
Model Structure Learning: A Support Vector Machine Approach for

LPV Linear-Regression Models
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Abstract— Accurate parametric identification of Linear
Parameter-Varying (LPV) systems requires an optimal prior
selection of a set of functional dependencies for the parametriza-
tion of the model coefficients. Inaccurate selection leads to
structural bias while over-parametrization results in a variance
increase of the estimates. This corresponds to the classical bias-
variance trade-off, but with a significantly larger degree of
freedom and sensitivity in the LPV case. Hence, it is attractive to
estimate the underlying model structure of LPV systems based
on measured data, i.e., to learn the underlying dependencies
of the model coefficients together with model orders etc. In
this paper a Least-Squares Support Vector Machine (LS-SVM)
approach is introduced which is capable of reconstructing the
dependency structure for linear regression based LPV models
even in case of rational dynamic dependency. The properties of
the approach are analyzed in the prediction error setting and
its performance is evaluated on representative examples.

Index Terms— Linear parameter-varying; support vector ma-
chines; linear regression; ARX; identification, model structure
selection.

I. INTRODUCTION

Estimation of linear parameter-varying (LPV) polynomial

models in an input-output (IO) setting has received a sig-

nificant attention recently in the identification literature (see,

e.g., [1]–[7]). In discrete-time, the most basic model structure

in this context is the so-called auto-regressive model with

exogenous input (ARX) which is often defined in the single-

input single-output (SISO) case as

y(k)+

na∑

i=1

ai(p(k))y(k−i)=
nb∑

j=0

bj(p(k))u(k−j)+e(k), (1)

where k ∈ Z is the discrete time, u : Z → R and y : Z → R

denote the input and the output signals respectively, p : Z →
P is the so called scheduling variable with range P ⊆ R

np

and e is a white stochastic noise process. Furthermore (to

keep the notation simple), the coefficient functions ai, bj :
P → R have static dependence on p, i.e., they only depend

on the instantaneous value of p(k).
It is a general mark of LPV models that the signal relations

are linear just as in the linear time-invariant (LTI) case, but
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the model parameters are functions of the measurable time-

varying signal p. Using scheduling variables as changing

operating conditions or endogenous/free signals of the plant,

the class of LPV systems can describe both nonlinear and

time-varying phenomena.

Identification of the LPV-ARX model (1) can be addressed

by either following a local or a global approach. In the

local case, LTI snapshots of the model are identified for

constant levels of p followed by an interpolation over P,

while by using a global approach, the coefficient func-

tions of (1) are estimated based on a data record DN =
{(u(k), p(k), y(k))}Nk=1 with varying p. These approaches

have their pros and cons, but in the global setting a compact

estimation of (1) becomes available by realizing that (1) can

be written as a linear regression. This is possible under the

assumption that each function ai and bj can be decomposed

in terms of a priori selected basis set ψij : P → R as

ai(p(k)) = θi0 + θi1ψi1(p(k)) + . . .+ θi1ψisi (p(k)), (2)

where θij ∈ R are the unknown parameters to be iden-

tified. In the ARX case, this delivers identification of (1)

in terms of a simple least-squares (LS) estimate in the

classical prediction-error (PE) setting [1]. Furthermore, this

parametrization allows to formulate an LPV extension of the

PE framework, where stochastic analysis of the estimation

and general noise models can be addressed [3], [5].

Besides the classical questions of model structure selection

in terms of model order (like na and nb, input delay, etc.), the

adequate selection of the basis set {ψij} has a paramount im-

portance in this setting. To capture the unknown dependence

of ai and bj on p, which can range from simple polynomial to

complicated rational or even discontinuous functions, often

a large set of basis functions is applied from which only a

few might actually be needed for an accurate approximation.

This means that most commonly, the LS estimation is faced

with a seriously over-parametrized model structure where the

underlying true parameter vector θo can be rather sparse.

Hence the variance of the estimates can be seriously large

even if the order of the actual model is low. Moreover, if

there is no prior information about the nonlinearities of the

system, the basis set {ψij} can be particularly inadequate,

leading to a potential structural bias. While regularization of

the variance and accurate identification of the support of θo
w.r.t. a given parametrization can be efficiently achieved via

sparse estimators, like the nonnegative garrote (NNG) [8],

adequate selection/estimation of {ψij} based on data poses

a much harder problem.

Additionally, realization theory of LPV models and LPV
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modeling of nonlinear systems requires that the model co-

efficients not only depend on the instantaneous values of p

(static dependence) but also on its time-shifted versions (dy-

namic dependence) [9]. Thus, estimating LPV-ARX models

with dynamic dependence is often required for obtaining ac-

curate models of the underlying system. Parametrization with

such dependency seriously increases the dimension of the

parametrization space and commonly renders the adequate

selection of {ψij} based on heuristics to be infeasible in

practice.

To obtain an efficient solution for this problem, a support

vector machine (SVM) approach is introduced in this paper

with the aim of providing “nonparametric” reconstruction of

the dependency structure for linear regression based LPV

models. SVM’s have been originally developed as a class of

supervised learning methods [10], [11] for efficient recon-

struction of underlying functional relationships and structures

in data. These approaches have also had a significant impact

on nonlinear block model identification via various least

square-SVM (LS-SVM) approaches [12]–[15]. In general,

LS-SVM’s are particular variations of the original SVM

approach using an ℓ2 loss function. Their main advantage is

the uniqueness of the solution, obtained by solving a linear

problem in a computationally efficient way. Hence our aim

is to use the computational and reconstruction potential of

LS-SVM’s to provide an efficient solution in the LPV case.

It must be noted that in [4], a semi-parametric functional

dependence estimation approach using dispersion functions

was introduced. However, this approach, as we will see, is

less effective in the bias-variance trade-off than the LS-SVM

scheme to be proposed and hence it shows lower accuracy

in the considered simulation study. Due to the underlying

common sum-of-norms cost function and nonparametric na-

ture of the estimation, the proposed LS-SVM scheme can be

considered as a next step on this path towards an automated

and effective model structure learning in the LPV setting.

The paper is organized as follows. In Section II, a short

overview of the LPV-ARX model structure and its LS-based

identification method is given, defining the problem setting.

In Section III, such models are formulated in the LS-SVM

setting and an algorithm is proposed for nonparametric

identification. In Section IV, the properties of the proposed

approach are analyzed and compared to sparse estimators

and the dispersion approach of [4], while in Section V,

the algorithm is validated on a Monte Carlo study and

compared in performance to [4]. Finally, conclusions and

future directions of the research are given in Section VI.

II. LPV IDENTIFICATION VIA ARX MODELS

In this paper, we focus on LPV systems with ARX type

of IO representation defined in (1). Introduce
[
φ1 . . . φng

]⊤
,
[
a1 . . . ana

b0 . . . bnb

]⊤
,

with ng = na + nb + 1, where each φi(�) is a real

function with static dependence on p. It is assumed that these

functions are non-singular on P, thus the solutions of the

system given by (1) are well-defined and the process part

is completely characterized by {φi(�)}
ng

i=1. As it is almost

exclusively done in the LPV identification literature (see,

e.g., [1]–[3], [5], [16], [17]), assume that each φi is linearly

parameterized as

φi(�) = θi0 +

si∑

j=1

θijψij(�), (3)

where {θij}
ng,si
i=1,j=1 are unknown parameters and

{ψij}
ng,si
i=1,j=1, with si ∈ N, are functions chosen by the

user. Denote p(k) as pk. In this case, (1) can be written as

y(k) = θ⊤ϕ(k) + e(k), (4)

where θ = [ θ1,0 . . . θ1,s1 θ2,0 . . . θng,sng
]⊤ and

ϕ(k) =
[
−y(k − 1) −ψ11(pk)y(k − 1) . . .

−ψ1s1(pk)y(k − 1) . . . −ψnasna
(pk)y(k − na)

u(k) . . . ψngsng
(pk)u(k − nb)

]⊤
.

Given a data set DN = {(u(k), p(k), y(k))}Nk=1, the LS

estimate for the linear regression model (4) is given by

θ̂ = arg min
θ∈Rn

V(θ, e), (5)

where n =
∑ng

i=1 1 + si (according to (3)), and

V(θ, e) ,
1

N
‖e(k)‖2ℓ2 , e(k) , y(k)− θ⊤ϕ(k). (6)

To guarantee a unique solution of (5), it is assumed that

{ψij}
ng,si
i=1,j=1 are chosen such that (1) is globally identifiable

(there exist no θ and θ′, such that the 1-step ahead predictor

resulting from (1) is not distinguishable for θ and θ′) and that

DN provides a persistently exciting regressor in (4) (see [5],

[18]). Note that identifiability in particular holds for (4) with

e 6= 0 iff for each i ∈ {1, . . . , ng}, {ψij}
si
j=1 corresponds to

a set of linearly independent functions on P. By organizing

the data as

Y =
[
y(1) y(2) . . . y(N)

]⊤
, (7a)

Φ =
[
ϕ(1) ϕ(2) . . . ϕ(N)

]⊤
, (7b)

the optimal solution to (5) can be expressed as

θ̂N =
(
Φ⊤Φ

)−1
Φ⊤Y. (8)

III. LS-SVM FOR LPV SYSTEMS

In this section, we show how the SVM approach can

be formulated with respect to the estimation of (1) without

specifying the underlying dependencies required to derive

a simple LS solution. As we will see, without such a prior

specification, the SVM is still capable of conducting consis-

tent estimation of the underlying system and preserving the

low computational need of the LS estimation.

A. LPV modeling in the SVM setting

In contrast with the standard LS setting introduced in

Section II, the structural dependence of the coefficients φi
on p is now assumed to be a priori unknown. Consequently,

the parametrized model of system (1) is introduced as

Mω,ϕ : y(k) =

ng∑

i=1

ω⊤
i φi(pk)xi(k) + e(k), (9)
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where each φi : R → R
nH denotes an undefined, potentially

infinite (nH = ∞) dimensional feature map, ωi ∈ R
nH is

the ith parameter vector and

xi(k) = y(k − i), i = 1, . . . , na, (10a)

xna+1+j(k) = u(k − j), j = 0, . . . , nb. (10b)

Additionally, introduce ω = [ ω⊤
1 . . . ω⊤

ng
]⊤ ∈ R

ngnH and

ϕ(k) =
[
φ⊤1 (pk)x1(k) . . . φ⊤ng

(pk)xng
(k)

]⊤
, (11)

such that (9) can be rewritten in the regression form as

y(k) = ω⊤ϕ(k) + e(k). (12)

B. Ridge regression

To simplify the notation, let φi(k) = φi(pk). The LS-SVM

approach aims at minimizing the cost function

J (ω, e)=
1

2

ng∑

i=1

ω⊤
i ωi+

γ

2

N∑

k=1

e2(tk)=
1

2
‖ω‖2ℓ2 +

γ

2
‖e(tk)‖

2
ℓ2

(13)
where the scalar γ ∈ R

+
0 is the regularization parameter.

Note that (13) is a so-called sum-of-norms criterion as

it contains both the equation error term from (9) and a

regularization term: the ℓ2 cost of ω scaled by γ. This added

regularization term, as we will see later, is used to address

the estimation (learning) of the unknown dependencies.

Consider the model Mω,ϕ as in (9) whose estimation

corresponds to the following optimization problem

min
w,b,e

J (ω, e) =
1

2

ng∑

i=1

ω⊤
i ωi +

γ

2

N∑

t=1

e(k)2, (14a)

s.t. e(k) = y(k)−

ng∑

i=1

ω⊤
i φi(k)xi(k). (14b)

This constrained optimization problem is solved by con-

structing the Lagrangian:

L(ω, e, α) = J (ω, e)−
N∑

k=1

αk

(
ng∑

i=1

ω⊤
i φi(k)xi(k) + e(k)− y(k)

)

(15)

with αk ∈ R being the Lagrangian multipliers. The global

optimum is obtained when

∂L

∂e
= 0 → αk = γe(k), (16a)

∂L

∂ωi

= 0 → ωi =
N∑

k=1

αkφi(k)xi(k), (16b)

∂L

∂αk

= 0 → e(k) = y(k)−

ng∑

i=1

ω⊤
i φi(k)xi(k). (16c)

Substituting (16a) and (16b) into (16c) leads to the following

set of equations

y(k) =

ng∑

i=1

(
N∑

k=1

αkxi(k)φ
⊤
i (k)

)

︸ ︷︷ ︸

ω⊤

i

φi(k)xi(k)+γ
−1αk
︸ ︷︷ ︸

e(k)

(17)

for k ∈ {1, . . . , N}. This is equivalent to

Y =
(
Ω+ γ−1IN

)
α, (18)

where α = [α1 . . . αN ]⊤ ∈ R
N , and Ω is the so-called

Kernel matrix, which is defined in this case as

[Ω]j,k =

ng∑

i=1

[Ωi]j,k (19)

with

[Ωi]j,k = xi(j)φ
⊤
i (j)φi(k)xi(k),

= xi(j)〈φi(j), φi(k)〉xi(k),

= xi(j)
(
Ki(p(j), p(k))

)
xi(k).

Here Ki is a positive definite kernel function defining

the inner products of φ⊤i (j)φi(k). Consequently, Ki defines

Ω and hence characterizes the feature maps {φi}
ng

i=1 in an

efficient fashion. This allows to characterize a wide range of

nonlinear dependencies as a linear combination of infinitely

many functions (nH = ∞) defined through the choice of

the particular inner product and a relatively low dimensional

parameter α. Called the kernel trick [10], [11], this approach

allows the identification of the coefficient functions ai and

bj without explicitly defining the feature maps involved.

Note that the kernel trick can be applied as a regularization

approach in a wide range of optimization problems, like in

[16], where it was used to regularize dimension explosion in

LPV subspace approaches.

A typical type of kernel is, for example, the Radial Basis

Function (RBF) kernel:

Ki(pj , pk) = exp

(

−
‖pj−pk‖

2
ℓ2

σ2
i

)

, (20)

but other kernels, like polynomial kernels, can also be used.

The choice of the kernel defines the class of dependencies

that can be represented. By using a particular kernel, i.e.,

defining Ω, the solution of (18) is given by

α =
(
Ω+ γ−1IN

)−1
Y. (21)

Using α, i.e., the minimizer of (14a-b), the model estimate is

computed according to (16b). This gives that the estimated

coefficient functions are obtained as

ai(�) = ω⊤
i φi(�) =

N∑

k=1

αkxi(k)K
i(p(k), �), (22a)

bj(�) = ω⊤
j̃
φj̃(�) =

N∑

k=1

αkxj̃(k)K
j̃(p(k), �), (22b)

where j̃ = na + 1 + j. Note that the parameter vector ω

is never accessible in the SVM framework, and only the

combined estimation ωi
⊤φi(�) = ai(�) or bj(�) = ω⊤

j̃
φj̃(�) is

computable using the defined kernel functions.

IV. PROPERTIES AND COMPARISON

In this section, a brief overview of the major properties

and advantages of the proposed LPV LS-SVM scheme is

given and the approach is compared to the NNG method [8]

and the dispersion function method [4].
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A. Advantages of the semi-parametric formulation

The SVM scheme does not require explicit declaration of

the feature maps φi or estimation of the high dimensional pa-

rameter vectors ωi. Instead, it requires the declaration of the

kernel functions Ki, i = 1, . . . , ng, which explicitly define

the set of nonlinear functions where the optimal estimate

of the dependencies is searched for. For exact recovery of

these dependencies, Πi = Span(Ki(p, �)) for p ∈ P should

contain the corresponding dependency, e.g., ai(�). In case of

polynomial dependencies with maximum degree of d, it is

sufficient to choose dth-order polynomial kernels, however

choosing an RBF kernel gives the representation possibility

of a wide range of nonlinearities even including rational

functions. Independent definitions of Ki also allow any a

priori knowledge to be easily included in the model structure.

We refer to [11] for further discussions on the adequate

selection of kernels.

Regarding the over-parametrization based LS solution in

Section II, which also involves a choice of the functions

ψi,j , the LS-SVM scheme has a significant advantage: it

only requires the estimation of α, whose size is equal to N ,

and this is independent of the set of nonlinearities chosen

(even for infinite dimensional feature maps). Consequently,

it avoids using ultra-large scale over-parametrization by

simply adopting an RBF kernel. Therefore, it represents a

highly attractive bias-variance trade-off. Regarding consis-

tency properties of the LS-SVM estimation, we refer to the

classical results in [10], [11].

Recently an instrumental variable extension of the dis-

cussed LS-SVM scheme has been derived in [19], which al-

lows the consistent estimation of nonlinear regression models

in case the noise involved is not white. This approach can be

extended to LPV-IO models with general noise structure like

Box-Jenkins (see [3], [5]), which gives a wide applicability

of the proposed LPV LS-SVM approach in practice. Further-

more, extension of the method to multiple-input multiple-

output (MIMO) models follows easily just like in the LS

case and due to the flexibility of the definitions of the kernel

functions, recovery of complex dynamic dependencies over

p can also be ensured.

B. Comparison to sparse estimators

The NNG method, proposed in the LPV case in [8], is

based on the over-parametrized regression form (4), thus it

requires the priori selection of {ψi,j}. However, besides the

minimization of ‖e(k)‖2ℓ2 it also aims to minimize ‖θ‖ℓ0 .

The latter means that it tries to shrink the support of θ̂ to the

most necessary basis functions associated parameters. This

is done by using weighting of a given LS solution θ̂ of (4)

regularized through a parameter λ > 0. As λ increases, the

weights of the less important parameters shrink, and finally

end up exactly at zero. This results in less complex model

estimates, as long as the overall fit of the model estimate on

the available (validation) data is still acceptable. An efficient

way to implement this strategy is to use a path following

parametric estimation, which calculates a piecewise affine

solution path for λ [20]. However, such approaches are

computationally more demanding than the LS-SVM scheme.

Other sparse estimators, like the Lasso approach, implement

the above described strategy by minimizing the combined

objectives of ‖e(k)‖2ℓ2 and ‖θ‖ℓ0 . It is immediate that due

to the fact that these estimators must operate on a relatively

large parametrization space, the proposed LS-SVM scheme

can be considered more attractive. Furthermore, if N → ∞,

sparse estimators can consistently estimate the support of

the true θo, which corresponds to the data-generating system

in the model set, but are inconsistent in the ℓ2 sense (see

[21]). The latter is a particular drawback in comparison to

the LS-SVM.

C. Comparison to the dispersion approach

The dispersion approach proposed in [4] can be considered

to be similar to the LS-SVM method as it is also a semi-

parametric approach with a required number of estimated

parameters being ng × N , it uses a sum-of-norms type of

cost function with a regularization parameter and it does not

require priori knowledge of the underlying dependencies (not

even a choice of kernels). However, the larger number of

parameters to be estimated (ng × N > N ) implies that the

achievable bias-variance trade-off by the dispersion approach

is inherently worse than in the SVM case. This claim is

also supported by an experimental study in Section V. Fur-

thermore, the dispersion method corresponds to a quadratic

optimization problem which can be considered to be compu-

tationally more demanding than the analytical SVM solution.

Nonetheless, due to the availability of efficient interior point

methods, the difference between them in this aspect is often

negligible in practice. Additionally, the flexible definition

of the kernels in the SVM case allows to include prior

information about the expected dependencies (if available)

for more accurate results, unlike in the dispersion case.

V. ILLUSTRATIVE EXAMPLES

To assess the performance of the presented algorithm, two

examples are presented in this section. The first example is

borrowed from [4], which is used to compare the proposed

LPV LS-SVM method to the dispersion approach of [4].

The second example is used to demonstrate the statistical

properties and reconstruction capabilities of the LS-SVM

algorithm on a representative Monte Carlo simulation.

A. Example 1: LPV-SVM vs. the dispersion approach

In the example of [4], the considered LPV data-generating

system is given as:

y(k) =

2∑

i=0

bi(pk−i)u(k − i) + eo(k), (23)

with P = [−1, 1], eo being a zero mean stochastic noise

process and

b0(pk) = − exp(−pk), b1(pk−1) = 1 + pk−1,

b2(pk−2) = tan−1(pk−2).

Note that this IO representation has a nonlinear dynamic

dependence on p and it is in a so-called finite impulse

response (FIR) form (a special case of ARX). A model of

(23) can be formulated in the proposed SVM setting as
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y(k) =

2∑

i=0

ω⊤
i φi(pk−i)u(k − i) + e(k). (24)

Note that dynamic dependence of the feature maps in (24)

does not impose any difficulty in formulating the ridge

regression. To be able to compare the results, the same

conditions of excitation and measurements as in [4] are used

during simulations of (23). A data set DN with N = 400 is

generated by (23) using u(k) = sin(π2 k), p(k) = sin(0.25k)
and eo(k) ≡ 0 (noise-free measurement). Note that in DN ,

u(k) = −u(k − 2) for all k.

On the gathered data set DN , the proposed LS-SVM

approach has been applied and the obtained results with re-

spect to the estimation of the underlying coefficient functions

are shown in Figure 1. To characterize the nonlinearities

in this system, RBF kernels have been used for K , K2

and K3 with σ1 = σ2 = σ3 = 0.7. Based on trial-

and-error, the regularization parameter has been tuned to

γ = 500. It is important to mention that in this noise-free

case, the choice of these parameters is not very critical.

Their tuning is consequently not necessary to demonstrate

the advantageous properties of the proposed method in this

example. As in the data set, u(k) = −u(k − 2) for all k,

b0 and b2 are not uniquely identifiable: any pair of functions

{b0(pk)+f, b2(pk−2)+f} produces the same output response

for any arbitrary f ∈ R under the given excitation. This fact

results in a pure constant bias for b0 and b2 over P (with

f = 0.81 using the given parameter settings), and the bias is

clearly visible in the results of Figure 1 given by the dashed

lines. By adding an extra constraint to (14b) for centering the

estimated coefficient functions, this bias can be effectively

eliminated and the estimated coefficient functions (dashed-

doted lines in Figure 1) show a perfect fit over P.

Comparing the performance of the LS-SVM to the results

of [4], the dispersion approach results in a much larger error

for b0 and b2 for low values of p (see Fig. 1). This can be the

effect of the better bias-variance trade-off when using the LS-

SVM approach for data sets of such size. As stated before,

a particular advantage of the LS-SVM over the dispersion

approach is the smaller number of estimated parameters.

B. Example 2: LPV-ARX model

To assess the stochastic performance, as a next example,

the proposed LPV LS-SVM approach is tested on an LPV

data-generating system in an ARX form under rather severe

noise conditions. In this case, the considered data-generating

system is described by

y(k) + a1(pk)y(k − 1) =

1∑

i=0

bi(pk)u(k− i) + eo(k), (25)

with P = [−1, 1], eo being a zero mean stochastic noise

process and

a1(pk) = 0.1 ·
sin(π2pk)

π2pk
,

b0(pk) =







+0.5 if pk > 0.5
pk if − 0.5 ≤ pk ≤ 0.5
−0.5 ifpk < −0.5

b1(pk) = −0.2 · p(tk)
2.
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Fig. 1. Estimation results of the coefficient functions in Example V-A
by the proposed LPV-SVM approach, including the results before and after
offset correction along with the results from [4].

TABLE I

MEAN AND STANDARD DEVIATION OF THE BFR ON VALIDATION DATA.

Mean STD

LS-SVM 95.22 0.005

In this case, the IO representation of the system has only

static dependence on p, but the nonlinearities involved in

a1 and b0 are difficult to approximate (especially if using a

polynomial parametrization as it is normally presented in the

literature of regression based methods).

The identification problem of (25) is formulated in the

proposed LS-SVM setting by considering the following

model structure

y(k) =

3∑

i=0

ω⊤
i φi(pk−i)xi(k) + e(k), (26)

where x1(k) = y(k − 1) and x2(k) = u(k), x3(k) =
u(k − 1). To provide an informative data set DN for

identification, u is taken as a zero-mean white noise process

with a uniform distribution U(−1, 1) and with length N =
1500. Furthermore, eo(k) is assumed to have a Gaussian

distribution N (0, σ2
eo
) with σeo > 0. To investigate the

performance under fairly severe noise conditions, the signal-

to-noise ratio (SNR) is set as SNR = 10 log
Pχ

Pχ−y
= 10dB,

where Pχ is the average power of signal χ, which is the

deterministic component of y (noise-free output of (25)).

For numerical illustration, a Monte-Carlo simulation of

NMC = 100 runs has been accomplished with new realiza-

tion of the noise and input in each run. Using the gathered

data sets, the LPV LS-SVM approach has been applied to

estimate (26) with RBF kernels for K1, K2 and K3 having

σ1 = σ2 = σ3 = 0.7. The regularization parameter, based on

trial-and-error, has been tuned to γ = 104. The estimation

results for a1, b0 and b1 are displayed in Figure 2 in terms of

mean and standard deviation of the estimates over the 100

Monte Carlo runs. It is remarkable that without using any

prior information about the system (except the continuity

of the dependencies on P implied by the RBF kernels),
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Fig. 2. Estimation results of the coefficient functions in Example V-B by the proposed LPV-SVM approach. The true nonlinear functions are given with
solid black together with the mean estimate (solid grey) and +/− standard deviation (dashed black) computed over 100 Monte-Carlo runs.

the considered nonlinear functions are estimated without a

significant bias and the variance is also small compared to

the heavy noise conditions. To quantify the model quality,

let us consider the fitness score or Best Fit Rate (BFR):

BFR = 100% ·max

(

1−
‖χ(k)− χ̂(k)‖ℓ2
‖χ(k)− χ̄‖ℓ2

, 0

)

, (27)

where χ̄ is the mean of χ. The mean and the standard

deviation of the BFR with respect to the model estimates

are computed on a validation data set and displayed in

Table I. From these measures, it follows that the proposed

approach provides a quite accurate estimation approach for

this non-trivial LPV model. Furthermore its computational

load is relatively low and the method does not need any

prior structural information about the dependencies.

VI. CONCLUSION

In this a paper a semi-parametric identification approach

based on least-squares support vector machines (LS-SVM),

has been introduced for LPV regression models. In con-

trast to the currently used over-parametrization based tech-

niques for least squares (LS) estimation of such models,

the proposed approach is capable of providing consistent

estimates without prior information on the parametrization

of the underlying coefficient dependencies. This is not only

favorable in the common practical situation of unknown

structural dependency of the model, but also lowers the vari-

ance of the estimates due to the efficient dual optimization

scheme involved. Furthermore, the computational load of

the method is relatively low. It has also been shown on

a relevant example that the LS-SVM approach achieves a

better performance with respect to the dispersion function

approach proposed in the literature for LPV semi-parametric

identification. Besides, the proposed approach is capable of

capturing difficult nonlinear dependencies. An interesting

topic for future research is to test the performance of the

LS-SVM approach on real applications and also to capture

hysteresis type of dependencies using multidimensional ker-

nels with dynamic dependency.
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