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Abstract— In this paper, a new identification method for
piecewise affine (PWA) models is introduced. The method is
based on the data-based representation of PWA maps and the
data compression with ℓ1 optimization technique, which enable
the method to deal with large data sets. This method can be
applied to a wide range of modeling problems, and an example
with a DC motor system is shown in this paper to show the
usability of the method.

I. INTRODUCTION

Modeling of the target system is an important stage in

designing control systems, and a lot of work has been done

on this research topic [1], [2]. Especially, LTI (linear time-

invariant) models are commonly used since they are easy for

analysis and useful in designing controllers. However, many

realistic systems have non-linearity, such as friction [3] for

mechanical systems and non-linearity caused by changing

operating points in plant systems. Hence, more powerful

modeling schemes are required.

One attractive approach for this problem is to use PWA

(Piece-wise affine) model, which has PWA map as sub-

stitute for standard linear map. The domain of PWA map

is partitioned into several modes, and complex maps can

be represented by switching among affine maps according

to the mode. Since PWA map has universal approximation

properties [4], [5], it is expected to have broad utility for

modeling nonlinear systems, and there are many papers

related to this approach (see [6] and references therein). In

obtaining PWA models from I/O data, a common problem

is that it is hard to estimate mode transitions in the I/O data

and subsystems simultaneously. Thus, many approaches are

based on the prior knowledge about the mode transition rule

and the methods which do not require such knowledge tend

to be computationally expensive (e.g., in [7], the estimation

problem is reduced to mixed-integer programming, and nu-

merical examples with a few data points are shown).

On the other hand, the ℓ1 optimization technique has

attracted much attention due to its capability to provide

good approximation for ℓ0 optimization problems, which

are computationally intractable, and new techniques related

to ℓ1 optimization, such as compressed sensing [8], are
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(a) Data-based PWA model di-
rectly built from measured data,
which fluctuated by stochastic
noise.
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(b) Ideal data-based PWA model
for the example system.

Fig. 1: Two types of data-based PWA models for an ex-

ample system (x: Input; y: Output). Dashed and solid lines

illustrates the system and the model, respectively.

recently developed. As for the studies utilizing ℓ1 opti-

mization method in the area of PWA model identification,

segmentation of I/O data according to the system mode

transition is studied by Ohlsson and others [9]. Also, the

authors have shown the effectiveness of the ℓ1 based method

for the modeling of a DC motor system [10]. However, these

studies utilize only the sparseness of the mode transition in

the I/O data sequence and does not concern with the mode

partition in the domain of the map.

Thus, the objective of this paper is to propose a new com-

putationally efficient method for constructing PWA models,

which is able to capture the mode partition in the domain of

the map without the prior information. To propose the new

method, a data-based PWA model is introduced at first. The

introduced model determines its output by interpolating some

given data set, and by using the data set consists of I/O data

of the target system, we can compose the PWA model of the

system. Fig. 1a shows an example of such PWA model. In

this figure, the dashed line shows the relationship between

the input and the output of the target system; the dots shows

the data set which is measured from the target system with

stochastic noise; and the solid line shows the I/O relationship

of the PWA model based on the data set. On the other hand,

the best model for this system, which is shown in Fig. 1b,

can be composed with the data set which has only three

data points, thus the model shown in Fig. 1a seems to have

excessive data points and complexity. From this aspect, the

procedure for obtaining a model with appropriate complexity

from a given measured data set, i.e., identification, can be

regarded as the procedure for obtaining a small number of

essential data (like Fig. 1b) from a large number of measured

data (like Fig. 1a), and this procedure can be regarded as data

compression. Based on this idea, we introduce a new measure
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of complexity and propose the method for compressing data

set according to the measure. We then can compose PWA

model with appropriate complexity based on the compressed

data set obtained from measured I/O data. The proposed

compression procedure is reduced to an ℓ1 optimization

problem, which can be solved efficiently, and the method

can be applied to systems with multiple dimensional inputs.

Thus, the proposed method can be an effective approach for

problems with large data set and complicated systems, which

can not be handled by the existing methods.

This paper is organized as follows: At first, we introduce

the data-based PWA map in Section II, this presentation of

PWA map is essential to introduce the new identification

scheme. Then, the identification problem is defined in detail

in Section III, and the proposed method is described in

Section IV. Section V contains an experiment with a DC

motor system, which illustrates the effectiveness of the

proposed method, and finally Section VI concludes the paper.

For conciseness, we denote the set {x1, x2, · · · , xN} by

{xk}
N
k=1, and let P be a set of points in Euclidean space, we

define: Co(P) as the convex hull of P; DT (P) as Delaunay

triangulation of P; Dnbr(P, S ) as the set of the neighborhoods

of Delaunay simplex S in Delaunay triangulation of P.

Here,the neighborhoods are defined as the points shared by

S and adjoining simplexes.

II. DATA-BASED PWA MAP

In this section, we introduce the data-based PWA map

before describing the main problem. The output of this

map is determined by interpolating some data set, and its

definition is straightforward as shown in Fig. 1 if its input

is a scalar. However, the definition of data-based PWA map

with multiple dimensional input is not straightforward and

described in detail.

At first, the domain of the map considered here is d-

dimensional Euclidean space, and we denote the vector in

this space by x with suffixes. Also, the range of the map

is R and the corresponding scalars are denoted by y with

suffixes. Next, consider the data set

D ,

{(

x
1
D

y1
D

)

,

(

x
2
D

y2
D

)

, . . . ,

(

x
ND

D

y
ND

D

)}

(1)

(

x
1
D, x

2
D, . . . , x

ND

D
∈ Rd, y1

D, y
2
D, . . . , y

ND

D
∈ R

)

,

which is composed of the ND pair of the I/O data; and denote

the map based on the set D by

ΠD : Co

(

{

x
k
D

}ND

k=1

)

⊂ Rd 7→ R. (2)

Also, we define the linear interpolation of y for x
0 from the

data set

{(
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Delaunay Simplexes

Fig. 2: Illustration of data-based PWA map ΠD (d = 2, ND =

4)

for conciseness. Then, the definition of the data-based PWA

map is as follows:

Definition 1 (Data-based PWA map): For given data set

D, we define the PWA map based on this set

ΠD : Co

(

{

x
k
D

}ND

k=1

)

⊂ Rd 7→ R (4)

as the map whose value ΠD(x) is calculated by the following

procedure [P1]–[P2]:

[P1] Choose the vertexes
{

x
vk

D

}d+1

k=1
of the Delaunay sim-

plex which includes x from Delaunay triangulation

DT

(

{

x
k
D

}ND

k=1

)

. (For Delaunay triangulation, see Re-

mark 1).

[P2] Determine ΠD(x) by interpolating the data chosen

in [P1]

Lerp















x,

{(

x
vk

D

y
vk

D

)}d+1

k=1















. (5)

By this definition, the value of ΠD is determined by linearly

interpolating the data set, and it becomes PWA map. Fig. 2

illustrates the relationship between the data set and the map

for d = 2.

Remark 1: Delaunay triangulation is a triangulation,

where the convex hull of a set of points is partitioned into

triangles (simplexes). The interior of the circumcircle of any

triangle in Delaunay triangulation contains no points of the

set (see Fig. 3), and Delaunay triangulation also can be

extended to higher dimensions. For more information about

Delaunay triangulation, see, e.g., [11].

III. PROBLEM DESCRIPTION

Next, the problem considered in this paper is described in

detail. Here, the target system is assumed to be described by

y = f (x) + η, (6)

2801



Fig. 3: An example of Delaunay triangulation for set P of

points in the plane. No point in P is inside the circumcircle

of any triangle.

Fig. 4: Illustration of the compressed data set D̂. If ΠD̂ is

simple PWA map, most of the data in D̂ are unnecessary.

where x ∈ Rd is the known input of the system; y(t) ∈ R is

the measurable output of the system; and f : Rd 7→ R is an

unknown map. Although f is unknown, it is assumed that

f is a PWA map with a finite mode, and η ∈ R, which is

defined as the difference between f (x) and y, can be regarded

as stochastic noise.

The objective here is to obtain a PWA map which models

f from the given set of ND0
data

D0 =
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whose data satisfy the relationship (6).

More concretely, the problem here is to determine
{

yk

D̂

}ND̂

k=1
to let ΠD̂ be a good model of f while assuming that D0

and
{

x
k

D̂

}ND̂

k=1
are given. Here, we also assume that the given

set
{

x
k

D̂

}ND̂

k=1
is large compared to the complexity of f , i.e.,

most of the Delaunay simplexes in DT

(

{

x
k

D̂

}ND̂

k=1

)

do not

include the mode boundary of f . Under this assumption,

most elements in D̂ are unnecessary when ΠD̂ is close to

f , and D̂ is essentially compressed for such case. Fig. 4

illustrates this aspect with an example where d = 1, and

note that ND̂ does not need to be fewer than ND0
.

Extrapolation
Error

Fig. 5: Illustration of extrapolation error (d = 2)

IV. IDENTIFICATION BASED ON DATA

COMPRESSION

In this section, we introduce a new method which solves

the problem described in Section III. The method is based

on the simplicity of f and is able to obtain simple and useful

PWA model.

A. Measure of Model Complexity

First, a new measure of model complexity, which is essen-

tial to propose the compression-based identification method,

is introduced. To make the following compression process

computationally tractable, the measure is desired to be a

convex function of y1

D̂
, y2

D̂
, . . . , y

ND̂

D̂
and has to be naturally

defined for any d.

To introduce the complexity measure, we focus on the

extrapolation error which is the difference between the ex-

pectation from the data set on a Delaunay simplex
{

x
vk

D

}d+1

k=1
∈

DT

(

{

x
k
D

}ND

k=1

)

and the measured data at a neighborhood point

x
p

D
∈ Dnbr

(

{

x
vk

D

}d+1

k=1
,
{

x
k
D

}ND

k=1

)

, that is,

∣

∣

∣

∣

∣

∣

∣

y
p

D
− Lerp


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x
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D
,
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D

y
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D
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
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







∣

∣

∣

∣

∣

∣

∣

. (8)

Fig. 5 illustrates this extrapolation error for d = 2. If the error

is equal to zero, all data points exist on a common plane and

all data are explained by one affine map. This extrapolation

error can be a measure for map consistency also for d > 2,

and is convex with respect to y1

D̂
, y2

D̂
, . . . , y

ND̂

D̂
.

Then, we consider the extrapolation error (8) for every

combination of Delaunay simplex in DT

(

{

x
k
D

}ND

k=1

)

and its

neighborhood point. If most of these extrapolation errors

are zero, ΠD is simple PWA map, most part of which is

flat. Thus number of the combinations which produce non-

zero extrapolation error is an appropriate measure of the
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map complexity; however, minimization of this measure is

computationally intractable, and thus we use ℓ1 reduction of

this measure

Jcomplexity(ΠD)

,
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for the measure of the map complexity. This measure can be

calculated efficiently in optimization problems.

B. Reduction to Optimization Problem

From the assumption that f is simple PWA map, it seems

reasonable to construct ΠD̂ by minimizing Jcomplexity(ΠD̂)

while fitting ΠD̂ to D0. Thus, we propose to reduce the

identification problem to the following optimization problem

Given D0 =

{(

x
k
D0

yk
D0

)}k=ND0

k=1

,
{

x
k

D̂

}ND̂

k=1
(10)

minimize
{

yk

D̂

}N
D̂

k=1

Jerror

(

D0,ΠD̂

)

+ w · Jcomplexity

(

ΠD̂

)

, (11)

where

Jerror

(

D0,ΠD̂

)

,

√

∑

(x,y)∈D0

(

y − ΠD̂(x)
)2

(12)

indicates the disagreement between ΠD̂ and D0; and w ∈ R

is a user-defined positive constant, which determines the

balance between the model complexity and the disagreement.

If w is large, obtained ΠD̂ is flat on most Delaunay sides and

most of its data points can be removed without changing the

map, i.e., ΠD̂ is strongly compressed. And, if w is small,

obtained ΠD̂ fits to the measured data set D0. Thus, by

choosing appropriate w, we can obtain simple and precise

model with high capability of generalization.

V. EXPERIMENT WITH A DC MOTOR SYSTEM

Here, the effectiveness of the proposed scheme is illus-

trated through an experiment with a DC motor system shown

in Fig. 6. This experiment system consists of the DC motor

with current input (, i(t)), the harmonic drive system, the

inertial load, and the encoder which outputs the rotation

angle (, θ(t)). Here, the harmonic drive gear is a torque

transmission system, which has widespread industrial appli-

cations and complex dynamic behavior [12]. It is supposed

that we know i(t) and can calculate the angular velocity ω(t)

and its derivative ω̇(t) from θ(t) (see Fig. 6).

For this system, we construct the model with a PWA map

ΠD̂ : x 7→ y

([

i

ω

]

7→ ω̇

)

(13)

shown in Fig. 7. To obtain the I/O data for the identification,

the input current i(t) of the system is changed randomly in

every 0.1 [sec], and (i(t), ω(t), ω̇(t)) are measured in every

Load

Harmonic Drive Gear

Motor Encoder

Armature

Current 

DC Motor

Angular

Velocity 

Fig. 6: DC motor system

Fig. 7: Data-based PWA model for DC motor system

0.01 [sec] over 5119.95 [sec]. Thus, the problem here is to

obtain the PWA map from the data set

D0 =

{(

x
k
D0

yk
D0

)}511996

k=1

(14)





















x
k
D0
=

[

i(tk)

ω(tk)

]

, yk
D0
= ω̇(tk),

tk , 0.01 · (k − 1) [sec]





















. (15)

Fig. 8 shows the first 5 [sec] of the data measured from the

target system. Also, the size of the data set of the constructed

data-based PWA model is set to ND̂ = 10000, and
{

x
k

D̂

}ND̂

k=1
are randomly chosen from

{[

i

ω

]

:
−1.5 [A] ≤ i ≤ 1.5 [A],

−35 [rad/sec] ≤ ω ≤ 35 [rad/sec]

}

, (16)

which covers the region reached by the real system in normal

operation. Since the elements of x

(

[i, ω]T
)

represent different

type of physical quantities, these quantities are normalized

by using 1.5 [A] and 35 [rad/sec] as a unit in considering

Delaunay triangulation.

With these settings, we construct ΠD̂ by the proposed

method for various w, and obtained ΠD̂ are shown in Table I

with the extrapolation error for the map. In the plot of ex-

trapolation error, the contribution of each Delaunay simplex
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TABLE I: Illustration of the obtained PWA map for the DC motor experiment system. The effect of compression is clearly

seen by comparing three results.

Compression Level PWA Map Extrapolation Error
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(

w = 5 × 10−6
)
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Fig. 8: I/O data for first 5 seconds

0 5 10 15 20

0 5 10 15 20

-2

-1

0

1

-30

-20

-10

0

10

Experiment (100 trials)
Model (Proposed Method)
Model (Linear)

Fig. 9: Validation input and output of the experiment system

and the model obtained with moderate compression level

(w = 5 × 10−3)

to Jcomplexity

(

ΠD̂

)

is shown, where a simplex S is filled with

more darker color if its contribution
∑

x
p

D
∈Dnbr

(

{xk
D}

ND
k=1
,S

)

∣

∣

∣

∣

y
p

D
− Lerp

(

x
p

D
, S

)

∣

∣

∣

∣

(17)

is relatively larger. As seen in Table I, the result of weak

compression seems to be affected by the measurement noise,

while the excessively strong compression produces the stan-

dard linear map. Also, it is confirmed that the complexity of

the PWA map is well controlled by the design parameter w,

and the sparsity of the extrapolation error is a good measure

of the complexity.

Next, we compare the response of the obtained model for a

validation input with the real system to validate the obtained

model. The periodic input for the validation and the results

are shown in Fig. 9, where the solid blue thin lines show

the output of the experiment system for 100 cycles and the

thick red solid line shows the output of the model with the

PWA map for w = 5 × 10−3 (see Table I). Also, the output

of the standard linear model is shown as the green dashed

line for comparison purpose. These results shows that an

appropriate PWA model is obtained by the proposed method

for the practical system, which has strong non-linearity.

VI. CONCLUSION

In this paper, a new identification method for piecewise

affine (PWA) models is introduced. The method is based

on the data-based representation of PWA maps and the data

compression with ℓ1 optimization technique. As illustrated

through the example, the proposed method can construct

good PWA models without prior knowledge about mode

transition. The notable feature of the proposed method is

that it can handle systems with high-dimensional input and

large data sets because the proposed compression procedure

results in a convex optimization problem which can be solved

efficiently. Furthermore, we can easily balance the model

complexity and preciseness in this scheme by adjusting one

parameter, and these facts contribute high usability of the

proposed method.
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