x∗k),

· · ·Vk(xk) :=V (x∗1,x
∗
2, · · · ,x∗k−1,xk)

By using fi(x∗i ) = 0 we obtain

(Vi)xi
(xi) fi(xi)≤ 0, i = 1, · · · ,k,

showing, together with (18), that the subsystems Σi are
passive with storage functions Vi, i = 1, · · · ,k. Furthermore,
it follows that V1(x1)+ · · ·+Vk(xk) is a storage function for
the interconnected system.

1In many physical situations this will have the interpretation of a power-
conserving interconnection [6].

The lossless case uses the same arguments, leading to
(Vi)xi

(xi) fi(xi) = 0, i = 1, · · · ,k.
Remark 8: The first statement of the theorem continues

to hold with regard to passivity of the interconnected system
for interconnections (16) satisfying the inequality

k

∑
i=1

Fi(y1, · · · ,yk)yi ≤ 0, for all y1, · · · ,yk

Dually, the second statement of the theorem regarding passiv-
ity of the subsystems continues to hold for interconnections
(16) satisfying the reverse inequality

k

∑
i=1

Fi(y1, · · · ,yk)yi ≥ 0, for all y1, · · · ,yk

Remark 9: Theorem 7 can be easily generalized to strict
output passivity. Recall, see e.g. [6], that a system Σ is strictly
output passive if there exists ε > 0 such that

Vx(x) f (x) ≤ −εhT (x)h(x)

Vx(x)g(x) = hT (x)

It follows that the interconnection (17,17) of strictly output
passive systems is again strictly output passive (with ε =
min{ε1, · · · .εk}), while the strict output passivity of the
interconnected system Σint implies strict output passivity (all
for the same ε) of the subsystems provided that h j(x∗j) =
0, j = 1, · · · ,k.

III. STRUCTURE OF THE SET OF STORAGE FUNCTIONS
FOR PASSIVE INTERCONNECTED SYSTEMS

Now let us look more closely at the issue of additivity and
(partial) uniqueness of the storage function of an intercon-
nected system Σ1‖Σ2, which is passive or lossless. For brevity
we will only do this for the case of the interconnection
of two systems; the results can be directly extended to
interconnections (16, 17) of multiple systems.

As recalled before, in case Σ1‖Σ2 is lossless and reachable
from some ground state, then it follows from passivity
theory [9] that its storage function is unique. As a direct
consequence we obtain

Proposition 10: Let Σ1‖Σ2 be lossless and reachable from
some state x̄. Then its unique storage function is an additive
function

V (x1,x2) =V1(x1)+V2(x2)

We will now show that similar results can be obtained
under the much weaker assumption that only one of the two
system components is lossless, and both components satisfy
accessibility assumptions.

Definition 11: Consider a nonlinear system Σ of the form
(1) with g1, · · · ,gm the m columns of g. Then the accessibility
algebra C is the smallest subalgebra of the Lie algebra of
vector fields on X that contains f and all input vector fields
g1, . . . ,gm. Define C0 as the smallest subalgebra containing
g1, . . . ,gm and satisfying [ f ,X ] ∈ C0 for all X ∈ C0.
Σ is locally strongly accessible if the sets

RV (x0,T ) = {(x ∈X | ∃u : [0,T ]→U s. t. x(t) ∈V,

0≤ t ≤ T,x(0) = x0,x(T ) = x}
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for all x0 ∈X contains a non-empty open set of X for all
neighborhoods V of x0 and any sufficiently small T > 0.
Define the reachable set

RV
T (x0) = ∪τ≤T RV (x0,τ) (21)

Then Σ is reachable from x0 if RV
T (x0) =X for some T > 0.

As shown in [5], every element of the subalgebra
C0 is a linear combination of repeated Lie brack-
ets [Xk, [Xk−1, [. . . , [X1,g] . . .]]],k = 0,1, . . ., where we will
throughout use the shorthand notation [X ,g] for any of the
Lie brackets [X ,g j], j = 1, · · · ,m. We recall from [5]

Proposition 12: Let Σ be a nonlinear system of the
form (1). If Σ is locally strongly accessible then
dim(span{X(x0) | X ∈ C0}) = n = dimX for x0 in an open
and dense subset of X .
We are now able to state the first result concerning the
negative feedback interconnection of a passive and a lossless
component.

Proposition 13: Consider two nonlinear systems Σi, i =
1,2, of the form (1). Let Σ1 be passive and Σ2 be lossless.
Assume that Σ1 is locally strongly accessible. Then all
storage functions V (x1,x2) of the interconnection Σ1‖Σ2 are
of the form V (x1,x2) = V1(x1) +V2(x2) where V1(x1) is a
storage function of Σ1 and V2(x2) is the unique storage
function of Σ2.

Proof: Since Σ1 is passive and Σ2 lossless, the inter-
connection Σ1‖Σ2 by Theorem 3 is also passive. Consider
any storage function V (x1,x2) for Σ1‖Σ2. Rewriting the
dissipation inequality, this implies

L f1V +Lg1V (e1− y2)+L f2V +Lg2V (e2 + y1) =

eT
1 y1 + eT

2 y2−W

for all e1,e2, with W =W (x1) a nonnegative function of x1
only. Equivalently

L f1V (x1,x2)+L f2V (x1,x2)+W (x1) = 0
Lg1V (x1,x2) = hT

1 (x1)

Lg2V (x1,x2) = hT
2 (x2)

We claim that LXV is a function of x1 only for all X ∈ C 1
0 .

Clearly, Lg1V = hT
1 is a function of x1. Moreover, L[ f1,g1]V =

L f1Lg1V −Lg1L f1V = L f1 hT
1 +Lg1L f2V +Lg1W is a function

of x1 only since Lg1L f2V = L f2Lg1V = L f2hT
1 = 0. In fact,

LXiLX jV = LX j LXiV,(i, j) ∈ {(1,2),(2,1)} due to [ fi,g j] = 0.
Assume now that L[Xk,[Xk−1,[...,[X1,g]...]]]V is a function of x1
only, denoted by R(x1). To complete the induction step,
consider first the case XK+1 = g1. Then

L[g1,[Xk,[Xk−1,[...,[X1,g1]...]]]]V =

+Lg1 L[Xk,[Xk−1,[...,[X1,g1]...]]]V −L[Xk,[Xk−1,[...,[X1,g1]...]]]Lg1V =

= Lg1R(x1)−L[Xk,[Xk−1,[...,[X1,g1]...]]]Lg1V =

= Lg1R(x1)−L[Xk,[Xk−1,[...,[X1,g1]...]]]h
T
1

is a function of x1 only since all Xi, i = 1,2, . . . , depend on

x1 only. If Xk+1 = f1, then

L[ f1,[Xk,[Xk−1,[...,[X1,g1]...]]]]V =

= L f1L[Xk,[Xk−1,[...,[X1,g1]...]]]V −L[Xk,[Xk−1,[...,[X1,g1]...]]]L f1V =

= L f1R(x1)−L[Xk,[Xk−1,[...,[X1,g1]...]]]L f1V =

= L f1R(x1)+L[Xk,[Xk−1,[...,[X1,g1]...]]](L f2V +W (x1)) =

= L f1R(x1)+L f2L[Xk,[Xk−1,[...,[X1,g1]...]]]V+

+L[Xk,[Xk−1,[...,[X1,g1]...]]]W (x1) =

= L f1(x1)+L f2Rx1 +L[Xk,[Xk−1,[...,[X1,g1]...]]]W (x1)

is also a function of x1 only. Thus, LC 1
0
V is indeed a function

of x1 only, i.e.

∂

∂x2

{
Lg1V,L[ f1,g1]V, . . . ,L[Xk,[Xk−1,[...,[X1,g1]...]]]V

}
= 0 (22)

Since Σ1 is locally strongly accessible,
dim

(
span{X1(x1) | X1 ∈ C 1

0 }
)
= n1 for x1 in an open

and dense subset of X1. By continuity (22) implies
that ∂ 2

∂x2∂x1
V (x1,x2) = 0 for all x1,x2, and thus the

storage function V (x1,x2) of Σ1‖Σ2 is of the form
V (x1,x2) = V1(x1) + V2(x2) up to a constant. As a
consequence of Theorem 4, Vi(xi) are storage functions of
Σi, i = 1,2. Since Σ2 is lossless, its storage function V2(x2)
is unique up to a constant.

In case Σi, i = 1,2, are both lossless we have the following
stronger result.

Proposition 14: Consider two nonlinear systems Σi, i =
1,2, of the form (1). Let Σi, i = 1,2, be lossless and at least
one of them locally strongly accessible. Then every storage
function V (x1,x2) of the interconnection Σ1‖Σ2 is of the form
(15).

Proof: Observe first that by Theorems 3 and 4, Σ1‖Σ2
being lossless with storage function V (x1,x2) is equivalent
to both Σi, i = 1,2, being lossless with storage functions
Vi(xi), i = 1,2. Furthermore, Σ1‖Σ2 being lossless implies by
(8) – (10) that

L f1V (x1,x2)+L f2V (x1,x2) = 0, (23)
Lg1V (x1,x2) = hT

1 (x1), Lg2V (x1,x2) = hT
2 (x2)

Now let us assume that Σ1 is locally strongly accessible. We
want to show that

Lg1V,L[ f1,gi]V, . . . ,L[X1
1 ,[X

1
2 ,...,[X

1
k ,X

i
K+1],...]]

V, i = 1,2, (24)

are functions of x1 only for all X1
j , j ∈ k from the set { f1,gi},

k≥ 1. Clearly, Lg1V = hT
1 is a function of x1 only. The proof

that also L[X1
1 ,[X

1
2 ,...,[X

1
k ,X

1
K+1],...]]

V is a function of x1 only relies
on the same arguments as used in the proof of Proposition
13. Hence, differentiation of (24) with respect to x2 yields

∂

∂x2

{
Lg1V,L[ f1,gi]V, . . . ,L[Xk,[Xk−1,[...,[X1,g1]...]]]V

}
= 0, (25)

Since Σ1 is locally strongly accessible, C 1
0 (x) has full rank

for x in an open and dense subset of Xi. Hence, 25 implies
by continuity of V (x1,x2) that ∂ 2V

∂x2∂x1
= 0. Hence, any storage
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function V (x1,x2) of Σ1‖Σ2 is of the form V (x1,x2) =
V1(x1) +V2(x2) where Vi(xi) by Theorem 4 is a storage
function of Σi.

Remark 15: Compare Proposition 14 with the following
classical reasoning from passivity theory. If Σi, i = 1,2, are
both reachable from some point x?i , i = 1,2 then both Σi, i =
1,2, have unique storage functions Vi(xi), i = 1,2 (up to
a constant). But then the interconnected system Σ1‖Σ2 is
reachable from (x?1,x

?
2) using the inputs e1 = u1+h2(x2),e2 =

u2− h1(x1) and thus Σ1‖Σ2 has a unique storage function
V (x1,x2) as well. Theorem 3 then tells us that V (x1,x2) is
given as the sum of the unique storage functions Vi(xi).

IV. PASSIVITY RESULTING FROM STABILITY OF THE
INTERCONNECTION WITH ARBITRARY PASSIVE SYSTEM

Corollary 6 and Theorem 7 express the following com-
positional property of passivity: an interconnected system is
passive if and only if the component systems are all passive.

Note, however, that the ’only if’ part requires passivity
of the interconnected system Σint with respect to all new
inputs e1, · · · ,ek and all outputs z1 = y1, · · · ,zk = yk. Indeed,
typically passivity of the component system Σ j is only
implied when the interconnected system is passive with
respect to input e j and output y j.

Example 16: Consider an RC-circuit with current source

Q̇ = −G Q
C +u1

y1 = Q
C

where Q is the charge at the condensator, C > 0 is its
capacitance, G is the conductance of the resistor, u1 is the
input current of the current source, and y1 is its output
voltage. Clearly the system is passive if and only if G≥ 0.

Analogously, consider an RL-circuit with voltage source

ϕ̇ = −R ϕ

L +u2

y2 = ϕ

L

where ϕ is the flux of the inductor, L > 0 is its inductance, R
is the resistance of the resistor, u2 is the input voltage, and
y2 the output current. Again, the system is passive if and
only if R≥ 0.

The closed negative feedback interconnection u1 =
−y2,u2 = y1 of the RC-circuit with the RL-circuit (corre-
sponding to Kirchhoff’s current and voltage laws) results in
the autonomous system[

Q̇
ϕ̇

]
=

[
−G −1
1 −R

][Q
C
ϕ

L

]
,

which is stable if and only if

G+R≥ 0 ,

and asymptotically stable if and only if G+R > 0. Thus it
is not necessary that both subsystems are passive in order
to guarantee stability of the interconnected system: the lack
of passivity of e.g. the RC-circuit (corresponding to the case
G < 0) can be compensated by a ’surplus’ of passivity of the
RL-circuit (i.e., R such that G+R≥ 0).

Note furthermore that if G+R≥ 0 but not both G≥ 0 and
R≥ 0 (the case of one ’non-physical’ resistor) then, although
the system is stable, the physical energy 1

2C Q2+ 1
2L ϕ2 is not

a Lyapunov function anymore.

This motivates the interest to derive conditions ensuring
that passivity of the component systems is implied by pas-
sivity of the interconnected system with regard to a smaller
number of inputs and outputs. As a typical case of such
considerations let us consider, as in the previous example,
the following situation. Consider two systems Σ1 and Σ2 in-
terconnected by the closed negative feedback interconnection

u1 =−y2, u2 = y1 (26)

(no external inputs e1,e2). Denote the autonomous intercon-
nected system by Σ1‖clΣ2. Clearly, passivity of the intercon-
nected system Σ1‖clΣ2 cannot even be defined. Nevertheless
the following folklore theorem can be stated:

Suppose that Σ1‖clΣ2 is stable for all passive systems Σ2,
then Σ1 is passive.

In fact, the above statement has been proved for single-input
single-output linear systems in [2], making use of a Nyquist
plot argument. The proof line is to suppose that Σ2 is not
passive, and then to construct a passive (even lossless) Σ1
which is destabilizing the closed-loop system Σ1‖clΣ2, thus
leading to a contradiction.

Example 17 (Example 16 continued): Consider again the
RC-circuit from above with G ∈R, i.e., not necessarily non-
negative. Clearly, if this circuit whenever interconnected with
an RL-circuit results in a stable autonomous system for
any R ≥ 0 (or equivalently, the RL-circuit is passive), then
necessarily G ≥ 0, and thus the RC-circuit is passive. The
same reasoning holds for the interconnection of an RL-circuit
with R of arbitrary sign with a passive RC-circuit: stability
for any G≥ 0 implies R≥ 0.
However, up to the knowledge of the authors of the present
paper, no proof of this folklore theorem for more general
systems is available.

In the rest of this paper we will approach the folklore
theorem in the following modified sense. Replace the lossless
system Σ2 by its abstraction

Ξ2 : ξ̇2 = uT
2 y2, ξ2 ∈ R+ (27)

(keeping only track of the energy balance of the arbitrary
lossless system). Then consider the interconnection of Σ1
with Ξ2 via (26), leading to the interconnected system Σ1 ‖cl
Ξ2 given as

ẋ1 = f1(x1)+g1(x1)u1

ξ̇2 = −hT
1 (x1)u1, ξ2 ≥ 0

(28)

(Note that this is a system description of a generalized type,
since u1 is not uniquely determined by (28). It means that
we consider all x1,ξ2,u1 satisfying (28).)

Proposition 18: Suppose that Σ1 ‖cl Ξ2 is stable in the
sense that there exists a non-negative function V (x1,ξ2)
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satisfying

Vx1(x1,ξ2)[ f1(x1)+g1(x1)u1]+Vξ2
(x1,ξ2)ξ̇2 ≤ 0 (29)

for all x1,ξ2, ξ̇2,u1 satisfying (28). Furthermore, assume that
there exists a ξ ∗2 such that

Vξ2
(x1,ξ

∗
2 ) = α > 0, (30)

with α a constant (independent of x1). Then Σ1 is passive.
Proof: Since (29) holds for all x1,ξ2, ξ̇2,u1 satisfying

(28), it follows that

Vx1(x1,ξ2)[ f1(x1)+g1(x1)u1]−Vξ2
(x1,ξ2)hT

1 (x1)u1 ≤ 0

for all x1,u1. This is equivalent to

Vx1(x1,ξ2) f1(x1)≤ 0

Vx1(x1,ξ2)g1(x1)−Vξ2
(x1,ξ2)hT

1 (x1) = 0
(31)

Evaluating the second equation at any point (x1,ξ
∗
2 ) yields

Vx1(x1,ξ
∗
2 )g1(x1) = αhT

1 (x1)

Then it follows that V (x1) := 1
α

V (x1,ξ
∗
2 ) is a storage function

for Σ1.

A. Passivity as a nonlinear simulation relation

The introduction of the abstraction system (27) can be
interpreted from a simulation point of view as follows.

Recall that a system Σ is passive if there exists a (differ-
entiable) storage function V : X → R+ satisfying

Vx(x)≤ uT y, for all x,u,y satisfying (1) (32)

This can be also expressed by saying that Σ is simulated by
the abstraction system

Ξ : ξ̇ ≤ uT y, ξ ∈ R+, (33)

where the simulation relation S⊂X ×R+ is given by

S = {(x,ξ ) ∈X ×R+ | ξ =V (x)} (34)

Indeed, starting at every (x,ξ ) ∈ S it follows that for every
common input u to Σ and Ξ there exists a scalar v such that

( f (x)+g(x)u,v) ∈ T(x,ξ )S

v≤ uT h(x)
(35)

where T(x,ξ )S denotes the tangent space to the submanifold S
at the point (x,ξ )∈ S. This implies that for every initial state

(x,ξ )∈ S and for every input function u(·) there corresponds
to the solution trajectory x(·) of Σ a solution trajectory ξ (·)
of the generalized system Ξ such that for all t ≥ 0

(x(t),ξ (t)) ∈ S

(See for the precise definition of a nonlinear simulation
relation [7], [8].) From this point of view Proposition 18
can be interpreted as addressing the question when the
stability of the autonomous interconnected system Σ1 ‖cl Ξ2
with Ξ2 lossless, implies that Σ1 is simulated by Ξ1. Such
an interpretation suggests to apply compositional reasoning
techniques as recently developed in [4] to this problem. This
is currently under investigation.

V. CONCLUSIONS

We have proved a converse to the classical passivity
theorem: whenever the interconnected system (with external
inputs) is passive, then so are the subsystems. This has been
also demonstrated for a general power-conserving intercon-
nection of multiple systems. An important consequence is
the fact that a passive interconnected system always has an
additive storage function. It also allows to say more about the
class of storage functions of a passive interconnected system.

Current investigations deal with the extension of these
results to closed negative feedback interconnections. Prelim-
inary results in this direction are reported in the last section.
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