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Abstract—This paper presents a vision-based collision avoid-
ance technique for Miniature Air Vehicles (MAVs) using local-
level frame mapping and planning in spherical coordinates. To
explicitly address the obstacle initialization problem, the maps are
parameterized using the inverse time-to-collision (TTC), which is
independent of the ground speed of the MAYV. Using bearing-only
measurements, an extended Kalman Filter (EKF) is employed to
estimate the inverse TTC, azimuth, and elevation to obstacles.
A nonlinear observability analysis is used to derive conditions
for the observability of the system. Based on these conditions,
we design a path planning algorithm that minimizes the estima-
tion uncertainties while simultaneously avoiding collisions with
obstacles. The behavior of the planning algorithm is analyzed
and the characteristics of the environment in which the planning
algorithm guarantees collision-free paths for MAVs are described.
Numerical results show that the proposed method is successful
in solving the path planning problem for MAVs.

I. INTRODUCTION

Miniature Air Vehicles (MAVs) have the potential to per-
form tasks that are too difficult or dangerous for human
pilots. For example, they can monitor critical infrastructure
and disasters, perform search and rescue, and perform in-storm
weather measurements [1]. For many of these applications,
MAVs are required to navigate in urban or unknown terrains
where obstacles of various types and sizes may hinder the
success of the mission. MAVs must have the capability to
autonomously plan paths that do not collide with buildings,
trees, or other obstacles. Therefore, the path planning problem
for MAVs has received significant attention [1]-[5].

The general framework for the path planning problem can
be described as follows: given a description of the environ-
ment, find a feasible path between two configurations in the
environment that does not result in collisions with any of
obstacles. The path planning problem can be grouped into
global path planning and local path planning. Global path
planning requires complete knowledge of the environment and
a static terrain. In that setting a feasible path from the start to
the destination configuration is generated before the vehicle
begins its motion [6]. The global path planning problem
has been addressed by many researchers and common solu-
tion techniques include potential fields methods, probabilistic
roadmap methods, and cell decomposition methods [7].
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On the other hand, local path planning is executed in
real-time during flight. The basic idea is to first sense the
obstacles in the environment and then determine a collision-
free path [1]. Local path planning algorithms require sensors
to detect obstacles. Among the suite of possible sensors, a
video camera is cheap and lightweight and fits the physical
requirements of MAVs [1]. Since the camera measurements are
obtained in the body frame, it is most natural to create maps
and to plan paths directly in the local-level frame of the MAV.
References [8]-[11] develop vision-based local-level frame
mapping and path planning algorithms that create polar and
cylindrical maps and plan paths using time-to-collision (TTC)
and bearing measurements obtained by a camera directly
without transforming to the inertial frame. However, if we use
a single camera to detect obstacles, the TTC measurements
are usually inaccurate, which motivates the use of bearing-
only measurements obtained by the camera to estimate both
the TTC and bearing. Our previous work in [12] develops
an observability-based planning technique for MAVs, where
the TTC and bearing are estimated using bearing-only mea-
surement, and where a two dimensional planning algorithm is
developed to minimize the uncertainties of the state estimates
while simultaneously avoiding collisions. However, in [12],
the obstacle initialization problem was not addressed and the
behavior of the planning algorithm was not carefully analyzed.

Feature initialization is an important problem caused by
bearing-only camera. Since the camera only provides the bear-
ing to a feature, the TTC estimate for the feature is uncertain
when it is initially observed or when the feature exhibits low
parallax during motion of the platform. The uncertainties are
not well represented by a Gaussian distribution in the context
of an extended Kalman Filter (EKF) [13]. There have been
methods presented for addressing the feature initialization
problem in the Simultaneously Localization and Mapping
(SLAM) community. The methods are classified into delayed
and undelayed initialization.

Delayed initialization methods consider the new observed
features separately from the map and accumulate depth infor-
mation over several video frames to reduce depth uncertainty
before adding the new features to the map [14]-[16]. However,
the drawback of using these methods for collision avoidance is
that the new observed obstacles do not contribute to the path
generation until they are added to the map. Reference [13]
develops an undelayed feature initialization method that can
handle the initialization of features at all depths within the
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standard EKF framework using direct parametrization of in-
verse depth relative to the camera position from which a
feature was first observed. The inverse depth parametrization
represents a feature by a six-state vector, which is more
computationally expensive. Once the depth estimate is accurate
enough, the inverse depth parametrization is converted to
Euclidean XYZ form to speed up the computation.

This paper explores a vision-based local-level frame map-
ping and planning technique for MAVs. Using bearing-only
measurements obtained by a monocular camera, we employ
an EKF to estimate the inverse TTC, azimuth, and elevation
angles to near-by obstacles, and then construct a map in local-
level spherical coordinates. The spherical map is parameter-
ized using the inverse TTC, azimuth, and elevation, which
is independent of the ground speed of the MAV and which
allows the obstacle initialization problem to be addressed
explicitly. In addition, compared to using a switching strategy
between the inverse depth parametrization and Euclidean XYZ
representation, parameterizing the map only using the inverse
TTC, azimuth, and elevation enhances the computational ef-
ficiency. We perform the observability analysis of the state
estimation process from bearing-only measurements and find
the conditions for the observability of the system. Based on the
conditions, we design the planning algorithm that minimizes
the uncertainties of the state estimates while simultaneously
avoiding collisions with obstacles. We analyze the behavior
of the planning algorithm and describe the characteristics of
the environment in which the algorithm guarantees collision-
free paths for the MAV.

The paper is organized as follows. Section II describes
the vision-based spherical mapping in the local-level frame
using the inverse TTC, azimuth, and elevation. A nonlinear
observability analysis of the system is also presented. In
Section III, the planning algorithm is designed based on the
observability conditions. Section IV analyzes the behavior of
the planning algorithm. Section V presents numerical results
demonstrating the effectiveness of the algorithm.

II. VISION-BASED LOCAL-LEVEL FRAME MAPPING IN
SPHERICAL COORDINATES

In this section we will build a map using the inverse TTC
to obstacles in the local-level frame of the MAV. The map is
constructed in spherical coordinates by estimating the inverse
TTC, azimuth, and elevation to obstacles. We then perform a
nonlinear observability analysis of the state estimation problem
using bearing-only measurements, and find the conditions for
observability of the system.

A. Estimates of inverse TTC, azimuth, and elevation

Since the obstacle map is constructed in the local-level
frame, the equation of motion of each obstacle relative to
the MAV needs to be derived. Throughout the paper we will
assume zero wind conditions. Let V represent the ground
speed of the MAV and let v and 6 represent the heading
and pitch angles respectively. Figure 1 shows the motion of
the i obstacle relative to the MAV in the local-level frame,

where O' represents the obstacle, and 7/, ' and &' are the
inverse TTC, azimuth, and elevation to the obstacle. Based on

Vsinf
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Fig. 1. This figure shows the motion of the i’ obstacle relative to the MAV.
The current MAV configuration is ¢;. The obstacle is represented by O'. The
pitch angle is represented by 6. The inverse TTC, azimuth, and elevation to
the obstacle are represented by 7/, ' and &', The ground speed is represented
by V.

Fig. 1, the equation of motion of the obstacle relative to the
MAV in terms of the inverse TTC, azimuth, and elevation is
given by
X = f(x',u) +w
(t1)2cos@cosnicos &l + (77)?sin Osin &!
icosesinni Y
. Jcosg! .
T'cosOcosn'sinE! — 7' sin O cos &!

+w (1)

where we have assumed coordinated turn conditions ¥ =
£ tan¢, and where g is the gravity constant and ¢ is the roll
angle of the MAV, x' = [t/ 0/, E/]T is the state, u = [9,0]"
is the control input, and the process noise w' is a Gaussian
random vector with zero mean and covariance matrix Q'.

Since the camera directly measures the azimuth and eleva-

tion angles, the measurement at time step k is given by
. . ) i .
7 =h(x;) +v; = { Z’f ] + Ve 2)
k

where the measurement noise V;( is a Gaussian random vec-
tor with zero mean and covariance matrix Rj. Based on
Egs. (1) and (2), the inverse TTC, azimuth, and elevation
are estimated using the standard continuous-discrete time EKF
algorithm [17].

When an obstacle is observed for the first time, we initialize
the azimuth and elevation using the measurement data. The
uncertainties of the initial inverse TTC to the obstacle can
be well approximated by a Gaussian distribution with the
mean 7Ty and the standard deviation og, [13]. The values for
To and oy, are set empirically such that the 95% confidence
region spans a range of the TTC from close to the camera
up to infinity. Let z}; represent the measurement for the new
observed obstacle and let R}, represent the covariance matrix of
measurement noise for that obstacle. The state for the obstacle
is given by [1,'0,zfj]T and the error covariance matrix is given

2
o, 0
% 0 R

The local-level frame map only contains obstacles with the
inverse TTC greater than a certain threshold 7/ and with the
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absolute value of the azimuth and elevation angles less than 7.
When an obstacle disappears from the local-level frame map,
it will be removed from the map.

B. Local-level frame mapping in spherical coordinates

We build a map directly in the local-level frame instead
of inertial frame. Accordingly, we save the computational ex-
pense, and the errors associated with transforming the camera
data from the local-level frame to the inertial frame, at the
expense of updating the map using body motion. We construct
maps in spherical coordinates, which are more compatible with
bearing information obtained by the camera, allowing the data
to be processed more efficiently. The maps are constructed
using the inverse TTC, azimuth, and elevation, as shown in
Fig. 2. The origin of the map is the current location of
the MAV. The blue dots are a numerical representation of
95% uncertainty region Gaussian in the inverse TTC for each
obstacle.

Height (m)

Right wing direction (m)

Fig. 2. This figure shows the local-level frame map in spherical coordinates.
The origin of the map is the current location of the MAV. The blue dots are
a numerical representation of 95% uncertainty region Gaussian in the inverse
TTC for each obstacle.

C. Observability analysis

We use the EKF to estimate the inverse TTC, azimuth, and
elevation to obstacles using bearing-only measurements. To
bound the error covariance computed by the EKF, the system
should be observable. We use the nonlinear observability
theory developed in [18], which states that the observability is
achieved when a system satisfies the nonlinear observability
rank condition. Accordingly, we analyze the observability of
the system for the i obstacle given by Egs. (1) and (2) by
computing the rank of the observability matrix. For an angle
a, define cq £ cos o and s 2 sina. The observability matrix
is computed using Lie derivatives as described in [18]. The
0" order Lie derivative is

L(h) = { ’g ] - 3)

The 1% order Lie derivative is given by
CBynz .
Lih)y=| = < v : “4)
TZCQCniS€i - ‘c’seca

The 2" order Lie derivative is given by

. TiCeC i

2(Ti)2095 ni

nini
Czl- Cgi
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The observability matrix is computed as
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Based on the observability matrix, Lemma 1 gives the condi-
tions under which the system for the ' obstacle is observable.

Lemma 1: The i obstacle, whose motion is given by
Egs. (1) and (2), is locally observable at time ¢ if and only if
at least one of the following three conditions is satisfied (a)

n(r) £ 0, () E(1) # 6(1), and (c) 9 () # 0, where 7i(r) and
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&i(t) are the azimuth and elevation angles to the obstacle, and
¢(r) and O(¢) are the roll and pitch angles of the MAV.
Proof: The observability matrix given by Eq. (6), has
rank two if and only if all elements in the first column are
zero. Accordingly, the i'" obstacle, whose motion is given by
Egs. (1) and (2), is not locally observable if and only if all
elements in the first column are zero. For Oél to equal zero at
time 7, it must be that n‘(r) = 0. For O}, to equal zero at time
t, it must be that &'(¢) = (). For O%, to equal zero at time
t, it must be that ¥ = { tan¢ = 0, which implies ¢(z) = 0.
Substituting n'(r) =0, &'(r) = 6(¢) and ¢(r) = 0 into O,
also leads to Og; = 0. Therefore, the system is not locally
observable at time ¢ if and only if all three conditions of (a)
ni(t) =0, (b) E(t) = B(t), and (c) ¢(¢) =0 are satisfied. m
The conditions in Lemma 1 show that the system is locally
observable when the MAV does not directly fly toward the
obstacle. When the MAV is not flying directly at the obstacle,
parallax can be used to estimate time-to-collision and the
system is always locally observable, which implies that the
system is observable [18].

III. PATH PLANNING IN THE LOCAL-LEVEL FRAME

The convergence and boundedness of the EKF are achieved
when the system is fully observable [19]. Bounds on the
EKF error covariance P for the i/ obstacle are related to
the observability of the system given by Lemma 2 as shown
in [19].

Lemma 2 ( [19]): Suppose that there exist positive real
scalars o, op, Bi, B2 such that I < o' O < BoI and
ol > CIC'T > oy then,

1 ; 1
<ﬁ2+1)1<Pz<<a2+131)1, (M
[27]

where C' is the controllability matrix.

We design the path planning algorithm that minimizes
the uncertainties of the inverse TTC, azimuth, and elevation
estimates while causing the MAV to avoid collisions. Based
on Lemma 2, we can see that the minimum eigenvalue
of the matrix O'' O determines the upper bound on the
error covariance. To minimize the upper bound on the error
covariance, the minimum eigenvalue should be maximized,
which is equivalent to minimizing the inverse of the minimum
eigenvalue. When the system is unobservable, the rank of the
observability matrix is two and the inverse of the minimum
eigenvalue is infinite. When the system is observable, the
rank of the observability matrix is three and the inverse is
finite. Minimizing the inverse of the minimum eigenvalue
ensures that the observability conditions given by Lemma 1
are satisfied. This implies that the minimization of the inverse
of the minimum eigenvalue will minimize the upper bound
of the error covariance as well as steer the MAV away from
the obstacle. Therefore, the minimization of uncertainties and
obstacle avoidance are complementary.

Let 7%, nf and &° represent the inverse TTC, azimuth,
and elevation to the goal configuration at time ¢, and let

x¢ = [t8,nf,E5]". Suppose there exist n obstacles in the

local map. Let xi = [t/,n/,E/]" represent the state for the

i obstacle. Let v, = [x¢",x!",--- x"7]T. Define the utility
function S : R¥*+3 — R as
n
b;
S(Vi) = gy ta(mf)? +as(E)’+ Y, ———. ®)
( ) ' ') ; Amin(01T O

where a;, a, a3, b;, i =1,---,n are positive weights and
l,ni,,(OiTOi) is the minimum eigenvalue of the matrix O ' O
The first three terms penalize the cost for goal reaching. The
fourth term penalizes the weighted sum of the inverse of
the minimum eigenvalue for all obstacles. By minimizing the
fourth term, the algorithm minimizes the uncertainties in the
inverse TTC, azimuth, and elevation estimates and also steers
the MAV around the obstacles. We use the look-ahead policy
over the horizon 7 that minimizes the cost function

t+T
J= / S(vp)dp, ©))
t
subject to the constraints
X5 =f(x5,u,),
Xi, :f(xf),up)7 i=1,---,n,
19p] < Pmax,
|9p| < 6max-

(10)

We solve the constrained optimization problem using the
nonlinear optimization function fmincon in MATLAB [20].

IV. ANALYSIS

In this section, we analyze the behavior of the planning
algorithm and describe the characteristics of the environments
in which the algorithm guarantees collision-free paths for the
MAV. We focus our analysis on environments with spherical
obstacles with known locations. For the sake of saving space,
we will not provide the proofs of the theoretical results
presented in this section. The proofs will be given in a coming
journal article.

For avoiding spherical obstacles, the optimization needs
additional constraints

4 >R i=1,--

- >
Tp

n, Vp € t,t+T], (11)
where R is the radius of the i" obstacle. To guarantee collision
avoidance, it is necessary to establish a minimum turn away
distance dfnin from each obstacle. The minimum turn away
distance is evaluated at the horizontal plane of the MAV’s
center of mass. Let @pnax represent the maximum roll angle
of the MAV and let 6, represent the maximum pitch angle.
The minimum turning radius of the MAV is then given by [21]

V2 oS Opmax

Yt = .
gtan Pmax

Lemma 3 shows the minimum turn away distance for the MAV
to avoid a spherical obstacle O' with the radius R: using the
planning algorithm.

12)
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Lemma 3: Using the planning algorithm which minimizes
the cost function (9) subject to the constraints (10) and (11),
avoidance of a collision with a spherical obstacle O’ with the
radius R is guaranteed if the turn away distance from the
obstacle satisfies d > d' .. = \/(RL+ry)? — ra, — RL.

For the environments with multiple spherical obstacles,
we specify the conditions under which the planning algo-
rithm is guaranteed to generate collision-free paths for the
MAV. Let ¥ represent the configuration space. For two
configurations g1 = [qin,q1e:q14: 91y q10) € € and gr =
(@20, G2+ G2a, G2y G20) | € €, Where Gin, qie, and qig, i = 1,2,
represent North, East, and Down coordinates, and g;y and g;g,
i =1,2, represent the heading and pitch angles, define the two
dimensional distance between g; and ¢, projected on x-y plane
of the inertial frame

HQI _512H2Dé \/(CIln_q2n)2+(q16_q26)2- (13)

Let go represent the initial MAV configuration and let

q0i = 90in,90ies 901 d,qoiqanie]T represent the configuration
of the i obstacle’s center. Let d/ = min ||go—gl|2p represent
geado!

the two dimensional distance between ¢go and the bound-
ary of the /" obstacle. Let d'/ = min _ ||pi — pjllp
pi€d0! p;cdO/

represent the shortest two dimensional distance between the
points along the boundaries of the i" obstacle and the ;"
obstacle. Let .# represent the index set of obstacles and let
D= {(i,j) € I X I :|qpia—qoial < (Ri+R})} represent the
set of obstacle pairs in which the altitude difference between
each two obstacles is no greater than the sum of their radii.
We introduce the notion of local sparseness as Definition 1.

Definition 1: An environment is said to be locally sparse if
dV >max{d’ . ,d!. }, V(i,j)€D.

The local sparseness property means that each two obstacles
in the environment with the altitude difference between them
less than the sum of their radii are separated enough from each
other such that the distance between them is greater than the
maximum of their minimum turn away distances.

Theorem 1: If the environment is locally sparse and the
initial MAV configuration satisfies d}, > d.; . Vi € .7, then
the planning algorithm, which minimizes the cost function (9)
subject to the constraints given by (10) and (11), is guaranteed
that the MAV will avoid all the obstacles for all time ¢.

We assume that the environment is locally sparse in order
to provide a theoretical guarantee for collision avoidance
behavior of the planning algorithm. The assumptions are only
sufficient conditions for collision avoidance, which means
there may exist environments that are not locally sparse but
where the planning algorithm can still maneuver the MAV
without causing collisions.

V. NUMERICAL RESULTS

The feasibility of the observability-based planning algorithm
was tested using a simulation environment developed in MAT-
LAB/SIMULINK, as shown in the subfigures on the right in
Fig. 3. The simulator uses a six degree of freedom model
of the aircraft, where a North-East-Down (NED) coordinate

system is used. The covariance matrix of the process noise

0.00001 0 0
for each obstacle was Q' = 0 0.0001 0
0 0 0.0001

and the covariance matrjx of the measurement noise was
0.0012

R = . The values for the initial inverse

0 0.0012
TTC and its standard deviation were set at 7o = 0.06 and

07, = 0.03. The ground speed was V = 13 m/s. The maximum
roll and flight path angles for the MAV were 30° and 15°
respectively. The weights were selected as a; =1,Vi=1,---,3,
and b; = 0.04,Vi = 1,--- ,n. The look-ahead policy over the
horizon 3.6 seconds was used.

The MAV was commanded to maneuver through twenty-
five spherical obstacles between waypoint S (0,100,-20) and
waypoint E (600,700,-100). Figure 3 shows the evolution of
the maps using the inverse TTC parametrization in the local-
level frame and the update of the actual paths followed by the
MAV in the inertial frame. Subfigures on the left show the
local-level frame maps in spherical coordinates. Subfigures on
the right show the actual paths. Based on the figure, when the
obstacle is first observed, the 95% acceptance region of the
inverse TTC includes 7 = 0. Accordingly, the uncertainties in
the inverse TTC map to the infinity depth. As time progresses,
parallax reduces the uncertainties which become progressively
smaller, causing the uncertainties in the depth to be reduced.
Figure 4 shows the tracking error and +20 bounds for the
inverse TTC, azimuth, and elevation to the obstacle with x
and y coordinates at (150,250).

VI. CONCLUSION

This paper presents a vision-based local-level frame map-
ping and planning technique for MAVs. To explicitly address
the obstacle initialization problem, we construct the local-
level frame maps in spherical coordinates using the inverse
TTC, azimuth, and elevation to obstacles. Using bearing-only
measurements, we employ an EKF to estimate the inverse
TTC, azimuth, and elevation, and perform an observability
analysis of the state estimation to find the conditions under
which the system is observable. Based on the conditions, we
design a planning algorithm that minimizes the estimation
uncertainties while simultaneously avoiding collisions. We
describe the characteristics of the environments in which
the planning algorithm guarantees collision-free paths for the
MAVs.
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