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Abstract— This paper proposes an actuator failure tolerant
robust control scheme for underwater Remotely Operated
Vehicles (ROVs). A reduced order observer has been introduced
first, for estimating the ROV velocities. In order to solve the con-
trol problem for the ROV positions, a sliding mode control law
has been developed using the available position measurements
and the velocity estimates provided by the observer. A thruster
failure is shown to be detectable simply checking the presence
of any deviation of the observed sliding surfaces. Moreover,
an isolation policy for the failed thruster is proposed. Finally,
control reconfiguration is performed exploiting the inherent
redundancy of actuators. An extensive simulation study has
been performed, supporting the effectiveness of the proposed
approach.

I. INTRODUCTION

In the last decades Unmanned Underwater Vehicles
(UUVs) have increased their popularity, especially as a
cost-effective solution for performing complex tasks in the
underwater environment without risking human life (e.g.
environmental data gathering, transportation of assembling
modules for submarine installations, inspection of underwa-
ter structures). On the other hand, underwater environment
introduces numerous challenges in control, navigation and
communication of such vehicles.

With increasing mission durations in complex marine
applications, one of the primary concerns is the failure
occurrence on the actuators [1], [2]. When actuator failures
occur and result in abnormal operations, the only present
solution is to abort the mission, and use a damage control to
make UUVs surface [3]. Therefore, the problem of reliability
and security of UUVs, especially their ability of actuator
fault tolerance, has become a major concern. Even though
most UUVs use adaptive control systems, the response of
the controller is reactive, and no consideration is given to the
source or extent of the failures. It is desirable to incorporate
a function of actuator fault detection and isolation into the
control system, so that it is possible to detect and identify ac-
tuator fault and/or failures, and design compensation control
laws.

This paper presents a fault tolerant control scheme in the
framework of underwater robotics, specifically addressing
an underwater Remotely Operated Vehicle (ROV) [4] used
by SNAMprogetti (Fano, Italy) in the exploitation of com-
bustible gas deposits at great water depths. The vehicle is
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equipped with four thrusts propellers, controlling its position
and orientation in planes parallel to the sea surface, and
is connected with the surface vessel by a supporting cable
which controls the vehicle depth and provides power and
communication facilities. The control system is composed of
two independent parts: the first part, placed on the surface
vessel, monitors the vehicle depth, and the second part
controls the position and orientation of the vehicle in the
dive plane. In this paper the attention has been focused on
this second part of the control system: the ROV is supposed
to move on a plane, with three degrees of freedom. Due
to this assumption, the thrusters configuration is redundant,
as in general happens with UUV’s. This redundancy can be
exploited to enhance the ROV ability to achieve the mission
objective in the presence of a thruster fault.

The actuator failure tolerant control scheme presented in
this paper is composed by the usual modules performing
detection, isolation, accommodation of failures by control
reconfiguration [5]. A reduced order observer has been
specifically designed for the ROV exploiting the features of
the underwater vehicle, permitting to estimate the underwa-
ter vehicle velocities, which are in general difficult to be
gathered and poorly reliable. These velocity estimations and
the available position measurements, have been then used for
developing a robust sliding mode control law [6], which is
able to solve the regulation problem for the ROV positions,
with respect to the reference ones. The developed sliding
surfaces have been used both for designing a robust ROV
control algorithm ensuring plant regulation, and for detecting
the thruster failures. Failure detection is here performed sim-
ply checking the presence of any deviation of the observed
sliding surfaces, which can be due only to the occurrence of a
thruster failure. Exploiting the ROV structure, faulty thruster
can be successfully isolated. Once the failed actuator has
been identified, control reconfiguration is performed using
the redundant healthy actuators. In other words, the control
activity is redistributed among the actuators still working
such that the failed actuator is compensated for, and control
performances are this way preserved.

II. MATHEMATICAL MODEL OF THE ROV

A. ROV nonlinear model

The equations describing the ROV dynamics have been
obtained from classical mechanics [4], [7], [8]. The ROV
considered as a rigid body can be fully described with
six degrees of freedom, corresponding to the position and
orientation with respect to a given coordinate system. Let
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us consider the inertial frame R (0, x, y, z) and the body
reference frame Ra (0a, xa, ya, za) [7] shown in Fig. 1.

Fig. 1. ROV operational configuration.

The ROV position with respect to R is expressed by the
origin of the system while its orientation by the roll, pitch,
and yaw angles ψ, θ, and φ, respectively. Being the depth
controlled by the surface vessel, the ROV is considered to
operate on surfaces parallel to the x− y plane. Accordingly
the controllable variables are x, y, and the yaw angle φ. It
should be noticed that the roll and pitch angles ψ and θ will
not be considered in the dynamic model: their amplitude, in
fact, has been proved to be negligible in a wide range of load
conditions, and with different intensities and directions of
the underwater current as well [4], [7]. Therefore, the ROV
model is described by the following system of differential
equations [4], [7], [8], [9] :



p1ẍ+ (p2 |cos (φ)|+ p3 |sin (φ)|)Vx |V |+
p4x− p5Vcx |V c| = Tx

p1ÿ + (p2 |sin (φ)|+ p3 |cos (φ)|)Vy |V |+
p4y − p5Vcy |V c| = Ty

p6φ̈+ p7φ̇
∣∣∣φ̇∣∣∣+ p8 |V c|2 sin

(
φ−φc

2

)
+ p9 = Mz

(1)

where Vc =
[
Vcx Vcy

]T
is the submarine current velocity,

V =
[
Vx Vy

]T
=
[
(ẋ− Vcx) (ẏ − Vcy)

]T
, and the

expressions of coefficients pi (i = 1, . . . , 9) are reported in
[8], [9], where M is the vehicle mass, m is the addition
mass, Iz is the vehicle inertia moment around the z axis, iz
is the addition inertia moment, Mc is the resistance moment
of the cable, L is the cable length, Tv the vehicle weight
in the water, W the weight for length unit of the cable, ρw
the water density, Cdc is the drag coefficient of the cable,
and Dc is the cable diameter, Cdi is the drag coefficient
of the i−th side wall (i = 1, 2), Cri the packing coefficient
(depending on the geometrical characteristics of the i−th

side wall (i = 1, 2)), Si is the area of the i−th side wall
(i = 1, 2), Cd is the drag coefficient of rotation, Cr is the
packing coefficient of rotation, S is the equivalent area of
rotation, r is the equivalent arm of action, di (i = 1, 2, 3)
are the vehicle dimensions along the xa, ya and za axes,
respectively, and φc is the angle between the x axis and the
velocity direction of the current. This model is in agreement
with models usually proposed in literature for underwater
ROV’s moving in the dive plane [1].

The quantities Tx, Ty and Mz appearing in (1) are the
decomposition of the thrust and the torque provided by the
four vehicle propellers along the axes of R:

Tx = cos (φ) (T1 + T2 + T3 + T4) cos (α)−
sin (φ) (−T1 − T2 + T3 + T4) sin (α)

Ty = sin (φ) (T1 + T2 + T3 + T4) cos (α) +
cos (φ) (−T1 − T2 + T3 + T4) sin (α)

Mz = (−T1 + T2 − T3 + T4) da

(2)

with α =
π

4
, da = (dx sin (α) + dy cos (α)) (see Fig. 1).

B. State Space ROV model

Define the vectors zp = [z1 z2 z3]
T

=
[
x y φ

]T
,

zv = [z4 z5 z6]
T

=
[
ẋ ẏ φ̇

]T
, the state vector:

z =
[
zTp zTv

]T
=
[
z1 z2 z3 z4 z5 z6

]T
and introduce the input vector u =

[
u1 u2 u3

]T
=[

Tx Ty Mz

]T
. Moreover, since model parameters and

submarine current are not exactly known, bounded uncer-
tainties are taken into account as follows: pi = p̂i + ∆pi,
|∆pi| ≤ ρpi , i = 1, . . . , 9, Vcx = V̂cx + ∆Vcx, |∆Vcx| ≤
ρVcx , Vcy = V̂cy + ∆Vcy , |∆Vcy| ≤ ρVcy , being p̂i, V̂cx, V̂cy
the nominal values of the parameter and of the submatine
current components, respectively, and |∆pi|, |∆Vcx|, |∆Vcy|
the corresponding uncertainties, bounded by ρpi , ρVcx , ρVcy ,
respectively. Considering the above definitions and equations
(1), the following state space model is obtained:

ż(t) = f(z(t)) + ∆f(z(t),u(t)) + gu(t) (3)

where

f(z) =



z4
z5
z6

−f4(z3)z̄4Nz + ϕ4(z1)
−f5(z3)z̄5Nz + ϕ5(z2)

− p̂7
p̂6
z6 |z6|+ ϕ6(z3)


g =

[
03×3

diag
{

1
p̂1
, 1
p̂1
, 1
p̂6

} ]
(4)
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being

f4(z3) =
1

p̂1
(p̂2 |c3|+ p̂3 |s3|)

f5(z3) =
1

p̂1
(p̂2 |s3|+ p̂3 |c3|)

ϕ4(z1) =
1

p̂1

(
−p̂4z1 + p̂5V̂cx|V̂ c|

)
ϕ5(z2) =

1

p̂1

(
−p̂4z2 + p̂5V̂cy|V̂ c|

)
ϕ6(z3) = − 1

p̂6

(
p̂8|V̂ c|2 sin

(
z3 − φ̂c

2

)
+ p̂9

)

with z̄4 = z4 − V̂cx, z̄5 = z5 − V̂cy , Nz =
√
z̄24 + z̄25 ,

c3 = cos(z3), s3 = sin(z3), V̂ c =
√
V̂ 2
cx + V̂ 2

cy ,

φ̂c = arctan

(
V̂cy

V̂cx

)
, and the term ∆f(z,u) =

[0, 0, 0,∆4(z1, z3, z4, Tx),∆5(z2, z3, z5, Ty),∆6(z3, z6,Mz)]
T

can be easily computed considering the uncertainties |∆pi|
(i = 1 . . . 9), ∆Vcx, ∆Vcy .

III. ROBUST CONTROL DESIGN

A. Robust Design of the Reduced Order Observer

In this section, a reduced order observer, specifically
designed for the ROV, will be proposed. In fact, while
position measurements are usually available and are in gen-
eral sufficiently reliable, velocity measurements are either
difficult to be gathered and poorly reliable.

The observer design will be carried out exploiting the
following features of the ROV:

• in the model (3), (4), positive scalars γ14, γ24, γ15, γ25
can be found such that: 0 < γ14 ≤ f4(z3) ≤ γ24, 0 <
γ15 ≤ f5(z3) ≤ γ25;

• there is a maximal (known) velocity zmax4 , zmax5 , zmax6

achievable by the vehicle, as a consequence of
the existence of a maximal power supply by
thrusters. Therefore it exists a bound M =√

(zmax4 − Vcx)2 + (zmax5 − Vcy)2 such that Nz ≤M .
• as a consequence of the existence of a maximal power

supply by thrusters, control variables Tx, Ty , Mz are
bounded, too, and bounds can be easily computed also
for the uncertain terms. Therefore, it can be assumed
that: |∆4(z1, z3, z4, Tx)| ≤ ρ4; |∆5(z2, z3, z5, Ty)| ≤
ρ5; |∆6(z3, z6,Mz)| ≤ ρ6.

Define ξ = [ξ1 ξ2 ξ3]T , and consider the following
reduced state observer:

ξ̇1 =− f4(z3)N̂z ξ̄1 + ϕ4(z1) + v1

ξ̇2 =− f5(z3)N̂z ξ̄2 + ϕ5(z2) + v2

ξ̇3 =− α6M̄ξ3 + ϕ6(z3) + v3 (5)

with ξ̄1 = ξ1 − Vcx, ξ̄2 = ξ2 − Vcy , α6 = p7/p6, M̄ =
sup{|zmax6 |,M} and N̂z =

√
(ξ1 − Vcx)2 + (ξ2 − Vcy)2.

A robust control law, coupled with the above observer, will
be here presented aimed at solving the regulation problem

for the variables z1, z2, z3 with respect to reference variable
zd = [z1d z2d z3d]

T . Define the following sliding surface:

s̃ =
[
s̃1 s̃2 s̃3

]T
= (ξ − żd) + zp − zd = 0. (6)

with Λ = diag{λi}, λi > 0, i = 1, . . . , 3, and being ε =
zp − zd the tracking error.

Lemma 1: Consider the uncertain ROV model (3). The
control law u = ueq + un, with:

ueq = g−1

 f4(z3)ξ̄1N̂z − ϕ4(z1)− λ1(z4 − ż1d) + z̈1d − v1
f5(z3)ξ̄2N̂z − ϕ5(z2)− λ2(z5 − ż2d) + z̈2d − v2
α6M̄ξ3 − ϕ6(z3)− λ3(z6 − ż3d) + z̈3d − v3


un = −g−1

 ρ̄4sign(s̃1)
ρ̄5sign(s̃2)
ρ6sign(s̃3)

 (7)

guarantees the asymptotical achievement of a sliding motion
on (6).

Proof: The achievement of a sliding motion on (6) is
guaranteed by the following condition:

s̃T ˙̃s = s̃1

(
ξ̇1 − z̈1d + λ1(z4 − ż1d)

)
+

s̃2

(
ξ̇2 − z̈2d + λ2(z5 − ż2d)

)
+ s̃3

(
ξ̇3 − z̈3d + λ3(z6 − ż3d)

)
< 0 (8)

which can be fulfilled imposing separately three inequalities,
i.e. si

(
ξ̇i − z̈id + λi(z3+i − żid)

)
< 0, i = 1, 2, 3. The first

inequality gives, e.g.:

s̃1

(
−f4(z3)N̂z ξ̄1 + ϕ4(z1) + v1 − z̈1d + λ1(z4 − ż1d)

)
< 0

and one gets immediately the controller (7).
Define the observation error as e = [e1 e2 e3]

T
= zv − ξ.

The following result can be given omitting the proof for
brevity:

Corollary 2: Consider the uncertain plant model (3)
driven by the control law (7). The reduced order observer
(5) ensures the robust asymptotical vanishing both of the
observation error and of the tracking error designing v as
follows:

v = −θ

 [f4(z3)M(z̄max4 + |ξ1|) + ρ4]
[f5(z3)M(z̄max5 + |ξ2|) + ρ5][
α6(z̄max6 )2 +M |ξ3|) + ρ6

]
 ·

[
sign(ξ̇1 + ξ1 − z̈1d − ż1d) sign(ξ̇2 + ξ2 − z̈2d − ż2d)
sign(ξ̇3 + ξ3 − z̈3d − ż3d)

]
(9)

with θ > 1.

IV. FAULT DETECTION, ISOLATION AND
ACCOMMODATION

In the scenario considered in this paper, each thruster is
an actuator potentially affected by faults. The basic idea is
that, whenever a failure is detected and identified, a super-
visor performs a control reconfiguration exploiting thrusters
redundancy (three propellers are enough to control the ROV
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trajectory). In this framework, it is convenient to rewrite the
model (3) as follows:

ż = f(z) + ∆f(z,u) + ḡ(zp)

 T1 + T2 + T3 + T4
−T1 − T2 + T3 + T4
−T1 + T2 − T3 + T4


(10)

with:

ḡ(zp) =


03×3

ḡ1(z3)
ḡ2(z3)
ḡ3(z3)

 =


03×3

c3 cos(α)
p1

−s3 sin(α)
p1

0
s3 cos(α)

p1

c3 sin(α)
p1

0

0 0
da
p6


A. Class of potential faults

The addressed potential faults belong to a wide class. First,
the so called abrupt fault [10], [11], [12] are considered.
They are described by a step function, modeling the case
when the faulty variable is instantaneously stuck to an
unknown but bounded value. Such fault may occur when
a failure of a component produce a sudden deviation of the
actuator dynamics (as for example a valve completely failing
to open or close, a short circuit in the motor circuitry [13]).
This type of thruster faults has the following model:

|Tj (t) | = T̄ ≤ Tmax ∀t ≥ tj , j ∈ {1, 2, 3, 4} (11)

where the failure times tj are unknown. In other words, when
a fault does occur on a thruster, this causes the complete
and permanent unavailability of the considered actuator at
unknown time instant. This means that, from the unknown
time istant tj , it is not possible to recover the thruster
functionality and thus only the remaining working thrusters
can be used to control the vehicle. The case when a thruster
undergoes a failure occurs when T̄ = 0.

Also, the behavior of a faulty device can be consequence
of deterioration, obsolescence or cumulation phenomena,
producing a small instantaneous deviation of the actuator
behavior, but it cumulates in time; as a result, these faults
can result in a loss of efficiency within the system. A usual
way to mathematically describe such temporal behavior is
assuming that the development of the fault is given by

Tj(t) =


Tj (t) for t < tj

Tj
(
t−j
)

+
(
T̄ − Tj

(
t−j
))(

1− e−
(
t−tj
θj

))
for t ≥ tj ; θj > 0 j ∈ {1, 2, 3, 4}

(12)
where |Tj(t)| ≤ T̄ ≤ Tmax, i.e. the loss of effectiveness
slowly changes from zero (i.e. no fault is present) to a steady-
state value T̄ [12].

Assumption 3: Only one of the four thrusters can undergo
a fault, i.e. multiple thruster faults cannot be admitted.
Moreover, it is assumed that any fault does not compromise
controllability of the plant driven by the remaining healthy
thrusters.

Assumption 4: In the case of the fault model (12), it is
assumed that the loss of effectiveness occurs slowly enough
(see subsection IV-C).

Assumption 5: In view of the fact that the reaching phase
can be made arbitrarily short, it is assumed that the fault can
occur only after a sliding motion has been achieved on (6).

B. Fault Detection

The eventual occurrence of a fault and the identification of
the failed thruster can be performed by means of simple con-
siderations exploiting the ROV model. To this purpose, it is
important to notice that the control law is computed imposing
the achievement of a sliding motion of the observed surface
(6). Therefore, once the sliding motion is established (i.e.
when s̃i = 0 after the reaching phase), it is straightforward
to verify that any deviation of the sliding surface is due to
the occurrence of a fault. For instance, if a fault occurs at the
time tf on the thruster T1 such that the control input actually
supplied undergoes a deviation ∆T1(t− tf ) for t > tf with
respect to its theoretical value, for the first sliding surface it
holds:

s̃1(t)− s̃1(tr) = s̃1(t) =
1

p1

∫ t

tf

∆T1(τ − tf ) cos(z3−α)dτ

having denoted by tr the time when the sliding motion is
achieved (therefore s̃1(t) = 0 for t ≥ tr).

Proposition 6: Consider the uncertain ROV model (3)
driven by the robust controller (7). Suppose that the thruster
Tk, k ∈ {1, . . . , 4} undergoes a fault at time tf , thus causing
a deviation of ∆Tk(t−tf ) of the control input supplied with
respect to its theoretical value. Then one has, for t > tf :

s̃1(t) =
1

p1

∫ t

tf

∆Tk(τ − tf ) cos(z3 − (−1)k÷3α)dτ

s̃2(t) =
1

p1

∫ t

tf

∆Tk(τ − tf ) sin(z3 − (−1)k÷3α)dτ

s̃3(t) =
da
p6

∫ t

tf

(−1)k∆Tk(τ − tf )dτ (13)

where the symbol ÷ denotes the operator of division between
integers.

Proof: The statement follows directly from Assumption
5 and from the observers (5).

From the previous proposition, a fault detection rule
immediately follows.

Proposition 7: Consider the uncertain ROV model (3)
driven by the robust controller (7) under Assumptions 3,4,5.
Suppose that the thruster Tk, k ∈ {1, . . . , 4} underwent a
fault at time tf . The fault can be detected checking the
variables s̃i(t), i = 1, 2, 3, at t < tf , i.e. if

(s̃1(t) 6= 0) OR (s̃2(t) 6= 0) OR (s̃3(t) 6= 0)

then a fault has occurred.
Proof: The proof is straightforward. It simply consists

in checking the eventual violation of the sliding mode
existence condition, according to (13). It is worth recalling
that, according to Assumption 5, the sliding motion has been
established, and the sliding surface (6) should be zero in the
absence of a fault affecting the actuators.
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Remark 8: It should be noticed that the previous Proposi-
tion gives a sufficient condition, therefore the occurrence of a
fault could not necessarily produce the variation of all sliding
surfaces s̃i (i = 1, 2, 3). Nevertheless, also in view of (13),
one should consider the deviation from zero of the surfaces as
symptomatic of the occurrence of a fault, since whenever the
occurred fault were not severe enough to cause any deviation
of s̃i, i = 1, 2, 3, from zero, this would simply mean that the
controller is still able to guarantee the achievement of the
required performances in face of the fault itself.

C. Failed Thruster Isolation

The identification of the thruster which underwent the
fault can be performed by means of simple considerations
exploiting the ROV structure. Assume a fault has occurred
at time tf , and define for t > tf :

Ic1(t) =

∫ t

tf

cos(z3 − α)dτ ; Ic2(t) =

∫ t

tf

cos(z3 + α)dτ ;

Ic3(t) =

∫ t

tf

sin(z3 − α)dτ ; Ic4(t) =

∫ t

tf

sin(z3 + α)dτ.

Proposition 9: Consider the uncertain ROV model (3)
driven by the robust controller (7), under Assumptions 3,4,5.
Suppose that the thruster Tk, k ∈ {1, . . . , 4} underwent a
fault at time tf , then detected at time td > tf . Compute the
quantities for t > td:

µ11(t) =
s̃1(t)

Ic1(t)
p1 µ13(t) =

s̃1(t)

Ic3(t)
p1

µ22(t) =
s̃2(t)

Ic2(t)
p1 µ24(t) =

s̃2(t)

Ic4(t)
p1

µ3(t) =s̃3(t)
p6
da

(14)

The failed thruster Tf can be isolated according to the
following rule. Fix a time t̄ > td.

• If sign(µ11(t̄)) 6= sign(µ3(t̄)) then
– if µ22(t̄) = µ11(t̄) then Tf = T1 else Tf = T3;

• else (if sign(µ11(t̄)) = sign(µ3(t̄)) then)
– if µ22(t̄) = µ11(t̄) then Tf = T2 else Tf = T4;

Proof: The statement follows directly from Proposition
6. In fact, under Assumption 4 and for short intervals
(tf , t̄), the term ∆Tk(τ − tf ) in (13) can be moved outside
the integral signs. It follows that comparing signs of the
quantities (14) one can identify the failed actuator, exploiting
the model (10). Just as an example, suppose that the thruster
T2 underwent a fault of intensity ∆T2(τ − tf ). According to
the model (10), one has

s̃1(t) =
1

p1
∆T2

∫ t

tf

cos(z3 − α)dτ

s̃2(t) =
1

p1
∆T2

∫ t

tf

sin(z3 − α)dτ

s̃3(t) =
da
p6

∆T2(t− tf ) (15)

therefore µ11 = ∆T2, µ3 = ∆T2(t − tf ), and µ11, µ3

have the same sign. The same would anyway have occurred

if the fault had undergone in the thruster T4, in view of
the structure of the matrix ḡ(z3) of the model (10). To
discriminate between T2 and T4, it is enough to consider
that, from the first two equalities of (15):

1

p1
∆T2 =

s̃1(t)∫ t
tf

cos(z3 − α)dτ
=

s̃2(t)∫ t
tf

sin(z3 − α)dτ

This approach can be generalized to the remaining possi-
ble cases. In particular, in the case when sign(µ11(t̄)) 6=
sign(µ3(t̄)), only thrusters T1 or T3 could have experienced
a fault. Moreover, if µ22(t̄) = µ11(t̄), then the failed actuator
is T1, otherwise is T3. An analogous argument holds for
the case when sign(µ11(t̄)) = sign(µ3(t̄)), for which the
candidate failed actuators are T2 or T4.

D. Control reconfiguration

After a failure has been detected and isolated by the FD
and FI module respectively, the supervisor has to perform a
control reconfiguration to preserve the desired performances
in face of the failure occurrence. In particular, the inherent
redundancy of the considered ROV can be exploited for fault
accommodation. Consider the model (10), and suppose that
a fault has been detected and isolated. The plant model can
be rearranged separating the failed and the active thrusters,
e.g. if the failed thruster was T1, one would get:

ż(t) = f(z) + ∆f(z,u) +


03×3

ḡ1(z3)
−ḡ2(z3)
−ḡ3(z3)

T1+


03×3

ḡ1(z3)
ḡ2(z3)
ḡ3(z3)


 T2 + T3 + T4
−T2 + T3 + T4
T2 − T3 + T4

 (16)

To accommodate the fault, it is now easy to rewrite the
sliding mode controller using this model and using the
bound Tmax available for the failed actuator, following the
lines of Lemma 1. In view of the robustness properties of
sliding-mode control, this procedure guarantees the robust
asymptotical vanishing of the tracking errors also in the
presence of a faulty actuator (with known upper bound), i.e.
that robust regulation is achieved asymptotically.

V. SIMULATION RESULTS

The proposed actuator fault tolerant control scheme has
been validated by simulation. Tests have been performed in
the following operative condition: 1) Parameters variations
of 10% with respect to their nominal value [8], [9]; 2) In the
simulation tests, the plant initial condition has been chosen
as x (0) = 0, y (0) = 0, φ (0) = 0, ẋ (0) = 0, ẏ (0) = 0,
φ̇ (0) = 0, and the set point as yd =

[
1 m 1 m 30◦

]T
.

3) Favorable submarine current has been considered, with
Vc =

[
0.1 0.1

]T
m/s. Notice that such marine currents have

been considered constant since they are very slowly time-
varying due to the fact that they model submarine currents
at great sea depth.
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4) The actuator T2 has been supposed to undergo an abrupt
fault at t = 70 s of the form: T2 (t) = 2000N for t ≥
70 s. Before fault occurrence, the control action applied to
the ROV is subdivided among the four thrusters (one of
which is redundant). The thruster T1 is used as the redundant
one, and its value is set to 500N before the fault being
detected and identified, in order to check that the value of
the redundant thruster does not affect the performances of
the overall control architecture. Of course, when the fault is
detected and isolated, control reconfiguration is performed
including the (previously redundant) actuator T1 in the triple
of actuators needed to control the ROV.

Results about the abrupt fault case have been reported in
Figs. 2-5. It can be verified that, before the fault occurrence
on T2, actuators T2, T3 and T4 are able to effectively control
the ROV (see Figs. 2-3). Moreover, simulations results show
that satisfactory performances are maintained also in the
faulty situation, since the ROV controlled outputs effectively
follow the reference values (see Fig. 2) also after fault
occurrence, and that observation errors are bounded (see Fig.
4). It is interesting to verify that detection of the fault is
correctly performed by the sliding surfaces at t = 70 s (see
Fig. 5), since the sliding surfaces noticeably deviate from
zero. After fault isolation, reconfiguration is performed, and
the previously redundant thruster T1 is activated, along with
T3 and T4, for ensuring output regulation and for maintaining
the required control performances.
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