
Optimal Management of a Two Dam System via Stochastic Control:

Parallel Computing Approach

Boris Miller† and Daniel McInnes‡

Abstract— In this paper we consider a model for the optimal
management of a two dam system. Each dam is modelled via a
continuous-time controlled Markov chain on a finite control
period and linked to the other dam via a state and time
dependent water transfer control. The consumption control for
the dam system is provided by a time and state dependent price
feedback control. This price feedback control takes into account
the active seasonal demands of customers. We consider the case
where inflow processes and evaporation for each dam are non-
stationary as are the customer demands. The general approach
to the solution of this problem is to consider this stochastic

optimisation problem in the average case and solve it using
the dynamic programming method. We show that the use of
parallel computing techniques leads to substantial savings in
calculation times for the solution of the optimal controls and
demonstrate this via a numerical example.

I. INTRODUCTION

For many cities, even those with abundant seasonal

rainfall, dams or systems of dams are a crucial piece

of water supply infrastructure. They should ensure a

reliable water supply for human consumption, industry and

agriculture as well as potentially mitigating the threat of

major floods. The optimal control of this infrastructure,

taking into account these various demands, is essential for

the long term viability of the water resource.

Continuous-time Markov decision processes (MDP)

are typically used to approach problems of this type (for

examples see [1], [2] and [3]). Problems that have been

approached this way include communications engineering,

queuing systems and epidemic control [4] (see [8] in [4] for

epidemic control). In this vein, attention has also been given

to dams, especially single large dams, with inflow processes

modelled as Weiner or compound Poisson processes and

either infinite or finite capacity (for examples see [5], [6],

[7], [8] and [9]).

The above examples use very simple threshold control

models, that is they use long-run average criterion as the

main optimality criterion. These models are problematic for

a number of reasons. They generally assume an infinite time

horizon for control and stationary inflow data. In reality we

*This work was supported in part by Australian Research Council Grant
DP0988685 and Russian Foundation for Basic Research Grant 10-01-00710.

†Boris Miller is with the School of Mathematical Sciences, Monash
University, Clayton, VIC 3800, Australia and Institute for Information
Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
Boris.Miller@monash.edu

‡Daniel McInnes is with the School of Mathematical Sciences,
Monash University, Clayton, VIC 3800, Australia. Corresponding author.
Daniel.McInnes@monash.edu

have to control over finite time-frames and the inflow from

rain is usually highly seasonal. An infinite time horizon also

means that inflows must be greater than or equal to outflows

or the system will run dry in finite time. It should be clear,

however, that in the short-term, outflows may well exceed

inflows. It is also extremely important that water is available

in the short-term as customers demand it and this should be

taken into account in the optimality conditions. Finally, the

long-term average criterion does not take into account the

costs of transient states and the resources required for these

transitions [10].

We consider the optimal control and numerical treatment

of a two dam system. The optimal management of these

dams is handled by state and time dependent price and water

transfer controls. We approximate the level of each dam

by N discrete levels and model the dam level processes as

continuous-time controlled Markov chains. The solution is

then found by looking at the average case of the stochastic

control problem with integral and terminal optimality

criteria and solving it via dynamic programming. This type

of problem has been solved for server queuing systems and

in general by Miller [10] and Miller et.al [4], [11]. The

general framework for the solution of this type of problem

is well laid out in [12].

In the following sections we will cover the theoretical basis

for the two dam model and its solution, the computational

approach that we have been working on thus far and finally

some numerical results to give an indication of how effective

parallelization of parts of our code has been.

II. THE 2-DAM MODEL

This model is covered in depth in [13], so here we give

a brief account of the model. We begin by making some

simplifying assumptions about the dams. First we assume

that each dam has independent natural inflow and outflow

processes. Secondly we assume that the consumption in

each dam depends on a time and joint-state dependent price.

We likewise assume that water transfers between dams

depend on time and the joint-state of the dams.

We approximate the level in each dam by discretizing it

into N +1 levels or states, N < ∞, and let Li(t) ∈ {0, ...,N},

i = 1,2 be an integer valued random variable describing the

state of dam i at time t. The martingale approach in [14]

allows us to describe the N +1 states by the unit vectors in

R
N+1, giving Si =

{

ei
0, ...,e

i
N

}

as the set of unit vectors for

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 1417

dam i.

Define Xi(t), i = 1,2, where {Xi(t) ∈ Si, t ∈ [0,T]} for

T < ∞ on the probability space {Ω,F ,P}, as a controlled

jump Markov process with piecewise right-continuous

paths. This process is for the change in level of dam i. We

make the following assumptions about the price control,

p(t) = p(t,Xt) and the transfer control, ui, j(t) = ui, j(t,Xt),
between dams i and j, i, j = 1,2 and i 6= j.

Assumption 2.1: Assume that the set of admissible con-

trols, P̄ = p(·) and Ū =
{

ui, j(·) : i, j = 1,2; i 6= j
}

are

sets of FX
t -predictable controls taking values in P =

{p ∈ [pmin, pmax]} and U = {u ∈ [0,1]} respectively, where

X = X1 ⊗X2.

Remark 2.2: If the history of the jump process from time

0 to t is denoted Xt
0 = X t

1,0 ⊗X t
2,0, then assumption 2.1 en-

sures that our controls, p(t,Xt
0) and ui, j(t,X

t
0) are measurable

with respect to t and Xt
0 (for detail see [13]). In fact, since we

assume that the controls are FX
t -predictable, which means

in essence that they are measurable with respect to X(t−),
we can choose the control at time t based on the history of

the process up to Xt−, the state just before time t.

A. DAM SYSTEM DYNAMICS

For this model we assume that we can approximate the

inflow and outflow processes of each dam by general FX
t -

predictable counting processes with unit jumps, Y i
in(t) and

Y i
out(t), i,= 1,2, respectively. The intensity of inflows comes

from the deterministic intensity of natural inflows, λi(t), and

the intensity of inflows from the other dam, u j,i(t). The

intensity of outflows comes from the deterministic intensity

of evaporation, µi(t), the intensity of consumption, Ci(t) =
Ci(t, p(t),Xt) and the intensity of transfers to the other dam,

ui, j(t). This gives us two processes,

Y i
in(t) =

∫ t

0
(λi(s)+ u j,i(s))I {Li(s)< N}ds+Mi

in(t),

and

Y i
out(t) =

∫ t

0
(µi(s)+Ci(s)+ui, j(s))I {Li(s)> 0}ds+Mi

out(t),

where Mi
in(t) and Mi

out(t) are square integrable martingales

with respective quadratic variations

〈Mi
in〉t =

∫ t

0
(λi(s)+ u j,i(s))I {Li(s)< N}ds

and

〈Mi
out〉t =

∫ t

0
(µi(s)+Ci(s)+ ui, j(s))I {Li(s)> 0}ds.

The martingales Mi
in(t) and Mi

out(t) are zero mean random

processes which provide the perturbation about the mean

intensity of inflows and outflows respectively. Since these

are counting processes and the deterministic parts of each

are non-decreasing, Doob’s decomposition theorem gives us

this semi-martingale representation for each process. So now

the approximate dynamics for each dam in our model are

given by

Li(t) = Y i
in(t)−Y i

out(t).

For a more detailed explanation of these approximations

please see [13].

B. DAM SYSTEM AS A SYSTEM OF CONTROLLED

MARKOV CHAINS

With the approximations in II-A we can make the follow-

ing proposition regarding each dam in the system.

Proposition 2.3: Given the approximate dynamics for

the ith dam, as stated in II-A, in a system of 2 dams,

the controlled process for this dam is represented by a

controlled Markov chain with N + 1 states and the matrix

(N + 1)× (N + 1), describing the infinitesimal generator of

the corresponding Markov chain,

Ai(t, p(t),ui,·(t),u·,i(t)) = Ai(t,C(t, p),ui,·(t),u·,i(t)),
Ai(t,C,ui,·,u·,i) =






−Ii[0, ·] Oi[1, ·] ... 0 0
Ii[0, ·] −(Oi[1, ·]+ Ii [1, ·]) ... 0 0
...

0 0 ... −(Oi[N −1, ·]+ Ii [N −1, ·]) Oi[N, ·]
0 0 ... Ii[N −1, ·] −Oi[N, ·]







where Ii[x, ·] = λi+u j,i and Oi[x, ·] =Ci+µi+ui, j when dam i

is in state Xi = x and the state of the other dam is represented

by a dot. One can say that Oi corresponds to the outflow

and Ii to the inflow. The column number corresponds to the

current state of the ith dam and the column entries add to

zero.

Proof: The proof of proposition 2.3 follows closely the

method of proof of the generator for a controlled queuing

system given in [10]. The difference is that we have a link

to the other dam via joint state dependency of price and

transfer controls, but as these are FX
t -predictable this does

not affect the proof.

C. CONTROLLED DEMAND FUNCTIONS

The innovation of our method is to take into account the

active demands of users on the system. We do this through

a price feedback control, p(t), but it is more convenient and

intuitive to calculate this optimal price structure through the

vehicle of optimal controlled consumption, C(t, p(t)). Here

we derive these function. What we seek is a price structure

for users of the system.

Consider the ith dam and let there be n sectors or con-

sumers in each dam. These users have their own seasonal

demand intensity, x̄i,k(t), k = 1, ...,n. To control this demand

intensity for each sector we need to find an optimal demand

intensity, xi,k, k = 1, ...,n. For this model we define this

through the utility function

min
xi,k

fi,k(xi,k)

where

fi,k(xi,k) = α(xi,k − (1− r)x̄i,k(t))
2 + p(t)xi,k.

1418

Here α is a parameter setting a limit on consumption above

net natural flows and r is a minimum demand reduction

target. So, differentiating fi,k(xi,k) and solving for xi,k gives

xi,k(t, p(t)) =

((1− r)x̄i,k(t)−
p(t)

2α
)I

{

(1− r)x̄i,k(t)−
p(t)

2α
≥ 0

}

.

Now this is the optimal demand intensity for the kth sector,

so for the ith dam the optimal intensity of demand is

Ci(t, p(t)) =
n

∑
k=1

xi,k(t, p(t)).

Since p(t) = p(t,X(t)) we now have a vector of optimal de-

mand intensities for the ith dam depending on the joint state

of the system. This also allows us to formulate maximum and

minimum optimal demand intensities by taking the extreme

values of p(t) ∈ [pmin, pmax], giving

Ci,max(t, pmin)≥Ci(t, p(t))≥Ci,min(t, pmax)). (1)

Using (1) we can define piecewise solutions for Ci(t, p(t))
via dynamic programming.

III. DYNAMIC PROGRAMMING AND OPTIMAL

CONTROL

The method of solution for this type of problem is well

established. Miller has solved this problem for single server

queuing systems in [10], we have solved it for a single large

dam in [15] and for a system of multiple connected dams in

[13]. Here we describe the solution for the two dam system

modelled in II. Our solution will give us the optimal price

structure and the optimal water transfer controls for our

system.

A. GENERAL PERFORMANCE CRITERIA

Let f0(s,Xs) = f0(s, p(s),u1,2(s),u2,1(s),Xs) be the run-

ning cost of our system of Markov chains in the joint state

Xs at time s∈ [0,T], where T <∞. Then we have the general

performance criterion

min
p(·),u1,2(·),u2,1(·)

J[p(·),u1,2(·),u2,1(·)],

for

J[p(·),u1,2(·),u2,1(·)] = E

[

φ0(XT)+

∫ T

0
f0(s,Xs)ds

]

,

where φ0 ∈R
(N+1)×(N+1), 〈·, ·〉 is the standard inner product,

φ0(XT) = 〈φ0,XT 〉

and

f0(s,Xs) = 〈 f0(s),Xs〉.

It is readily verified that for two dams

〈φ0,XT 〉= 〈φ0,X1,T ⊗X2,T 〉= X∗
1,T .φ0.X2,T ,

where * designates the transpose operator. A similar repre-

sentation is true for f0(s,Xs). Now, if we specify Xs = e1
i ⊗e2

j

for some specific i, j ∈ {0, ...,N} then we can form a matrix

of the running costs of the chain,

f ∗0 (s) = (f0(s,e
1
i ⊗ e2

j))i, j=0,...,N .

Assumption 3.1: For each e1
i ⊗ e2

j , i, j = 0, ...,N, the el-

ements of f ∗0 (s) are bounded below and continuous on

[0,T]× [pmin, pmax]× [0,1].

B. VALUE FUNCTION

The value function gives us the minimum cost of control

to go from state Xt = x starting at time t ∈ [0,T] to a given

terminal state, XT . It has the form

V (t,x) = inf
p(·),u1,2(·),u2,1(·)

J[p(·),u1,2(·),u2,1(·)|Xt = x],

for

J[·|Xt = x] = E

[

φ0(XT)+

∫ T

t
f0(s,Xs)ds|Xt = x

]

.

From assumption 3.1 we know that this infimum exists.

We now let V (t,x) = 〈φ(t),x〉= x∗1.φ(t).x2, where φ(t) =
(φi, j(t))i, j=0,...,N ∈ R

(N+1)×(N+1) is a matrix of measurable

functions to be solved for.

C. DYNAMIC PROGRAMMING

At this point one usually applies the traditional continuous-

time dynamic programming equation to solve this problem

but the dynamic programming equation requires us to use

the generator of the system. This is the Kronecker product of

the generator matrices of the two separate dams and is large

and cumbersome to work with. Instead we use an equivalent

equation,

〈φ ′(t),x〉 = −minp∈P̄,·[x
∗
1.[A

∗
1(t, p(t), ·).φ(t)

+φ(t).A2(t, p(t), ·)+ f0(t)].x2,
(2)

where we use unit vectors ei, i = 0, ...N for x1 and f j, j =
0, ...N for x2. By theorem 4.4 of [13], we can choose optimal

Markovian controls that will satisfy this equation and the

dynamic programming equation. This gives us a system of

(N+1)× (N+1) ordinary differential equations to solve for

the φi, j(t), which in turn give us the set of optimal Markovian

controls.

D. PERFORMANCE CRITERIA

For this example with two dams we have four types of

performance criteria. The first type seeks to minimise the

difference between the customer’s seasonal demand intensity

and the optimal demand intensity:

J1(t, p(t),Xt) =

(

C1(t)−
n

∑
k=1

x1,k(t)

)2

,

and

J2(t, p(t),Xt) =

(

C2(t)−
n

∑
k=1

x2,k(t)

)2

.

1419

The second type considers the difference squared of the

natural inflows and transfers into each dam and the customer

demand and evaporation in each dam:

J3(t,u2,1(t),Xt) =

(

λ1(t)+ u2,1(t)−
n

∑
k=1

x1,k(t)− µ1(t)

)2

,

and

J4(t,u1,2(t),Xt) =

(

λ2(t)+ u1,2(t)−
n

∑
k=1

x2,k(t)− µ2(t)

)2

.

The third type is to minimise the probability that on average

either dam falls below some critical level M < N:

J5(t, p(t),u1,2(t),u2,1(t),Xt) =
2

∑
l=1

(

E

[

∫ T

0

M

∑
k=1

Xl,k(s)ds

])

.

The fourth type is to minimise the probability the either dam

is below level M at the terminal time T :

J6(t, p(t),u1,2(t),u2,1(t)Xt) =
2

∑
l=1

(

E

[

M

∑
k=1

Xl,k(T)

])

.

Here, for the J5 and J6 criteria, the expectation is taken

under the probability measure induced by the set of optimal

controls.

In the current example, the control resources are uncon-

strained so f0(s,Xt) is simply the sum of the first four

criteria. The fifth criteria is included as a running cost on

each state of the chain below level M on the control period

and the sixth as a cost on the terminal states below level M.

In the constrained case one needs to find a weighting for

each criteria using the Lagrangian approach [11], but this is

not pursued here.

IV. COMPUTATIONAL ASPECTS

Given the system of differential equations (2), we must

write efficient code to solve the system and obtain the

optimal controls. In the first instance we wrote the code

to solve the system in a serial fashion and the results

of this have been included as a numerical example in

[13]. With a serial processor, however, the time taken

to solve the system and calculate the controls can be

considerable for a two dam system with a large number

of states in each. For example, it took approximately 45

minutes to solve for a two dam system with 20 states

in each dam on the office desktop computer. It was

desirable to reduce this substantially. Parallel computing

was the obvious way forward because there were parts of

the code that could clearly be parallelized. In this section

we discuss the main points of how our code was parallelized.

The ideas presented here are taken from a tutorial on

parallel computing given at Supercomputing 2010 (SC10)

[16]. Since this is not intended as a technical exposition of

parallel computing in general, we will limit discussion to

the parallelization of our dam system code. The first step

was to identify parts of the code that could be easily run in

parallel. This was comprised of two different types of code

in general. The first type was where code simply constructed

a definition. For example, the following code defines the

J1(t, p(t),Xt) performance criteria. It seeks to minimise the

difference between the demand for water in dam one, the sum

of the xk(t), and the optimally supplied water, taking into

account the level of both dams, C1(i, j)(t). The Mathematica

code for the serial definition is

J_1=Table[(c_1[i][j][t]-Sum[x[k][t],

{k,1,nsector[1]}])ˆ2,{i,1,L},{j,1,L}].

The key point to note is that since we are simply defining

this criterion and no calculation is taking place, we can

safely define this criterion for each joint state in parallel. The

following code is for the same definition but parallelized:

J_1=WaitAll[Table[ParallelSubmit[{i,j},

(c_1[i][j][t]-Sum[x[k][t],

{k,1,nsector[1]}])ˆ2],{i,1,L},{j,1,L}]].

The command ParallelSubmit submits each element

of the definition to the next available Mathematica kernel

and WaitAll ensures that no code after this command is

executed until all the definitions have been made. This is not

so important here but becomes important when the value of

a definition is changed as a result of this calculation. If code

is executed before all new values are assigned, errors result.

So this command is for safety and reliability of execution.

The second type of code that could be parallelized in-

volved calculations which included variables that would

not be evaluated until a later point. For example, in our

problem we must minimise over each control individually.

The solution is a function that involves some combinations

of Φ(i, j)(t), which are the running costs of the joint states.

However, these Φ(i, j)(t) are to be solved for as the solution

to a system of ODE’s at a later time and so we can do

these minimisations in parallel without affecting the values of

Φ(i, j)(t). The following code finds the minimising function

for consumption in the first dam, c1(i, j)(t), in serial:

S_1=Table[s_1=Solve[D[EQ[[i,j]],

c_1[i][j][t]]==0,c_1[i][j][t]];

c_1[i][j][t]/.s_1,{i,1,L},{j,1,L}].

Compare this with the parallelized code:

S_1=WaitAll[Table[ParallelSubmit[{i,j},

s_1=Solve[D[EQ[[i,j]],c_1[i][j][t]]==0,

c_1[i][j][t]];c_1[i][j][t]/.s_1],

{i,1,L},{j,1,L}]]

You will notice that the commands are the same and

used in the same way as for simple parallel definitions. Ap-

proximately 27% of the operations (or individual execution

lines of Mathematica code) were able to be altered to take

advantage of parallel computing. If we use Amdahl’s law

(see [16]) to obtain an estimate for what kind of speed-up

we could expect with P = 0.27 and N = 32 cores, then

1

(1−P)+ P
N

= 1.35.

1420

The next section shows that our results are much better

than predicted. This is probably due to the optimised load

bearing and parallelizing algorithms used by Mathematica.

The last element which must be considered is the

distribution of variable and function definitions to all

available processors, in our case Mathematica kernels.

This is accomplished by executing the command

DistributeDefinitions[...,...,...], where the

arguments are all of the variable and function definitions

which must be available to each kernel in the subsequent

calculation, separated by commas. At least in Mathematica,

the process of parallelizing code is relatively simple,

although experimentation is required. One aspect that

needs to be considered is the computational overhead of

parallelization. Every call to a different kernel and transfer

of data between kernels takes time and some parts of the

code may not be worth parallelizing if they already execute

very quickly. In our example there were a number of very

simple definitions that could be parallelized but the resulting

performance was either a very minimal increase in speed

or it was slightly slower. We found that it pays to focus

on the areas of code that seem to take the most time when

executing in serial.

All of this can be accomplished in various other pro-

gramming languages, but the ease of implementation may

differ considerably. We have used Mathematica 7.0 due

to familiarity with this package and its relative ease of

use. Implementing this in C, for example, would be more

difficult but the execution would very likely be faster. For

the purpose of preliminary experimentation Mathematica has

been sufficient, however, we may need to write our problem

in a lower level language like C at a later point depending

on the size of the dam system we want to model.

V. PARALLEL COMPUTING RESULTS

The results of this section were obtained on a desktop

computer with an IntelrCoreTM2 Duo CPU E8600

3.33Ghz processor and 3.49GB of RAM. The operating

system was Microsoft Windows XP Professional version

2002, Service Pack 3 and the numerical software was

Wolfram Mathematica version 7.0.0, Microsoft Windows

32-bit. Having a dual-core processor results in Mathematica

being able to run two computational kernels in parallel.

This was an ideal environment to perform some numerical

experiments with parallel computing to see what the

performance gains are like by parallelizing sections of

appropriate code. After this, the code was run on the

Monash Sun Grid (MSG), a high performance computer.

The basic idea was to see the difference in CPU seconds

used between the Mathematica code executed in serial and

in parallel. The code used solved for the optimal controls in

a two dam system, found the probability of the dam system

being in a particular state at any time t ∈ [0,1] and compared

the original demand with an average optimal consumption

TABLE I

MEAN CPU SECONDS FOR SERIAL AND PARALLEL EXECUTION OF

MATHEMATICA CODE.

States per dam Serial Parallel Speed-up
3 1.74 1.97 0.88
4 3.47 3.46 1.00
5 6.97 5.93 1.18
6 12.34 8.83 1.40
7 20.08 11.00 1.83
8 33.85 15.29 2.21
9 54.05 19.13 2.83

10 84.36 23.92 3.53

weighted by these probabilities. From these results one can

obtain all of the pertinent performance characteristics of

the optimal system. This code was executed in series and

parallel three times each for dams with 3,4, ...,9,10 states

in each, and the mean time calculated. The results of this

are shown in Table I.

From Table I we can see that when the dams have three

levels each, the performance is marginally worse with the

parallel code since there is a lot of computational overhead

for a very small number of equations to solve. However, it

is clear from the column showing ’Speed-up’ that there is

a rapid increase in performance with the increase in states.

For interest we also ran the two versions of code once at

15,20 and 25 levels. For 15 levels the approximate speed-up

was 8.69 times, for 20 levels it was approximately 16.24

times, and at 25 levels Mathematica ran out of memory.

For a very small amount of change in the original serial

code there is clearly a significant gain in execution speed.

As stated, we have also executed these two versions of our

code on the head node of the MSG, the university’s grid

computer. These results for one run are for dams with 10,

20,...,50 levels in each and shown in Table II, although

serial calculations were aborted once the calculation time

exceeded that of the largest parallel calculation. This node

consists of a Sun X4600 chassis with 8 Opteron quad-core

CPUs for a total of 32 cores. Each core has 2GB of RAM

[17]. These calculations were carried out on one CPU (4

cores with 8GB RAM). You will note that for 10 levels

the parallel calculations on the desktop desktop are faster.

This is apparently due to hardware differences, especially

processor speed. While not shown, the calculations for 20

levels were also approximately twice as fast on the desktop,

so for a number of levels that a desktop can handle, desktop

performance is comparatively good.

Of course, the MSG can handle much larger systems.

In this application we want to control water consumption

in a two dam system with an annual storage fluctuation of

up to 20%. Since dam levels are usually quoted in 0.1%

increments, this would require up to 200 levels per dam

(a system of 40000 ODEs), an extremely demanding task

computationally. Probably 0.5% changes in level are fine

1421

TABLE II

CPU SECONDS FOR SERIAL AND PARALLEL EXECUTION OF

MATHEMATICA CODE ON THE MSG.

States per dam Serial Parallel Speed-up
10 308.19 48.79 6.32
20 4639.55 316.76 14.65
30 > 21636.5 1882.44 -
40 - 6235.81 -
50 - 21636.5 -

enough for our purposes and this would give up to 40 levels

in each dam (a system of 1600 ODEs), which took under

two hours for a single CPU on the MSG.

In general, if we have N + 1 states in each dam, then for

a two dam system the maximum number of cores that could

be used in execution of parallel code would be (N + 1)2,

one for each joint state. This is unlikely to be optimal

considering the overhead involved but we don’t have the

computing capacity to test what number would be optimal

for a reasonable number of states in each dam (say 20 or

more). This is an interesting question that we will have to

consider in future work.

VI. NUMERICAL RESULTS

Figures 1 to 3 give the optimal price controls found

using our model as a function of the fixed times t =
0,0.25,0.5,0.75,1 and as a percentage of each dams capacity.

In general you can observe that the prices are reasonable in

the sense that they are higher when the dams are at low

capacity and low when at higher capacity. There is a bias

toward higher prices based on the capacity of dam two. In

our model there is a higher demand in dam one and so there

is a tendency to try and take water from dam two, hence the

uniformly high prices when the capacity of dam one is low.

Figures 4 and 5 give selected flows between the dams when

one of them is about 2/3 full. A positive flow is from dam

one to dam two and a negative flow from dam two to dam

one. There is a clear bias of transfers to dam one regardless

of the state of dam two. This further supports the conclusion

about higher demand in dam one. Further analysis of the

numerical solutions of this model can be found in [13].

VII. FURTHER REMARKS ON NUMERICAL

COMPLEXITY

In this model we have considered a two dam system

where the jumps in levels that occur due to inflows are unit

jumps. This gives rise to some nice structure in the system

of ODE’s in that each joint state depends not on all the joint

states but only those immediately neighbouring. This makes

their solution far more tractable, however, this assumption

of unit jumps is not very realistic since in reality a dam

could overflow given a sufficiently large rain event. This is

being taken into account in a more advanced model which

we are currently working on.

10
20

30
40

50
60

70
80

90

100

Dam 1: % full

10

20

30

40

50

60
70

80
90

100

Dam 2: % full

1.

1.25

1.5

1.75

Price H$L

Fig. 1. Prices at t=0.

10
20

30
40

50
60

70
80

90

100

Dam 1: % full

10

20

30

40

50

60
70

80
90

100

Dam 2: % full

1.

1.25

1.5

1.75

Price H$L

Fig. 2. Prices at t=0.5.

10
20

30
40

50
60

70
80

90

100

Dam 1: % full

10

20

30

40

50

60
70

80
90

100

Dam 2: % full

1.

1.25

1.5

1.75

Price H$L

Fig. 3. Prices at t=1.

1422

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

Time HyearsL

D
am

1
<
-
>

D
am

2
fl

o
w

s

State H10,15L

State H10,12L

State H10,9L

State H10,6L

State H10,3L

State H10,1L

Fig. 4. Selected dam flows with dam 1 at about 2/3 full.

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

Time HyearsL

D
am

1
<
-
>

D
am

2
fl

o
w

s

State H10,15L

State H10,12L

State H10,9L

State H10,6L

State H10,3L

State H10,1L

Fig. 5. Selected dam flows with dam 2 at about 2/3 full.

We need also consider the possibility of more dams in the

system. In [13] we detail how this model can be extended

to any number of dams connected in quite an arbitrary way.

Essentially we look at the joint states of the dam system

as a tensor of the depth of the number of dams and then

consider the derivative of the generalised inner product

of this tensor with the tensor φ(t) of the same depth (for

details please see [13]). This results in a system of (N +1)d

ODE’s where d is the number of linked dams in the system.

Both of these aforementioned changes will make the

numerical solution of this problem more difficult. Both will

increase the calculation time required for the numerical

solution of the ODE system and will also increase the time

taken to define the equations and carry out intermediate cal-

culations. We have not done this work yet but parallelization

and HPC will be the focus of our efforts.

VIII. CONCLUSION

In this paper we have explained a model for the optimal

control of a system of two dams through the agency of

state and time dependent price and water transfer controls.

The innovation of this model is to take into account the

seasonal demand intensity for each customer of each dam

when defining our optimal price control. This allows us to

manage the system taking into account traditional criteria of

optimal performance as well as attempting to satisfy the dam

users in some optimal way. We have also explained the use

of parallel computing in our work as a means for reducing

calculation time and making larger systems more tractable.

Parallel computing presents real opportunities to attempt to

solve problems with a larger number of states in each dam

and more dams. Our future work will focus on solving

systems which include a more random inflow, impulsive

controls under control resource constraints, the possibility

of overflow and the numerical procedures necessary to make

the solutions of these problems tractable.

REFERENCES

[1] E. Altman, Constrained Markov Decision Processes. Boca Raton,
FL: Chapman & Hall/CRC, 1999.

[2] D. Bertsekas and S. Shreve, Stochastic Optimal Control: The Discrete-

Time Case. Belmont, MA: Athena Scientific, 1996.
[3] M. Kitaev and V. Rykov, Controlled Queueing Systems. Boca Raton,

FL: CRC, 1995.
[4] B. Miller, G. Miller, and K. Siemenikhin, “Control of markov chains

with constraints,” in Proceedings of the VIII International Conference

”System Identification and Control Problems” SICPRO ’09, Moscow,
26-30 January 2009.

[5] M. Faddy, “Optimal control of finite dams: Discrete (2-stage) output
procedure,” Journal of Applied Probability, vol. 11, no. 1, pp. 111–
121, 1974.

[6] L. Yeh and L. Hua, “Optimal control of a finite dam: Wiener process
input,” Journal of Applied Probability, vol. 24, no. 1, pp. 186–199,
1987.

[7] M. Abdel-Hameed, “Optimal control of a dam using pM
λ ,τ policies and

penalty cost when the input process is a compound poisson process
with positive drift,” Journal of Applied Probability, vol. 37, no. 2, pp.
408–416, 2000.

[8] J. Bae, S. Kim, and E. Lee, “Average cost under the pM
λ ,τ policy

in a finite dam with compound poisson inputs,” Journal of Applied

Probability, vol. 40, no. 2, pp. 519–526, 2003.
[9] V. Abramov, “Optimal control of a large dam,” Journal of Applied

Probability, vol. 44, no. 1, pp. 249–258, 2007.
[10] B. Miller, “Optimization of queuing system via stochastic control,”

Automatica, vol. 45, pp. 1423–1430, 2009.
[11] B. Miller, G. Miller, and K. Siemenikhin, “Torwards the optimal

control of markov chains with constraints,” Automatica, vol. 46, pp.
1495–1502, 2010.

[12] A. Miller and B. Miller, “Control of connected markov chains.
application to congestion avoidance in the internet,” accepted to IEEE-
CDC 2011.

[13] B. Miller and D. McInnes, “Management of dam systems via optimal
price control,” Procedia Computer Science, 2011, to be published as
conference proceedings of ICCS 2011, June 1-3, 2011.

[14] L. Aggoun, R. Elliot, and J. Moore, Hidden Markov Models: Estima-

tion and Control. New York: Springer-Verlag, 1995.
[15] B. Miller and D. McInnes, “Management of a large dam via optimal

price control,” IFAC-PapersOnLine, 2011, to be published as coference
proceeding of IFAC 2011, August 28 -September 2, 2011.

[16] Q. Stout and C. Jablonowski, “Parallel computing 101,” 14 November
2010, tutorial notes from Supercomputing 2010 (SC10) - electronic
copy given to participants.

[17] (2010, September) Monash sun grid overview. Monash
University e-Research Centre. [Online]. Available: https://confluence-
vre.its.monash.edu.au/display/mcgwiki/Monash+Sun+Grid+Overview

1423

