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Abstract— It is known that the optimal sensor coverage of a
mission space is performed by the Voronoi coverage. Aside from
the energy required to move, communication among sensors
consumes a large amount of their limited energy. So, to reduce
communication energy, we propose a distributed control method
that deploys sensors avoiding the obstacles by means of time-
driven communication. We apply a potential field method to
avoid obstacles. We propose a control method that consists of
two processes: Voronoi update process and position update pro-
cess. In the Voronoi update process, the sensor communicates
with the other sensors and exchange information about their
positions, periodically. Then, the sensing area of the sensor is
updated using their positions. On the other hand, in the position
update process, each sensor moves to the optimal position to
increase its sensing performance on its sensing area which is
fixed in the process. Thus, it does not need to communicate
with the other sensors in the process. We show that a locally
optimal sensor position is a locally uniformly asymptotically
stable equilibrium point by the proposed method.

I. INTRODUCTION

The interest in the cooperative control of a group of mobile
sensors has significantly increased over the last decades
[1]. Coverage control of sensors on a mission space for
accomplishing the optimal sensing performance has many
applications such as surveillance, search, and target intercept.
In a sensor network, each sensor communicates with its
neighbor sensors locally and decides its optimal position
based on the local information. A lot of attention has been
paid to the distributed control for the optimal deployment of
a group of the sensors. However, the coverage problem would
require the sensors to exchange their current positions. Aside
from the energy required to move, communication among
sensors consumes a large amount of their limited energy.
Therefore, it is an important issue to reduce communication
among sensors while they move to the optimal position.

Cortés et al. proposed a coordination control approach for
multisensor networks [2]. Kwok and Martı́nez extended this
cooperative approach to power-aware coverage control[3].
Zhong and Cassandras proposed an event-driven optimiza-
tion scheme for maximizing sensing performance and reduc-
ing communication costs [4]. Distributed coverage control
for sensor networks has been extensively studied [5], [6], [7].
Guruprasad and Ghose proposed a deploy-and-search strat-
egy for the Voronoi coverage problem [8]. In this strategy,
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the sensors search their optimal deployment first. Then, they
gather information in their Voronoi cells. These operations
are repeated until the required level for sensing performance
is reached. Another recent topic of cooperative control is the
avoidance problem of multiple obstacles in a mission space
[9]. The coverage control can also be applied to a convex
space with obstacles [10], [11], [12], [13].

In this paper, we focus on a Voronoi coverage problem
in order to monitor the whole mission space with obstacles
using a group of mobile sensors, where the sensing area
of each sensor is represented as a Voronoi cell. We also
consider a coverage control method to reduce communica-
tion costs. Thus, we propose a distributed control method
to deploy the sensors, avoiding the obstacles with time-
driven communication, and apply the potential field method
to avoid obstacles. The potential field method has been
extensively utilized for obstacle avoidance [14]. To reduce
the costs of communication among sensors, we propose
a control method that consists of two processes: Voronoi
update process and position update process. These processes
are activated alternatively. The Voronoi update process is
activated periodically; it requires information about the other
sensors’ positions and provides the sensing area of each
sensor as a Voronoi partition generated by sensors’ positions.
Thus, the sensors intermittently communicate with each other
and exchange information about their positions so that the
energy consumed for the communication is reduced. On the
other hand, each sensor searches for his optimal deployment
in his sensing area given by a Voronoi cell when it is in the
position update process. This search is done independently
so that no energy for communication is consumed. Then, we
can obtain an optimal deployment to maximize the sensing
performance with lower communication costs.

The rest of this paper is organized as follows. In Section
II, we formulate the Voronoi coverage problem with multiple
obstacles as an optimization problem with an objective
function which evaluates the sensing performance avoiding
the obstacles. Section III describes the proposed distributed
Voronoi coverage control method and discusses its stability.
In Section IV, we demonstrate its efficiency by simulation
and discuss the communication costs and convergence times.
Finally, we conclude the paper in Section V.

II. PROBLEM FORMULATION

In this section, we formulate the problem addressed in
this paper. We consider a bounded planar search region
with obstacles, which will be called a mission space. For
simplicity, we assume that the mission space is represented
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Fig. 1. Illustration of the sensing performance degradation function f .

by a convex polytope Q ⊂ R2. There are n mobile sensors
collecting information about all points of the mission space.
The collection at each point in the mission space is done
by one mobile sensor. We introduce a function φ: Q →
R+ called a value function, which represents the (relative)
importance of the information at each point in the mission
space Q. The more important a point q ∈ Q is, the larger the
value φ(q) is. For example, the value function is a probability
density function of the existence of a target object. We as-
sume that φ is integrable and positive at every point in Q. Let
I = {1, . . . , n} be a set of n mobile sensors which can move
to any position in Q. Let ri(t) = (ri1(t), ri2(t))

T ∈ Q be the
position of each sensor i ∈ I at time t, where T denotes the
transpose of a matrix or vector. r(t) = (r1

T (t), . . . , rn
T (t))T

denotes the deployment of n sensors.
Because of noise and loss of resolution, the sensing

performance of sensor i at a point q ∈ Q degrades with the
distance ‖q − ri‖ between a point q and its current position
ri. The farther the distance ‖q − ri‖ is, the larger the cost of
the sensing performance is. For simplicity, we assume that
the degradation of the sensing performance of every sensor is
identical and represented by a nondecreasing differentiable
function f : R+ → R+. Therefore, f (‖q − ri‖) provides
a quantitative assessment of the degradation of the sensing
performance. In general, we can assume that f(·) is a
nondecreasing function as shown in Fig. 1.

Given the mission space Q ⊂ R2 and the deployment p =
(p1

T , . . . , pn
T )T ∈ Qn of n distinct points p1, . . . pn ∈ Q,

the Voronoi partition of Q generated by p is the collection of
sets {ν1(p), . . . , νn(p)}, where νi(p) := {q ∈ Q| ||q−pi|| ≤
||q − pj || for all i 6= j, j ∈ I} [1]. The position pi, the
deployment p, and the set νi(p) are called the generating
point, the generator, and the Voronoi cell, respectively.

We assume that the sensing area of the sensor i is the
Voronoi cell νi(p). With the value function φ and the
sensing performance degradation function f , we introduce
an objective function H1(r, p) which evaluates the collective
sensing performance of a group of all mobile sensors as
follows:

H1(r, p) =
n∑

i=1

∫
νi(p)

f (‖q − ri‖)φ(q)dq. (1)

Fig. 2. Example of a convex mission space with obstacles colored by black
and its repulsive potential.

The smaller the value H1(r, p) is, the better the sensing
performance in the mission space is. It is known that, for
a given sensor deployment r, the optimal Voronoi partition
minimizing H1(r, p) satisfies p = r.

In this paper, we assume that the mission space has
several obstacles, which the deployment of the sensors must
avoid. Inspired by the potential field method, we introduce
a repulsive potential, which pushes the sensor away from
the obstacles, as shown in Fig. 2. This repulsive potential
creates a potential barrier around the obstacles and does not
affect the trajectory of the sensor when it is sufficiently far
from the obstacles. So, the sensors are able to avoid the
obstacles. We define the repulsive potential as a differentiable
function g : Q → R+. Then, we define the objective function
H2, which evaluates the repulsive potential for sensors, as
follows:

H2(r) :=
n∑

i=1

g(ri). (2)

Note that H2(r) is independent of the Voronoi partition.
To search a path to the optimal position for each mobile

sensor while avoiding the obstacles, we introduce the fol-
lowing objective function H(r, p):

H(r, p) := H1(r, p) +H2(r)

=

n∑
i=1

{∫
νi(p)

f (‖q − ri‖)φ(q)dq + g(ri)

}
.(3)

The optimal sensor deployment r∗ and the generator p∗

minimize the objective function H(r, p). Since r∗ and p∗

coincide, we formulate the Voronoi coverage problem with
obstacles as the following optimization problem:

minimize
r

H(r, r),

subject to ri ∈ Q, ∀i ∈ I.
(4)

We propose a distributed control method with intermittent
exchange of positions among sensors to optimize the de-
ployment of sensors in the next section.
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Fig. 3. Cooperative control of a mobile sensing network consisting of two
processes: a Voronoi update process and a position update process. In each
sensor, the former process sends its current position to the other sensors,
receives their positions, and updates its Voronoi cell. The latter process
controls the sensors’ movements to reach its optimal position in the cell.

III. COOPERATIVE CONTROL METHOD

A. Architecture

To update a Voronoi partition, each sensor collects the
current positions of its neighbor sensors by means of a
communication network. To reduce the energy used for
communication among sensors, we propose the cooperative
control method for the Voronoi coverage problem with
obstacles. The proposed control architecture consists of two
processes as shown in Fig. 3: a Voronoi update process and a
position update process. As shown in Fig. 4, in each mobile
sensor, the Voronoi update process is activated periodically.
Let T be its period. The process sends its current position
to other sensors and receives their positions, periodically.
Then, the Voronoi cell where the sensor collects information
is updated such that the generator p(kT ) is set to the current
deployment r(kT ) of sensors. For simplicity, we assume that
the update is completed instantly since the process does not
give any effect on the trajectory of sensors. The update is
described as follows:

pi(t) = ri(kT ), t ∈ [kT, (k + 1)T ) . (5)

Equivalently,

dpi(t)

dt
=

∞∑
k=0

(ri(t)− pi(t))δ(t− kT ), (6)

where δ(·) is the delta function and the initial condition is
pi(0−) = 0. After the updated Voronoi cell is computed, the
position update process is activated and plans a path to the
sensor’s optimal position in the cell until the next activation
of the Voronoi update process. So, the sensor moves along
the path at every time interval (kT, (k + 1)T ), where k is
a nonnegative integer. It halts at time kT and the Voronoi
update process updates its Voronoi cell. In the following, we
discuss path planning in the position update process.

The position update process plans the sensor’s trajectory to
an optimal position in the fixed Voronoi cell while avoiding
obstacles. In each time interval (kT, (k+1)T ), the generator
of the Voronoi partition p(t) is given by Eq. (5), so that the

Fig. 4. The Voronoi update and the position update process. At time
t = kT , the Voronoi update process communicates with the other sensors
and updates the Voronoi cell. In every time interval (kT, (k + 1)T ), the
position update process makes a path to the optimal position in the cell
on-line.

Voronoi cell νi(p(kT )) where sensor i collects information
is fixed. Eq. (3) is rewritten as

H(r, p) =
n∑

i=1

hi(ri, p), (7)

where

hi(ri, p) =

∫
νi(p)

f (‖q − ri‖)φ(q)dq + g(ri). (8)

For a given νi(p), Eq. (8) is independent of the positions
of the other sensors. The generator p(t) is constant in
any interval [kT, (k + 1)T ). Applying the gradient descent
method, we introduce the following control law for sensor i:
for any t ∈ [kT, (k + 1)T )

dri(t)

dt
= −α

∂H(r(t), p(t))

∂ri

= −α
∂hi(ri(t), p(kT ))

∂ri
, (9)

where α is a positive constant. Note that the trajectory of
sensor i does not depend on the current state of other sensors,
but on its Voronoi cell νi(p(kT )), which is fixed in the time
interval. Thus, the control law (9) is computed dispersively
in the position update process of each sensor and makes each
sensor move towards its optimal position in νi(p(kT )).

Let it also be noted that the proposed control method
is based on the same approach as the deploy-and-search
strategy proposed by Guruprasad and Ghose [8]. They do
not discuss obstacle avoidance or model a trajectory of the
generator of the Voronoi partitions explicitly. Especially,
using Eqs. (6) and (9), we will show in the next section that
the generator of the Voronoi partition providing a locally
optimal deployment is uniformly asymptotically stable.

B. Stability of optimal deployment

In this section, we discuss the stability of a locally
optimal deployment of the objective function H(r, p) by
the proposed control law. Note that a pair (r(t), p(t)) of
the current deployment and the Voronoi generator is a state
of the considered sensing network. The state is governed
by the time-dependent impulsive differential equations with
periodic resetting (6) and (9). We assume that H : Q2n →
R+ is continuously differentiable in Q2n.
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Let (r∗, r∗) be a locally optimal point of the optimization
problem (4), and assume that:

(A1) (r∗, r∗) is in the interior of Q, which implies that

∂H(r, p)

∂r
|(r,p)=(r∗,r∗) = 0, (10)

and
(A2) ∂H(r,p)

∂r 6= 0 at any point (r, p) 6= (r∗, r∗) in its
sufficiently small neighborhood B(r∗, r∗).

From the assumption (A1), (r∗, r∗) is an equilibrium point
of Eqs. (6) and (9).

The sets D(γ) and M(γ) are defined for a real number γ
greater than H(r∗, r∗) as follows:

D(γ) = {(r, p) ∈ B(r∗, r∗) | H(r, p) ≤ γ}, (11)
M(γ) = {(r, p) ∈ B(r∗, r∗) | H(r, p) = γ}. (12)

Let γ̂ = max{γ | D(γ) ⊆ B(r∗, r∗)}. Then, we have D(γ̂)
is compact and H(r, p) ≥ H(r∗, r∗) for any (r, p) ∈ D(γ̂) .

We consider H(r, p) to be a Lyapunov function candidate.
Let (r(t), p(t)) be a trajectory of Eqs. (6) and (9) with
(r(0), p(0)) ∈ D(γ̂). Since the trajectory of the generator
p is constant in each time interval (kT, (k + 1)T ) for any
K ≥ 0, the derivative of H(r, p) with respect to time along
the trajectory exists in the time intervals:

dH(r(t), p(t))

dt
=

(
∂H(r(t), p(t))

∂r

)T
dr(t)

dt

= −α

∥∥∥∥∂H(r(t), p(t))

∂r

∥∥∥∥2 ≤ 0. (13)

Thus, D(γ̂) is positively invariant. According to Eq. (6), the
generator p(t) is discontinuous at each time kT and jumps to
the current deployment. Since for a given sensor deployment,
the optimal Voronoi partition of the mission space satisfies
the condition that its generator is the deployment, we have:

lim
t↓kT

H(r(t), p(t))− lim
t↑kT

H(r(t), p(t)) ≤ 0. (14)

The assumption (A2) implies that both Eqs. (13) and (14)
hold only if (r(t), p(t)) = (r∗, r∗). So, we have that M(γ)
does not contain any trajectory of Eqs. (6) and (9) for any γ
with H(r∗, r∗) < γ ≤ γ̂. Thus, by applying Theorem 2.7 of
[15], we conclude that, for any locally optimal point r∗ of
the optimization problem (4), the state (r∗, r∗) is a locally
uniformly asymptotically stable equilibrium point of Eqs. (6)
and (9).

Remark 1: If the assumption (A2) does not hold, the state
(r∗, r∗) is a locally uniformly stable equilibrium point of
Eqs. (6) and (9).

IV. SIMULATION RESULTS

We consider that 10 sensors cover a square mission space
Q ∈ [0, 100]× [0, 100] with 5 obstacles, as shown in Fig. 2.
For simplicity, we assume that the obstacles are circles. Let
sj be a central coordinate of the obstacle j. We use the
following repulsive potential corresponding to the obstacles:

g(q) = 1000
5∑

j=1

exp

(
−‖q − sj‖

dj

)
, (15)

where (d1, d2, d3, d4, d5) = (5, 48, 21, 12, 21). We consider
the following value functions φ1(q) and φ2(q) for the mission
space:

φ1(q)= 1, (16)

φ2(q)=2exp

(
−
∥∥q−(80,50)T∥∥

200

)
+exp

(
−
∥∥q−(20,60)T∥∥

100

)
. (17)

The value function φ1(q) means that every point in the
mission space has the same importance. Note that φ2(q) is a
two-hump function whose peaks are (80, 50)T and (20, 60)T .
We search the optimal sensor deployment to minimize the
objective function (3) using the proposed control method.

We show the trajectories of sensors for the value func-
tion φ1(q) in Figs. 5(a)–(d), where the symbol “×” is
the convergence position of each sensor and the dotted
lines are the boundaries of the Voronoi partition when all
sensors are at the convergence positions. At first, in the
time interval [0, T ), each sensor monitors a fixed sensing
area and moves controlled by the position update process
as shown in Fig. 5(a). Next, the sensing area is updated at
t = T using the Voronoi update process and in the time
interval [T, 2T ) the sensor moves in the updated sensing area
as shown in Fig. 5(b). Each sensor repeats these processes
until all sensors converge. Finally, the sensors converge to
the positions marked by “×” in Fig. 5(c), which shows that
the sensors move to the convergence positions avoiding the
obstacles. The Voronoi partition at the convergence positions
is represented in Fig. 5(d). Since the value function φ1(q) is
uniform, the measure of each sensing area at the convergence
position is almost the same.

In this simulation, Eq. (9) is discretized with the step size
∆ = (1/2)

12 as follows:

ri(t+∆) = ri(t) + ∆α
∂H(ri(t), pi(kT ))

∂ri
. (18)

Shown in Fig. 6 is a change of the objective function H along
the sensors’ trajectories for the following update period T :

• Ex1: T = ∆ • Ex5: T = 20∆
• Ex2: T = 5∆ • Ex6: T = 30∆
• Ex3: T = 10∆ • Ex7: T = 40∆
• Ex4: T = 15∆ • Ex8: T = 50∆

As shown in Fig. 6, the objective function H is discontinuous
when the Voronoi update process is activated at time t = kT .
For case Ex1, each sensor updates its sensing area by the
Voronoi update process every time because of T = ∆. Thus,
the sensors always communicate with each other. On the
other hand, for case Ex8, each sensor updates its sensing area
when the period T = 50∆ elapses. The larger the period T is,
the longer it takes for the sensors to converge. Figure 7 shows
the relationship between the period T and the convergence
time. As T is smaller, the convergence time approaches to
0.55 while it increases linearly for a sufficiently large T .
Figure 8 shows the relationship between the period T and
the number of Voronoi updates. As T becomes smaller, the
number increases exponentially. Since communication costs
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(a) Sensors’ trajectories during t ∈ [0, T ). (b) Sensors’ trajectories during t ∈ [T, 2T ).

(c) Trajectories and convergence positions of sensors. (d) Voronoi partition when sensors are at the convergence
positions.

Fig. 5. Sensors’ trajectoris when the value function is φ1.

Fig. 6. For each period T , changes of the objective function H along
sensors’ trajectories.

are linearly dependent on the numbers of the update, Figs. 7
and 8 show the trade-off between the convergence time and
the communication costs. In this paper, we also assume that
the Voronoi update process is completed instantly. However,
if the Voronoi update process takes a certain time, there
exists an optimal period such that the convergence time is
minimized under reduction of the communication costs.

On the other hand, Figs. 9(a) and (b) show the trajectories
of sensors when the value function is φ2(q), where the
symbol “×” and the dotted lines are used with the same
meaning as in Fig. 5. Figure. 9(a) too shows that the sensors
move to the convergence positions avoiding the obstacles. In
Fig. 9(b), the value φ2(q) is high at the red areas and low at
the blue areas. As shown in Fig. 9(b), an area where φ2(q)
is high is partitioned into a smaller area than that where
φ2(q) is low. Since the ability of the sensor at a point q
depends on the distance between the position of the sensor
and the point q, the sensors tend to move into the more
important area. Figure. 9(b) shows that 6 sensors converge
to the area near the peak (80, 50)T , rather than the area near
peak (20, 60), because the point (80, 50)T is more important
than the point (20, 60). We also confirmed that the objective
function converges to a locally optimal value.

V. CONCLUSIONS

We proposed a distributed control method that deploys
sensors avoiding obstacles and reduces communication costs
by means of time-driven communication. We showed that
the sensors converge to minimize the degradation of the
sensing performance. We also indicated a trade-off between
the convergence time and communication costs. As future
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Fig. 7. Relationship between the period T and the convergence time. Fig. 8. Relationship between the period T and the number of Voronoi updates.

(a) Sensors’ trajectories.

(b) Voronoi partition when sensors are at the convergence
positions.

Fig. 9. Sensors’ trajectories and optimal Voronoi coverage when the value
function is φ2.

work, we will consider the optimal Voronoi update period
in order to minimize the convergence time and to reduce
communication costs. It is also future work to investigate
conditions of a repulsive potential in order for guaranteeing
the obstacle avoidance.
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