
Layout algorithm of searching point for a CFD optimization problem

Yoshifumi Kuriyama, Ken’ichi Yano and Mamoru Watanabe

Abstract— Optimization with the aid of computational fluid
dynamics (CFD) simulators has recently attracted attention in
various fields. Optimization is often impeded by the increased
computing time used by a large number of localized solutions,
which complicate the calculation by consuming vast amounts of
memory for generation and distribution of solutions. Therefore,
researchers are actively seeking methods which would allow
them to accelerate the process and make the analytical time
highly effective. In this paper, we propose an algorithm that
obtains the optimal solution by considering the layout of the
search points for high-speed convergence performance. We also
verify the effectiveness of the algorithm after applying it to an
actual problem.

I. INTRODUCTION

Numerical simulators for fluid analysis based on computa-

tional fluid dynamics (CFD) focus on analyzing the behavior

and the thermal hydraulics of a fluid flowing around an

object. CFD is a technique that considers the Navier-Stokes

equations and the energy conservation laws and uses the

mass conservation method. With the ongoing increase of

computational power and the concurrent decrease in the price

of personal computers, CFD simulators have become a useful

and practical tool for analyzing real-world problems [1].

Furthermore, CFD is currently used not only for analysis of

the behavior of fluids, but also for optimization of the shape

and the flow of fluids for improved quality and performance

of various products.

Nevertheless, optimization with a CFD simulator for im-

proved quality or performance is still facing a number of

problems. For example, the solution space formed by the

optimization solutions obtained by using a CFD simulator

becomes a multimodal space with a large number of local

minimums due to the effect of underflow errors or the loss

of significant digits. Furthermore, optimizations for practical

use become more complex since such applications require

more variables and constraints.

A meta-heuristic algorithm is a heuristic method com-

monly employed for performing an efficient search for

a complex solution space [2]. Furthermore, the genetic

algorithm (GA) is generally used as the algorithm with

the greatest versatility[3]∼[6]. However, in cases such as

analyzing a problem that contains a large number of local

solutions, the general GA is highly unlikely to escape from

a local solution, and thus it is difficult to derive the global

optimized solution. Naturally, this problem can be solved by
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increasing the number of population members, the number of

generations and the mutation evolution. On the other hand,

the computation of one condition currently requires a few

minutes, and the entire optimization requires hundreds of

repeated computations. Thus, a considerable amount of time

is required in order to perform an optimization by using a

CFD simulator.

The aim of this study is to design a search point algorithm

that requires a smaller population to find a solution and that

can be applied to the production of high-quality products.

Thus, we propose a multi-subcenters solution search algo-

rithm for computing the optimal plunger velocity in die-

casting. The effectiveness of the proposed system is shown

through both simulations and experiments.

II. MULTI-SUBCENTERS SOLUTION SEARCH ALGORITHM

In the case of optimization with few search points, the

distribution of search points is important for the derivation of

the global optimal solution. Conventionally, search points are

selected at random. However, the distribution of such search

points is uneven, as shown in Fig. 1, where the shaded areas

in the figure contain no search points. Such areas without

search points make it difficult to find the global optimal

solution with GA, leading to greater computational cost.

Thus, the search points should be distributed uniformly.

On the other hand, in order to improve the convergence

performance, the search points should be densely located

in areas that are expected to contain the global optimal

solution. Therefore, to satisfy these criteria, we developed the
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Fig. 1. Setting the distribution of search points by using random generation.
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multi-subcenters solution search algorithm, which features

distribution control [7], convergence control and cluster

analysis capabilities, where the distribution control algorithm

is responsible for the distribution of search points and the

convergence control algorithm regulates their density.

A. Distribution algorithm

Fig. 2 shows the basic concept of the distribution algo-

rithm. The search points are moved by repulsive forces,

which are represented as extending circles in the figure.

In this distribution algorithm, each search point is first

placed in a unique circle, which expands as the calculation

progresses, as described by (1), where R(λ ) is the radius of

the circle, Radd is the expansion factor added to the radius,

λ is the number of cycles and mq is the motion vector of

the search point.

R(λ +1) =

{

∀R(λ )+Radd, if ∀mq = 0

∀R(λ ), otherwise
(1)

When a circle touches another circle or the boundary,

repulsive forces arise and spread the circles apart. The search

points are moved by the repulsive forces in accordance with

(2), (3) and (4), where Frep is the repulsive force, q is a search

point, p is another search point, Flim is the repulsive forces

reacting from the boundary, Bmin and Bmax are respectively

the upper and lower boundaries, qk is the k-th column in

vector q. Also, n is the number of variables, Rp is the radius

of vector p and Rq is the radius of vector q.

mq =

{

(q− p)/F2
rep, if ‖q− p‖ ≤ Rq +Rp

0, otherwise
(2)

Frep = (‖q− p‖)−1 , (q 6= p) (3)
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Fig. 2. Basic concept of distribution algorithm.
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Fig. 3. Setting the distribution of search points by using the developed
distribution algorithm.

mq =







−Flim, if qk −R ≤ Bmin,k

Flim, if qk +R ≥ Bmax,k

0, otherwise

(1 ≤ k ≤ n)

(4)

The circles continue to expand until the movement of

the search points stops. When this occurs, the search points

should be distributed uniformly. Equation (5) is applied as an

additional constraint on the movement of the search points.

q(λ +1) =

{

q(λ ), ∀ f (q(λ )+∑mq) /∈ L

q(λ )+∑mq, otherwise
(5)

Here, f is a constraint function defined by the user, and

L is the constraint. The distribution of search points which

results form using the distribution algorithm is shown in

Fig. 3, where the edges of the figure indicate the upper and

lower boundaries, and the inner solid diagonal line indicates

the additional constraint condition. In contrast to Fig. 1, the

search points are distributed uniformly. Thus, the distribution

algorithm can ensure sufficient separation between the search

points.

B. Convergence algorithm

After the distribution algorithm, the convergence algorithm

is executed, in which the search points converge in accor-

dance with neighboring evaluated points. Fig. 4 shows the ba-

sic concept of the convergence algorithm, where the crosses

in the figure indicate evaluated points. If there are evaluated

points in the vicinity of a search point, the latter is moved

as shown in the figure. Here, Rmax is the effective range of

a neighboring evaluated point, which is determined by the

maximum value of R used in the distribution algorithm.

Fig. 5 presents the basic concept of the movement of

search points.

The movement of search points is governed by (6)∼(11).

The search points of q search for nearby evaluated points

present inside the circle. The center of gravity coordinates g

of the selected evaluated points are calculated by using (6).
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Fig. 5. Basic concept of the movement of search points.

Furthermore, the center of gravity coordinates gu, where the

evaluated value of ci is considered as the load, are calculated

by using (7). Then, the motion vector u j, which is given by

(8) is calculated from (6) and (7), where bi is the position

vector of the evaluated point.

g =

(

n+1

∑
i=1

bi

)

(n+1)−1 (6)

gu =

(

n+1

∑
i=1

bic
−1
i

)(

n+1

∑
i=1

c−1
i

)−1

(7)

u j = gu −g (8)

The movement of a search point is decided by the motion

vector u j, as described by (9), (10) and (11).

vq =

{

0 (d = 0 or ∀f (q+ vq) /∈ L)
(

∑
d
j=1 u j

)

d−1 otherwize
(9)

qv = q+ vq (10)

Here, qv is the moved search point, vq is the motion

vector of the search point and d is the number of combined
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Fig. 6. Attractive force algorithm

evaluated points as given by (11). If the number of evaluated

points a is less than n+1, then d=0 is applied, as shown in

(11).

d =

{

aCn+1 (a ≥ n+1)
0 (a < n+1)

(11)

These calculations are continued until the movement stops.

The shifted points become the analyzed points of the next

generation.

Furthermore, an attractive force algorithm is employed in

order to enhance the overconcentration performance of the

distribution of search points. Fig. 6 shows the concept of

the attractive force algorithm. The search points are moved in

accordance with (9). In case a search point enters the range

of an attractive force while being moved, the attractive force

influences the movement of the search point, and its motion

vector rotates to point towards the attractive force point.

The attractive force point xg is the evaluated point sat-

isfying (12), where X is the set of evaluated points, wR

is the weighting factor given by the user, wRRmax is the

effective range of the attractive force, k is the number of the

current generation, which is multiplied by wRRmax in order to

aggregate the search points inside the space more efficiently.

Also, bg is the evaluated point satisfying (13), where cg is

the cost of bg, B̄ is the average cost of all evaluated points

and ba is the threshold value, which is given by the user.

xg = min
{

f (xg)|xg ⊆ X : ‖xg −bg‖ ≤ wRRmaxk
}

(12)

bg : cg/B̄ ≤ ba (13)

III. APPLICATION OF THE SCHWEFEL FUNCTION

The Schwefel function is used in a performance test aim-

ing to determine the effectiveness of the proposed method.

The analysis range was taken between 0 ≤ x j ≤ 500( j =
1 ∼ n), where x j is an integer, the minimum point is x∗ =
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[421, · · · ,421], and n is the number of variables. In this

performance test, we compare the convergence generation

to find the minimum point.

Table I shows the parameters of GA, and Table II shows

the parameters of the proposed method, as set by trial and

error in order to obtain high convergence performance.

TABLE I

PARAMETERS FOR GA

Number of populations 30

Number of elite preservations 2

Mutation fraction 0.03

Crossover fraction 0.80

TABLE II

PARAMETERS FOR MSSA

Number of populations 30

Radd 0.05

Flim 0.1
wR 0.1
ba 0.3

Fig. 7 shows the generations at which convergence is

obtained in the case of n = 5, where the maximum number

of generations is 250. Regarding the median value of the

generation at which convergence is obtained, the GA requires

143 generations to find the minimum point, whereas the pro-

posed method requires 64 generations. This result indicates

that the convergence performance in this case is improved

by 55 percent.
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Fig. 7. Generations at which convergence of the optimization using GA
and MSSA (n = 5) is obtained

IV. APPLICATION TO DIE-CASTING PROCESS

The effectiveness of the proposed method is tested through

application to die-casting, and a comparison with GA is

performed.

At actual casting plants, the multistep velocity can be

controlled, and the velocity pattern, which consists of five

TABLE III

FLUID PROPERTIES OF ADC12

Density of fluid [kg/ m3] 2700

Viscosity of fluid [Pa·s] 0.0030

Specific heat [J/(kg· K)] 1100

Thermal conductivity [W/(m· K)] 100.5

Initial temperature [K] 653.15

phases, is derived from past studies ([8], [9]). The plunger

velocity is expressed as shown in Fig. 8. In this study, the

velocity is set to v1,v2,v3, and the acceleration distance is

set to x1,x2, where x3 is the filling position, which takes a

constant value of 0.367 m due to the constraints of the plant.
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t1 2

Fig. 8. Die-casting simulation model using 5 variables.

In this study, the plunger tip is flat, and hot-work die steel

(SKD61) is used for the die, the sleeve and the plunger. An

aluminum alloy (ADC12) is assumed as the molten metal.

Table III shows the fluid properties of ADC12. The die

temperature during pouring is set in the range between 110

and 150◦C (steady state), and the temperature of the molten

metal in the melting furnace is set to a value between 660

and 680◦C. Yushiro AZ7150W is used as a parting agent.

Fig. 9 shows an overview of the mesh setting, and Table IV

lists the parameters for the mesh setting.

TABLE IV

MESH PARAMETERS.

Cell size Number of cells

X-direction 0.004 20

Y-direction 0.002∼0.006 132

Z-direction 0.0022∼0.0035 29

Total number of cells 76500

As seen in Fig. 9, the sleeve is symmetrical about the X

axis. Thus, the area targeted in the analysis is regarded as

having only one side in order to reduce the analysis time

to only about ten minutes. Table IV shows the minimum

settings necessary for performing calculations quickly and
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Fig. 9. Mesh settings for CFD simulation.

accurately, and the mesh parameter is set such that a rough

mesh is used around the start point of the sleeve because

the velocity is low and the fluid is stable in that section. On

the other hand, a fine mesh is used around the end point of

the sleeve because the turbulence at the early stage of filling

caused by collision with the sprue core in that section.

The optimization problem is defined with a cost function

equivalent to the sum of the weighted quantity of air entrain-

ment and the weighted filling time, as shown in (14),

minimize :J = waA(vi,xi)+wtt3

+Kp (14)

subject to : 0.02 ≤ vi ≤ 0.60

0.02 ≤ xi ≤ 0.36

0 ≤ ti ≤ 2.0
Ashut ≤ 3.0

(15)

Here, A is the function of air entrainment, t3 is the filling

time, xi is the acceleration distance, and wa = 1.5 and wt =
1.0 are weighting factors. Kp is a penalty applied each time

the conditions shown in (15) are not satisfied. A penalty

Kp = 108, which is sufficiently large to avoid the penalty

conditions, is added to satisfy the criteria. Also, Ashut is the

volume of trapped air, not including the air surrounding the

sleeve wall, the plunger and the molten metal, when the

plunger injection is switched from low speed to high speed.

Ashut is defined as shown in Fig. 10.

Three parameters are introduced to calculate the amount

of air entrapment.

• D1: Volume/opening column of fluid in the Y cross-

section.

• D2: Threshold of the amount of air entrapment.

• D3: Calculation time step.

We use fluid analysis software to perform calculations at

each time interval specified by D3 to output the cell column

fraction and the fraction of fluid in order to determine the

filling for the cross-section of the sleeve. We calculate the

space volume at the back, where the fraction of fluid is less

than D1 × 100% for the cross-section, and we also define

� �
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Simulation result
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Fig. 10. Time progression for air trapped inside the sleeve.

the maximum space volume as the amount of air entrapment

Ashut m3. If a plunger velocity input which minimizes air

entrapment can be designed by using this simulator, favorable

results can be expected for experiments targeting actual

production.

V. OPTIMIZATION OF THE PLUNGER VELOCITY

The performance of the proposed method is validated for

the case of plunger velocity controlled, where the initial

population is the same for each algorithm, allowing us to

perform the calculations under the same conditions.

The results of the calculations performed for both the

proposed method and GA are shown in Table V.

TABLE V

PERFORMANCE COMPARISON OF FIRST OPTIMIZATION RESULTS.

Parameter Proposed method GA

Cost function J 1.789 1.794

Air entrainment A 0.193 0.203

Finish time [s] 1.50 1.489

Generation at which convergence occurs 39 39

VI. EXPERIMENTAL RESULTS

Next, we present the results of experiments performed at

an actual die-casting plant. In the experiments, the optimal

velocity inputs calculated with both the proposed method

and GA were used. The optimized parameters calculated by

using the two methods are listed in Table VI. A blister test

was carried out to investigate the quantity of entrapped air.

This was performed by heating the specimen in a furnace,

which increased the pressure of the entrapped air and formed
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blisters on the surface. Fig. 11 shows the total area of the

surface of the test piece obtained from each calculated value

for the optimal velocity, where air bubbles formed as a result

of the blister test. Here, the solid lines indicate air bubble

areas larger than 1×10−6 m2, broken lines indicate air bubble

areas smaller than 1×10−6 m2, and the conventional input

used in [8] is indicated as a comparison. From the figure, we

can see that the optimal velocity calculated with the proposed

method resulted in the formation of fewer air bubbles as

compared with GA. Moreover, the results in Table VI show

that the performance of the proposed method was higher in

comparison to GA even when the cost function was simi-

lar. The experimental results demonstrate that optimization

with the proposed method corresponds accurately with the

favorable results obtained in the experiment.

TABLE VI

FIRST RESULTS OF OPTIMIZATION EXPERIMENT.

Proposed method Velocity [m/s] Position [m]

i=1 0.41 0.242

i=2 0.34 0.340

i=3 0.59 0.367

Cost function 1.789

Total area of the air bubble : 0.779×10−6 [m2]

GA Velocity [m/s] Position [m]

i=1 0.44 0.279

i=2 0.22 0.290

i=3 0.60 0.367

Cost function : 1.794

Total area of the air bubble : 0.913 ×10−6 [m2]

VII. CONCLUSION

The purpose of this study was to design a solution search

algorithm that requires smaller populations to find the op-

timal solution corresponding to the production of a high-

quality product. Specifically, we proposed the MSSA(Multi-

subcenters Solution Search Algorithm) for computing the

optimal plunger velocity for die-casting. The results of

several experiments showed that in comparison with GA,

the proposed method was capable of obtaining a superior

optimization of the plunger velocity in die-casting, resulting

in the entrapment of less air. Moreover, the results obtained

by using the proposed method were more favorable than

those obtained with GA even when the cost function was

similar. The experimentation results demonstrated that op-

timization with the proposed method corresponded directly

and accurately to superior die-casting production.
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