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Abstract—This paper presents a vision-based collision avoid-
ance technique for Miniature Air Vehicles (MAVs) using local-
level frame mapping and planning in spherical coordinates. To
explicitly address the obstacle initialization problem, the maps are
parameterized using the inverse time-to-collision (TTC), which is
independent of the ground speed of the MAV. Using bearing-only
measurements, an extended Kalman Filter (EKF) is employed to
estimate the inverse TTC, azimuth, and elevation to obstacles.
A nonlinear observability analysis is used to derive conditions
for the observability of the system. Based on these conditions,
we design a path planning algorithm that minimizes the estima-
tion uncertainties while simultaneously avoiding collisions with
obstacles. The behavior of the planning algorithm is analyzed
and the characteristics of the environment in which the planning
algorithm guarantees collision-free paths for MAVs are described.
Numerical results show that the proposed method is successful
in solving the path planning problem for MAVs.

I. INTRODUCTION

Miniature Air Vehicles (MAVs) have the potential to per-

form tasks that are too difficult or dangerous for human

pilots. For example, they can monitor critical infrastructure

and disasters, perform search and rescue, and perform in-storm

weather measurements [1]. For many of these applications,

MAVs are required to navigate in urban or unknown terrains

where obstacles of various types and sizes may hinder the

success of the mission. MAVs must have the capability to

autonomously plan paths that do not collide with buildings,

trees, or other obstacles. Therefore, the path planning problem

for MAVs has received significant attention [1]–[5].

The general framework for the path planning problem can

be described as follows: given a description of the environ-

ment, find a feasible path between two configurations in the

environment that does not result in collisions with any of

obstacles. The path planning problem can be grouped into

global path planning and local path planning. Global path

planning requires complete knowledge of the environment and

a static terrain. In that setting a feasible path from the start to

the destination configuration is generated before the vehicle

begins its motion [6]. The global path planning problem

has been addressed by many researchers and common solu-

tion techniques include potential fields methods, probabilistic

roadmap methods, and cell decomposition methods [7].
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On the other hand, local path planning is executed in

real-time during flight. The basic idea is to first sense the

obstacles in the environment and then determine a collision-

free path [1]. Local path planning algorithms require sensors

to detect obstacles. Among the suite of possible sensors, a

video camera is cheap and lightweight and fits the physical

requirements of MAVs [1]. Since the camera measurements are

obtained in the body frame, it is most natural to create maps

and to plan paths directly in the local-level frame of the MAV.

References [8]–[11] develop vision-based local-level frame

mapping and path planning algorithms that create polar and

cylindrical maps and plan paths using time-to-collision (TTC)

and bearing measurements obtained by a camera directly

without transforming to the inertial frame. However, if we use

a single camera to detect obstacles, the TTC measurements

are usually inaccurate, which motivates the use of bearing-

only measurements obtained by the camera to estimate both

the TTC and bearing. Our previous work in [12] develops

an observability-based planning technique for MAVs, where

the TTC and bearing are estimated using bearing-only mea-

surement, and where a two dimensional planning algorithm is

developed to minimize the uncertainties of the state estimates

while simultaneously avoiding collisions. However, in [12],

the obstacle initialization problem was not addressed and the

behavior of the planning algorithm was not carefully analyzed.

Feature initialization is an important problem caused by

bearing-only camera. Since the camera only provides the bear-

ing to a feature, the TTC estimate for the feature is uncertain

when it is initially observed or when the feature exhibits low

parallax during motion of the platform. The uncertainties are

not well represented by a Gaussian distribution in the context

of an extended Kalman Filter (EKF) [13]. There have been

methods presented for addressing the feature initialization

problem in the Simultaneously Localization and Mapping

(SLAM) community. The methods are classified into delayed

and undelayed initialization.

Delayed initialization methods consider the new observed

features separately from the map and accumulate depth infor-

mation over several video frames to reduce depth uncertainty

before adding the new features to the map [14]–[16]. However,

the drawback of using these methods for collision avoidance is

that the new observed obstacles do not contribute to the path

generation until they are added to the map. Reference [13]

develops an undelayed feature initialization method that can

handle the initialization of features at all depths within the
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standard EKF framework using direct parametrization of in-

verse depth relative to the camera position from which a

feature was first observed. The inverse depth parametrization

represents a feature by a six-state vector, which is more

computationally expensive. Once the depth estimate is accurate

enough, the inverse depth parametrization is converted to

Euclidean XYZ form to speed up the computation.

This paper explores a vision-based local-level frame map-

ping and planning technique for MAVs. Using bearing-only

measurements obtained by a monocular camera, we employ

an EKF to estimate the inverse TTC, azimuth, and elevation

angles to near-by obstacles, and then construct a map in local-

level spherical coordinates. The spherical map is parameter-

ized using the inverse TTC, azimuth, and elevation, which

is independent of the ground speed of the MAV and which

allows the obstacle initialization problem to be addressed

explicitly. In addition, compared to using a switching strategy

between the inverse depth parametrization and Euclidean XYZ

representation, parameterizing the map only using the inverse

TTC, azimuth, and elevation enhances the computational ef-

ficiency. We perform the observability analysis of the state

estimation process from bearing-only measurements and find

the conditions for the observability of the system. Based on the

conditions, we design the planning algorithm that minimizes

the uncertainties of the state estimates while simultaneously

avoiding collisions with obstacles. We analyze the behavior

of the planning algorithm and describe the characteristics of

the environment in which the algorithm guarantees collision-

free paths for the MAV.

The paper is organized as follows. Section II describes

the vision-based spherical mapping in the local-level frame

using the inverse TTC, azimuth, and elevation. A nonlinear

observability analysis of the system is also presented. In

Section III, the planning algorithm is designed based on the

observability conditions. Section IV analyzes the behavior of

the planning algorithm. Section V presents numerical results

demonstrating the effectiveness of the algorithm.

II. VISION-BASED LOCAL-LEVEL FRAME MAPPING IN

SPHERICAL COORDINATES

In this section we will build a map using the inverse TTC

to obstacles in the local-level frame of the MAV. The map is

constructed in spherical coordinates by estimating the inverse

TTC, azimuth, and elevation to obstacles. We then perform a

nonlinear observability analysis of the state estimation problem

using bearing-only measurements, and find the conditions for

observability of the system.

A. Estimates of inverse TTC, azimuth, and elevation

Since the obstacle map is constructed in the local-level

frame, the equation of motion of each obstacle relative to

the MAV needs to be derived. Throughout the paper we will

assume zero wind conditions. Let V represent the ground

speed of the MAV and let ψ and θ represent the heading

and pitch angles respectively. Figure 1 shows the motion of

the ith obstacle relative to the MAV in the local-level frame,

where Oi represents the obstacle, and τ i, η i and ξ i are the

inverse TTC, azimuth, and elevation to the obstacle. Based on

Fig. 1. This figure shows the motion of the ith obstacle relative to the MAV.
The current MAV configuration is qt . The obstacle is represented by Oi. The
pitch angle is represented by θ . The inverse TTC, azimuth, and elevation to
the obstacle are represented by τ i, η i and ξ i. The ground speed is represented
by V .

Fig. 1, the equation of motion of the obstacle relative to the

MAV in terms of the inverse TTC, azimuth, and elevation is

given by

ẋi = f(xi,u)+wi

=







(τ i)2 cosθ cosη i cosξ i +(τ i)2 sinθ sinξ i

τ i cosθ sinη i

cosξ i − ψ̇

τ i cosθ cosη i sinξ i − τ i sinθ cosξ i






+wi,(1)

where we have assumed coordinated turn conditions ψ̇ =
g
V

tanφ , and where g is the gravity constant and φ is the roll

angle of the MAV, xi = [τ i,η i,ξ i]⊤ is the state, u = [φ ,θ ]⊤

is the control input, and the process noise wi is a Gaussian

random vector with zero mean and covariance matrix Qi.

Since the camera directly measures the azimuth and eleva-

tion angles, the measurement at time step k is given by

zi
k = h(xi

k)+vi
k =

[

η i
k

ξ i
k

]

+vi
k, (2)

where the measurement noise vi
k is a Gaussian random vec-

tor with zero mean and covariance matrix Ri
k. Based on

Eqs. (1) and (2), the inverse TTC, azimuth, and elevation

are estimated using the standard continuous-discrete time EKF

algorithm [17].

When an obstacle is observed for the first time, we initialize

the azimuth and elevation using the measurement data. The

uncertainties of the initial inverse TTC to the obstacle can

be well approximated by a Gaussian distribution with the

mean τ0 and the standard deviation στ0
[13]. The values for

τ0 and στ0
are set empirically such that the 95% confidence

region spans a range of the TTC from close to the camera

up to infinity. Let zi
k represent the measurement for the new

observed obstacle and let Ri
k represent the covariance matrix of

measurement noise for that obstacle. The state for the obstacle

is given by [τ0,z
i
k

⊤
]⊤ and the error covariance matrix is given

by

[

σ2
τ0

0

0 Ri
k

]

.

The local-level frame map only contains obstacles with the

inverse TTC greater than a certain threshold τ l and with the
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absolute value of the azimuth and elevation angles less than π
2

.

When an obstacle disappears from the local-level frame map,

it will be removed from the map.

B. Local-level frame mapping in spherical coordinates

We build a map directly in the local-level frame instead

of inertial frame. Accordingly, we save the computational ex-

pense, and the errors associated with transforming the camera

data from the local-level frame to the inertial frame, at the

expense of updating the map using body motion. We construct

maps in spherical coordinates, which are more compatible with

bearing information obtained by the camera, allowing the data

to be processed more efficiently. The maps are constructed

using the inverse TTC, azimuth, and elevation, as shown in

Fig. 2. The origin of the map is the current location of

the MAV. The blue dots are a numerical representation of

95% uncertainty region Gaussian in the inverse TTC for each

obstacle.
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Fig. 2. This figure shows the local-level frame map in spherical coordinates.
The origin of the map is the current location of the MAV. The blue dots are
a numerical representation of 95% uncertainty region Gaussian in the inverse
TTC for each obstacle.

C. Observability analysis

We use the EKF to estimate the inverse TTC, azimuth, and

elevation to obstacles using bearing-only measurements. To

bound the error covariance computed by the EKF, the system

should be observable. We use the nonlinear observability

theory developed in [18], which states that the observability is

achieved when a system satisfies the nonlinear observability

rank condition. Accordingly, we analyze the observability of

the system for the ith obstacle given by Eqs. (1) and (2) by

computing the rank of the observability matrix. For an angle

α , define cα , cosα and sα , sinα . The observability matrix

is computed using Lie derivatives as described in [18]. The

0th order Lie derivative is

L0
f (h) =

[

η i

ξ i

]

. (3)

The 1st order Lie derivative is given by

L1
f (h) =

[

τ i
cθ s

η i

c
ξ i

− ψ̇

τ icθ cη i sξ i − τ isθ cξ i

]

. (4)

The 2nd order Lie derivative is given by

L2
f (h) =

















2(τ i)2c2
θ s

η i cη i

c2

ξ i

− ψ̇
τ icθ c

η i

c
ξ i

2(τ i)2sθ cθ cη i s2
ξ i −2(τ i)2sθ cθ cη i c2

ξ i

+2(τ i)2c2
θ c2

η i cξ i sξ i −2(τ i)2s2
θ cξ i sξ i

−
(τ i)2c2

θ s2

η i sξ i

c
ξ i

− τ icθ sη i sξ i ψ̇

















. (5)

The observability matrix is computed as

Oi =





















0 1 0

0 0 1
cθs

η i

c
ξ i

τ icθc
η i

c
ξ i

τ icθ s
η i sξ i

c2

ξ i

Oi
41 Oi

42 Oi
43

Oi
51 Oi

52 Oi
53

Oi
61 Oi

62 Oi
63





















, (6)

where

Oi
41 = cθ cη i sξ i − sθ cξ i ,

Oi
42 = −τ icθ sη i sξ i ,

Oi
43 = τ icθ cη i cξ i + τ isθ sξ i ,

Oi
51 =

4τ ic2
θ sη i cη i

c2
ξ i

−
ψ̇cθ cη i

cξ i

,

Oi
52 =

2(τ i)2c2
θ c2

η i

c2
ξ i

−
2(τ i)2c2

θ s2
η i

c2
ξ i

+
ψ̇τ icθ sη i

cξ i

,

Oi
53 =

2(τ i)2c2
θ sξ i sη i cη i

c3
ξ i

−
ψ̇τ icθ cη i sξ i

c2
ξ i

,

Oi
61 = 4τ isθ cθ cη i s

2
ξ i −4τ isθ cθ cη i c

2
ξ i

+4τ ic2
θ c2

η i cξ i sξ i −4τ is2
θ cξ i sξ i

−
2τ ic2

θ s2
η i sξ i

cξ i

− cθ sη i sξ i ψ̇,

Oi
62 = −2(τ i)2sθ cθ sη i s

2
ξ i +2(τ i)2sθ cθ sη i c

2
ξ i

−4(τ i)2c2
θ cη i sη i cξ i sξ i

−
2(τ i)2c2

θ sη i cη i sξ i

cξ i

− τ icθ cη i sξ iψ̇ ,

Oi
63 = 4τ isθ cθ cη i sξ i cξ i +4(τ i)2sθ cθ cη i cξ i sξ i

+2(τ i)2c2
θ c2

η i c
2
ξ i −2(τ i)2c2

θ c2
η i s

2
ξ i

+2(τ i)2s2
θ s2

ξ i −2(τ i)2s2
θ c2

ξ i

−τ icθ sη i cξ i ψ̇ −
(τ i)2c2

θ s2
η i

c2
ξ i

.

Based on the observability matrix, Lemma 1 gives the condi-

tions under which the system for the ith obstacle is observable.

Lemma 1: The ith obstacle, whose motion is given by

Eqs. (1) and (2), is locally observable at time t if and only if

at least one of the following three conditions is satisfied (a)

η i(t) 6= 0, (b) ξ i(t) 6= θ(t), and (c) φ(t) 6= 0, where η i(t) and
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ξ i(t) are the azimuth and elevation angles to the obstacle, and

φ(t) and θ(t) are the roll and pitch angles of the MAV.

Proof: The observability matrix given by Eq. (6), has

rank two if and only if all elements in the first column are

zero. Accordingly, the ith obstacle, whose motion is given by

Eqs. (1) and (2), is not locally observable if and only if all

elements in the first column are zero. For Oi
31 to equal zero at

time t, it must be that η i(t) = 0. For Oi
41 to equal zero at time

t, it must be that ξ i(t) = θ(t). For Oi
51 to equal zero at time

t, it must be that ψ̇ = g
V

tanφ = 0, which implies φ(t) = 0.

Substituting η i(t) = 0, ξ i(t) = θ(t) and φ(t) = 0 into Oi
61

also leads to Oi
61 = 0. Therefore, the system is not locally

observable at time t if and only if all three conditions of (a)

η i(t) = 0, (b) ξ i(t) = θ(t), and (c) φ(t) = 0 are satisfied.

The conditions in Lemma 1 show that the system is locally

observable when the MAV does not directly fly toward the

obstacle. When the MAV is not flying directly at the obstacle,

parallax can be used to estimate time-to-collision and the

system is always locally observable, which implies that the

system is observable [18].

III. PATH PLANNING IN THE LOCAL-LEVEL FRAME

The convergence and boundedness of the EKF are achieved

when the system is fully observable [19]. Bounds on the

EKF error covariance Pi for the ith obstacle are related to

the observability of the system given by Lemma 2 as shown

in [19].

Lemma 2 ( [19]): Suppose that there exist positive real

scalars α1, α2, β1, β2 such that β1I ≤ Oi⊤Oi ≤ β2I and

α2I ≥ CiCi⊤ ≥ α1I then,
(

1

β2 +
1

α1

)

I ≤ Pi
k ≤

(

α2 +
1

β1

)

I, (7)

where Ci is the controllability matrix.

We design the path planning algorithm that minimizes

the uncertainties of the inverse TTC, azimuth, and elevation

estimates while causing the MAV to avoid collisions. Based

on Lemma 2, we can see that the minimum eigenvalue

of the matrix Oi⊤Oi determines the upper bound on the

error covariance. To minimize the upper bound on the error

covariance, the minimum eigenvalue should be maximized,

which is equivalent to minimizing the inverse of the minimum

eigenvalue. When the system is unobservable, the rank of the

observability matrix is two and the inverse of the minimum

eigenvalue is infinite. When the system is observable, the

rank of the observability matrix is three and the inverse is

finite. Minimizing the inverse of the minimum eigenvalue

ensures that the observability conditions given by Lemma 1

are satisfied. This implies that the minimization of the inverse

of the minimum eigenvalue will minimize the upper bound

of the error covariance as well as steer the MAV away from

the obstacle. Therefore, the minimization of uncertainties and

obstacle avoidance are complementary.

Let τg
t , ηg

t and ξ g
t represent the inverse TTC, azimuth,

and elevation to the goal configuration at time t, and let

x
g
t = [τg

t ,η
g
t ,ξ

g
t ]

⊤. Suppose there exist n obstacles in the

local map. Let xi
t = [τ i

t ,η
i
t ,ξ

i
t ]
⊤ represent the state for the

ith obstacle. Let νt = [xg
t
⊤
,x1

t
⊤
, · · · ,xn

t
⊤]⊤. Define the utility

function S : R3n+3 → R as

S(νt) =
a1

(τg
t )

2
+a2(η

g
t )

2 +a3(ξ
g
t )

2 +
n

∑
i=1

bi

λmin(Oi⊤Oi)
, (8)

where a1, a2, a3, bi, i = 1, · · · ,n are positive weights and

λmin(O
i⊤Oi) is the minimum eigenvalue of the matrix Oi⊤Oi.

The first three terms penalize the cost for goal reaching. The

fourth term penalizes the weighted sum of the inverse of

the minimum eigenvalue for all obstacles. By minimizing the

fourth term, the algorithm minimizes the uncertainties in the

inverse TTC, azimuth, and elevation estimates and also steers

the MAV around the obstacles. We use the look-ahead policy

over the horizon T that minimizes the cost function

J =
∫ t+T

t
S(νρ)dρ , (9)

subject to the constraints

ẋ
g
ρ = f(xg

ρ ,uρ),

ẋi
ρ = f(xi

ρ ,uρ), i = 1, · · · ,n,

|φρ | ≤ φmax, (10)

|θρ | ≤ θmax.

We solve the constrained optimization problem using the

nonlinear optimization function fmincon in MATLAB [20].

IV. ANALYSIS

In this section, we analyze the behavior of the planning

algorithm and describe the characteristics of the environments

in which the algorithm guarantees collision-free paths for the

MAV. We focus our analysis on environments with spherical

obstacles with known locations. For the sake of saving space,

we will not provide the proofs of the theoretical results

presented in this section. The proofs will be given in a coming

journal article.

For avoiding spherical obstacles, the optimization needs

additional constraints

V

τ i
ρ

≥ Ri
s, i = 1, · · · ,n, ∀ρ ∈ [t, t +T ], (11)

where Ri
s is the radius of the ith obstacle. To guarantee collision

avoidance, it is necessary to establish a minimum turn away

distance di
min from each obstacle. The minimum turn away

distance is evaluated at the horizontal plane of the MAV’s

center of mass. Let φmax represent the maximum roll angle

of the MAV and let θmax represent the maximum pitch angle.

The minimum turning radius of the MAV is then given by [21]

rmt =
V 2 cosθmax

g tanφmax
. (12)

Lemma 3 shows the minimum turn away distance for the MAV

to avoid a spherical obstacle Oi with the radius Ri
s using the

planning algorithm.
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Lemma 3: Using the planning algorithm which minimizes

the cost function (9) subject to the constraints (10) and (11),

avoidance of a collision with a spherical obstacle Oi with the

radius Ri
s is guaranteed if the turn away distance from the

obstacle satisfies d > di
min =

√

(Ri
s + rmt)2 − r2

mt −Ri
s.

For the environments with multiple spherical obstacles,

we specify the conditions under which the planning algo-

rithm is guaranteed to generate collision-free paths for the

MAV. Let C represent the configuration space. For two

configurations q1 = [q1n,q1e,q1d ,q1ψ ,q1θ ]
⊤ ∈ C and q2 =

[q2n,q2e,q2d ,q2ψ ,q2θ ]
⊤ ∈ C , where qin, qie, and qid , i = 1,2,

represent North, East, and Down coordinates, and qiψ and qiθ ,

i = 1,2, represent the heading and pitch angles, define the two

dimensional distance between q1 and q2 projected on x-y plane

of the inertial frame

‖q1 −q2‖2D ,

√

(q1n −q2n)2 +(q1e −q2e)2. (13)

Let q0 represent the initial MAV configuration and let

qOi = [qOin,qOie,qOid ,qOiψ ,qOiθ ]
⊤ represent the configuration

of the ith obstacle’s center. Let di
q0
= min

q∈∂Oi
‖q0−q‖2D represent

the two dimensional distance between q0 and the bound-

ary of the ith obstacle. Let di j = min
pi∈∂Oi,p j∈∂O j

‖pi − p j‖2D

represent the shortest two dimensional distance between the

points along the boundaries of the ith obstacle and the jth

obstacle. Let I represent the index set of obstacles and let

D , {(i, j) ∈ I ×I : |qOid −qO jd | ≤ (Ri
s +R

j
s)} represent the

set of obstacle pairs in which the altitude difference between

each two obstacles is no greater than the sum of their radii.

We introduce the notion of local sparseness as Definition 1.

Definition 1: An environment is said to be locally sparse if

di j > max{di
min,d

j
min}, ∀(i, j) ∈ D.

The local sparseness property means that each two obstacles

in the environment with the altitude difference between them

less than the sum of their radii are separated enough from each

other such that the distance between them is greater than the

maximum of their minimum turn away distances.

Theorem 1: If the environment is locally sparse and the

initial MAV configuration satisfies di
q0

> di
min, ∀i ∈ I , then

the planning algorithm, which minimizes the cost function (9)

subject to the constraints given by (10) and (11), is guaranteed

that the MAV will avoid all the obstacles for all time t.

We assume that the environment is locally sparse in order

to provide a theoretical guarantee for collision avoidance

behavior of the planning algorithm. The assumptions are only

sufficient conditions for collision avoidance, which means

there may exist environments that are not locally sparse but

where the planning algorithm can still maneuver the MAV

without causing collisions.

V. NUMERICAL RESULTS

The feasibility of the observability-based planning algorithm

was tested using a simulation environment developed in MAT-

LAB/SIMULINK, as shown in the subfigures on the right in

Fig. 3. The simulator uses a six degree of freedom model

of the aircraft, where a North-East-Down (NED) coordinate

system is used. The covariance matrix of the process noise

for each obstacle was Qi =





0.00001 0 0

0 0.0001 0

0 0 0.0001





and the covariance matrix of the measurement noise was

Ri =

[

0.0012 0

0 0.0012

]

. The values for the initial inverse

TTC and its standard deviation were set at τ0 = 0.06 and

στ0
= 0.03. The ground speed was V = 13 m/s. The maximum

roll and flight path angles for the MAV were 30◦ and 15◦

respectively. The weights were selected as ai = 1,∀i= 1, · · · ,3,

and bi = 0.04,∀i = 1, · · · ,n. The look-ahead policy over the

horizon 3.6 seconds was used.

The MAV was commanded to maneuver through twenty-

five spherical obstacles between waypoint S (0,100,-20) and

waypoint E (600,700,-100). Figure 3 shows the evolution of

the maps using the inverse TTC parametrization in the local-

level frame and the update of the actual paths followed by the

MAV in the inertial frame. Subfigures on the left show the

local-level frame maps in spherical coordinates. Subfigures on

the right show the actual paths. Based on the figure, when the

obstacle is first observed, the 95% acceptance region of the

inverse TTC includes τ = 0. Accordingly, the uncertainties in

the inverse TTC map to the infinity depth. As time progresses,

parallax reduces the uncertainties which become progressively

smaller, causing the uncertainties in the depth to be reduced.

Figure 4 shows the tracking error and ±2σ bounds for the

inverse TTC, azimuth, and elevation to the obstacle with x

and y coordinates at (150,250).

VI. CONCLUSION

This paper presents a vision-based local-level frame map-

ping and planning technique for MAVs. To explicitly address

the obstacle initialization problem, we construct the local-

level frame maps in spherical coordinates using the inverse

TTC, azimuth, and elevation to obstacles. Using bearing-only

measurements, we employ an EKF to estimate the inverse

TTC, azimuth, and elevation, and perform an observability

analysis of the state estimation to find the conditions under

which the system is observable. Based on the conditions, we

design a planning algorithm that minimizes the estimation

uncertainties while simultaneously avoiding collisions. We

describe the characteristics of the environments in which

the planning algorithm guarantees collision-free paths for the

MAVs.
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