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Abstract— This paper proposes a parameter estimation
method for state-space models based on the variational Bayes
method. We adopt the same form of functions as the prior and
posterior probability distributions so that we can be used it
iteratively to obtain accurate estimation whereas the existing
algorithms cannot be used iteratively. Furthermore, the pro-
posed algorithm is invariant under coordinate transformations,
in the sense that the posterior probabilities of state-space models
similar to each other are equivalent. Moreover, a numerical
example demonstrates the effectiveness of the proposed method.

I. INTRODUCTION

This paper is concerned with system identification based
on the variational Bayes method [1]. System identification is
a method to estimate system parameters of a given dynamical
(state-space) system from the input and output data. Most
popular system identification methods in control systems
theory are based on the least square method which is related
to the maximum likelihood estimation [2]. There is another
famous approach called subspace system identification which
is based on principal component analysis [3]. These methods
provides deterministic estimation for state-space models.

On the other hand, stochastic estimation methods are often
used in machine learning theory. The EM algorithm and the
Bayesian inference are popular among them [4]. While both
methods use a likelihood function as a system model, the
former one gives deterministic estimations of the unknown
parameters and the latter derives probability density functions
of the unknown parameters. The Bayesian inference provides
the reliability of the estimation and it also allows one to
use the prior knowledge of the unknown parameters for the
estimation. Such stochastic estimation is useful for control
in order to suppress the variation of the transient behavior
caused by the variation of the system parameters [5].

There exist some results on their application to state-space
models. For instance, the paper [6] derived a system identifi-
cation method based on the EM algorithm. Beal [7] proposes
an identification algorithm based on the Bayesian inference
by using its approximation called variational Bayes method
[1]. The paper [8] also proposes a similar result based on
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the variational Bayes in which the state estimation algorithm
is described by the Kalman filter and smoother. Although
those results provide a new framework to estimate state-
space models, they are incomplete because of the following
two reasons: (a) Two estimated state-space systems which are
transformed to each other by coordinate transformations have
different probability distributions whereas their probability
distributions should be the same because they have the same
transfer functions. (b) The form of the prior distributions and
that of the posterior ones are not the same so it is not possible
to use them recursively.

The present paper proposes a novel system identification
method based on the variational Bayes to overcome the
problems mentioned above by adopting a more general class
of state-space models than those treated in the existing results
[7], [8]. Hence the proposed method is applicable to a wider
class of systems compared to them. It is also noted that, in the
proposed method, the form of the the posterior distributions
are exactly same as that of the prior ones, i.e., they are
conjugate priors [9]. This allows us to apply the proposed
algorithm recursively to obtain a more accurate estimation
than a single application of the algorithm. Hence the pro-
posed method is both theoretically consistent and practically
useful. Furthermore, numerical examples demonstrate the
effectiveness of the proposed method. Most of the proofs in
this paper are omitted due to the limitation of space. Please
see [13] for the detail.

Let us define some notations used in this paper. A
functional KL[p1‖p2] :=

∫
p1(x) log(p1(x)/p2(x))dx is

defined for two arbitrary probability density functions
p1(x) and p2(x) for a random variable x ∈ Rn which
is called the Kullback-Leibler (KL) divergence. The
expectation of a given function f(x) subject to the
probability density function of the random variable x
is p(x) is denoted by 〈f(x)〉p(x) :=

∫
f(x)p(x)dx.

The Gaussian distribution is denoted by N (x|µ,Σ) :=
(2π)−n/2|Σ|−1/2 exp{−(1/2)(x − µ)TΣ−1(x − µ)}.
The Wishart distribution is denoted by W(Λ|S, ν) :=
CW |Λ|(ν−n−1)/2 exp{−(1/2)tr{S−1Λ}} where CW =
|S|−ν/2{(2νn/2πn(n−1)/4)

∏n
i=1 Γ((ν + 1− i)/2)}−1.

The symbol vec denotes a function to produce a vector
from a matrix by re-ordering its elements. For example,
vec(B) = (bT

1 , . . . , bT
m)T holds for a matrix B ∈ Rn×m

whose i-th column is bi ∈ Rn.

II. VARIATIONAL BAYES METHOD

This section briefly reviews Bayesian inference [10] and
the variational Bayes method [1].
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A. Bayesian inference
The objective of Bayesian inference is to estimate the un-

known parameter θ from the measured data Y . It is assumed
that we know the conditional likelihood function p(Y |θ)
of the measured data Y with respect to the condition θ is
given. The estimation result is given by the the conditional
probability function p(θ|Y ) with respect to a given measured
data Y which is called the posterior distribution of θ. Bayes’
Theorem suggests that it is described by

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
.

Here p(θ) is the probability density function of θ without
using the measured data Y which is called the prior distri-
bution of θ. p(Y ) is the marginal likelihood of Y satisfying

p(Y ) =
∫

p(Y |θ)p(θ)dθ. (1)

B. Variational Bayes method
In order to obtain the posterior distribution p(θ|Y ), we

need to calculate the integral in Equation (1) whose analytic
solution is not known in general. There is an approach to
compute it numerically by using the Monte Carlo method,
e.g., [11]. But it requires a lot of computational effort. The
variational Bayes method is a way to obtain an analytic
solution to Equation (1) approximately. In what follows, we
consider the case where there are two unknown parameters:
the system parameter θ and the hidden variable X . The esti-
mation of the true posterior distribution of those parameters
p(X, θ|Y ) is denoted by q(X, θ).

The marginal likelihood function log p(Y ) is described by

log p(Y ) = F[q(X, θ)] + KL[q(X, θ)||p(X, θ|Y )] (2)

where F[·] is a functional of q(X, θ) defined by

F[q(X, θ)] :=
∫

q(X, θ) log
p(Y, X|θ)p(θ)

q(X, θ)
dXdθ.

Since the left hand side of Equation (2) does not depend
on the estimated distribution q, maximizing F[q(X, θ)] by
selecting the variable q is equivalent to minimizing the
KL divergence describing the distance between the true
posterior distribution p(X, θ|Y ) and its estimation q(X, θ).
Consequently, a distribution q(X, θ) maximizing F[q(X, θ)]
is the best approximation of the true posterior distribution
p(X, θ|Y ).

Suppose that the system parameter is decomposed by
independent components as θ = {θ1, . . . , θI} and that
the true posterior distribution1 is described by p(X, θ) =
p(X)

∏I
i=1 p(θi). Accordingly, its estimation can be writ-

ten as q(X, θ) = q(X)
∏I

i=1 q(θi). Then the functional
F[q(X, θ)] is described as

F[q(X, θ)]

=
〈

log
p(X,Y |θ)

q(X)

〉
q(X),q(θ)

+
I∑

i=1

〈
log

p(θi)
q(θi)

〉
q(θ)

.

1For simplicity, the true posterior distribution p(X, θ|Y ) is denoted by
p(X, θ) in what follows.

Maximization of the functional F with the constraint∫
q(X, θ)dXdθ = 1 is characterized by the extremum

problem of the cost function J [q(X)] = F[q(X, θ)] +
λ(

∫
q(X, θ)dXdθ − 1) with a Lagrangian multiplier λ. A

necessary condition of the solution q are characterized by
the following Euler-Lagrange equations (δJ/δq) = 0 and
(δJ/δλ) = 0. Solving them yields the following variational
(estimated) posterior distribution of X .

q(X) = CX exp〈log p(X,Y |θ)〉q(θ) (3)

Here CX is the normalizing constant to achieve∫
q(X)dX = 1. Similarly, we can obtain the variational

(estimated) posterior distribution of θi as follows.

q(θi) = Cθip(θi) exp〈log p(X,Y |θ)〉q(X),q(θ−i) (4)

Here Cθi’s are the normalizing constants and θ−i =
{θ1, . . . , θi−1, θi+1, . . . , θI}.

Since the solutions q(X) and q(θi)’s satisfying Equations
(3) and (4) cannot be solved analytically, an algorithm to
compute them recursively as follows is adopted. Here k
denotes the number of the iteration step and q(·)(k) denotes
the estimated posterior distribution at the step k.

Algorithm 1: (Variational Bayes method)
Step.1
Set the initial distribution q(θ)(0) and k = 0.
Step.2
Compute the following steps:
VB-E step

q(X)(k+1) = CX exp〈log p(X, Y |θ)〉q(θ)(k) (5)

VB-M step

q(θi)(k+1) =Cθip(θi)
× exp〈log p(X,Y |θ)〉q(X)(k+1),q(θ−i)(k)

(6)

Set k ← k+1 and repeat Step.2 until the solution converges.

III. BAYESIAN INFERENCE FOR STATE-SPACE MODELS

This section proposes a system identification method for
state-space models based on the variational Bayes method.

A. Problem setting

Consider the following discrete-time linear system

xt+1 = Axt + But + wt

yt = Cxt + Dut + vt

. (7)

Here xt ∈ Rn is the state, ut ∈ Rm is the input, yt ∈ Rl

is the output, respectively. The matrices A ∈ Rn×n, B ∈
Rn×m, C ∈ Rl×n, D ∈ Rl×m are the system matrices. The
distributions of wt ∈ Rn, vt ∈ Rl and x0 ∈ Rn are

p(wt) = N (wt|0, Q), p(vt) = N (vt|0, R) (8)

p(x0) = N (x0|µ0, V ). (9)

The sequences of the state and the output are denoted by
XN = {x0, . . . , xN} and YN = {y0, . . . , yN}, respectively.
Then their log likelihood function is given as follows.
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log p(XN , YN ) =

− 1
2

N−1∑
t=0

(xt+1−Axt−But)TQ−1(xt+1−Axt−But)

− 1
2

N∑
t=0

(yt − Cxt −Dut)TR−1(yt − Cxt −Dut)

− 1
2
(x0 − µ0)TV −1(x0 − µ0)−

N

2
log |Q|

− (n + l)(N + 1)
2

log 2π − N + 1
2

log |R| − 1
2

log |V |
(10)

The main objective of this paper is to obtain the estimation
of the posterior distributions of the system parameters A, B,
C, D, Q and R using their prior distributions.

B. Prior distributions

In order to execute the procedure of the variational Bayes
method explained in Algorithm 1, we need to compute the
integrals in Equations (5) and (6). There are a family of prior
distributions called conjugate priors [9] for which there exist
likelihood functions such that the posterior distributions have
the same form as the prior ones. In the existing results on the
variational Bayes methods for state-space models, the prior
and posterior distributions do not coincide with each other
exactly [7], [8]. This paper proposes the following set of the
prior distributions and prove that the corresponding posterior
distributions derived using the likelihood function (10) is the
same form as the prior ones.

First of all, let us define the distributions of Q and R as

p(Q) =W(Q−1|SQ, ν) (11)

p(R) =W(R−1|SR, η). (12)

The distributions of the parameters A, B, C and D are

p(A, B|Q) = N (vec(A,B)|µAB , G⊗Q) (13)
p(C,D|R) = N (vec(C, D)|µCD,H ⊗R) (14)

where ⊗ denotes the Kronecker product.

C. Estimation of the system parameters

This subsection applies the VB-M step to the state-space
model (7) and show how to compute the integral in (6). The
estimated posterior distributions

q(A, B,Q) ∝ p(A,B, Q)
× exp〈log p(XN , YN )〉q(XN )(k+1),q(vec(C)vec(D),R−1)(k)

(15)
q(C, D, R) ∝ p(C,D, R)
× exp〈log p(XN , YN )〉q(XN )(k+1),q(vec(A),vec(B),Q−1)(k)

(16)

calculated using the prior distributions (11)–(14) and the like-
lihood function (10) are obtained as follows. Here p(·) and
q(·) denote the prior and posterior distributions, respectively.

q(Q) =W(Q−1|ŜQ, ν + N) (17)

q(A, B|Q) = N (vec(A,B)|µ̂AB , Ĝ⊗Q) (18)

Similarly, we have

q(R) =W(R−1|ŜR, η + N) (19)

q(C, D|R) = N (vec(C,D)|µ̂CD, Ĥ ⊗R). (20)

The posterior distribution q(A) is obtained by marginalizing
Equation (18) with respect to B. q(B), q(C) and q(D) are
obtained in a similar way. Here Ŝ(·), µ̂(·), (̂·) ⊗ (·) are the
estimation of the hyper parameter S(·), the average µ(·) and
the covariances G⊗Q and H ⊗R, respectively. The detail
of the computation is given in Appendix.

D. Estimation of the states

This subsection applies VB-E Step to the state-space
model (7) and calculate the integral (5). The state estimation
procedure in the EM algorithm [12] giving the maximum
likelihood estimation is same as the Kalman filter. Although
VB-E Step of the variational Bayes method applied to a state-
space model is different from the Kalman filter in general
[7], it is proved that VB-E Step of a certain variational Bayes
problem coincides with the Kalman filter and smoother of an
augmented system of the original model (7) [8]. We adopt
this framework and realize the algorithm by a Kalman filter
and smoother. To this end, we start from computing the log
likelihood function as follows.

〈log p(XN , YN )〉q(A,B,C,D,Q,R)(k)

= −1
2

N−1∑
t=0

(xt+1 − 〈A〉xt − 〈B〉ut)T〈Q−1〉

× (xt+1 − 〈A〉xt − 〈B〉ut) +
N

2
〈log |Q|〉q(Q)

− 1
2

N∑
t=0

(yt − 〈C〉xt − 〈D〉ut)T〈R−1〉

(yt − 〈C〉xt − 〈D〉ut) +
N + 1

2
〈log |R|〉q(R−1)

− 1
2
(x0 − µ0)TV −1(x0 − µ0)

1
2

log |V |

− (n + l)(N + 1)
2

log 2π +
N∑

t=0

(xT
t uT

t )S
(

xt

ut

)
(21)

Here the matrix S is defined using cov(A,B) := 〈ATQB〉−
〈A〉T〈Q〉〈B〉 as follows.

S =
(

S11 S12

S21 S22

)
S11 = cov(A,A) + cov(C, C)

S12 = ST
21 = cov(A, B) + cov(C, D)

S22 = cov(B,B) + cov(D, D)
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Suppose that cov(A,A) = 0, cov(A,B) = 0 and
cov(B, B) = 0 hold when t = N . Comparing Equations
(21) and (10) we construct the augmented system of (21) as

xt+1 = Ãxt + B̃ut + w̃t, p(w̃) = N (w̃|0, Q̃)

ỹt = C̃xt + D̃ut + ṽt, p(ṽ) = N (ṽ|0, R̃) (22)

where

Ã = 〈A〉, B̃ = 〈B〉, Q̃ = 〈Q−1〉−1

ỹt =

yt

0
0

 , C̃ =

〈C〉L11

L21

 , D̃ =

〈D〉L12

L22


R̃ = diag(〈R−1〉−1, I, I).

The matrix L is obtained by the Cholesky decomposition of
S as S = LTL. We construct the Kalman filter and smoother
for the augmented system (22).

Let us design a Kalman filter for the system (22). The
statistics of the initial state is defined by x̂0|0 = µ0, P0|0 =
V . The algorithm is summarized as follows where t =
1, . . . , N . The estimate of the state xt using the data with
respect to the time t = 1, . . . , s is denoted by x̂t|s.

Pt|t−1 = ÃPt−1|t−1Ã
T + Q̃ (23)

Kt = Pt|t−1C̃
T(C̃Pt|t−1C̃

T + R̃)−1

Pt|t = Pt|t−1 −KtC̃Pt|t−1

x̂t|t−1 = Ãx̂t−1|t−1 + B̃ut−1

x̂t|t = x̂t|t−1 + Kt(ỹt − C̃x̂t|t−1 − D̃ut) (24)

Next, the Kalman smoother is constructed as follows with
t = N − 1, . . . , 0 where the boundary conditions x̂N |N and
PN |N are same as the estimation of the Kalman filter.

St = Pt|tÃ
TP−1

t+1|t (25)

x̂t|N = x̂t|t + St[x̂t+1|N − B̃ut − Ãx̂t|t]

Pt|N = Pt|t + St[Pt+1|N − Pt+1|t]ST
t (26)

The algorithm of VB-E Step is summarized as follows.
Algorithm 2: (Proposed method)

Step.1
Set the initial distributions q(A,B|Q)(0), q(C,D|R)(0) as in
Equations (11)–(14) and k = 0.
Step.2
Compute the following steps:
VB-E Step
Calculate the estimation of the Kalman filter (23)–(24) and
the Kalman smoother (25)–(26). Then the posterior distribu-
tion of xt is obtained as follows.

q(xt)(k+1) = N (xt|x̂t|N , Pt|N ), t = 0, 1, . . . , N

VB-M Step
Calculate Equations (17)–(20) (with the equations in Ap-
pendix) to compute the following posterior distribution.

q(A,B|Q)(k+1) = N (vec(A,B)|µ̂AB , Ĝ⊗Q) (27)

q(C, D|R)(k+1) = N (vec(C, D)|µ̂CD, Ĥ ⊗R) (28)

Set k ← k+1 and repeat Step.2 until the solution converges.
Step.3
Marginalizing Equations (27) and (28), the posterior distri-
butions of A, B, C and D are obtained.

IV. INVARIANCE UNDER COORDINATE
TRANSFORMATIONS

The previous section proposes the algorithm to estimate
the system parameters by the variational Bayes method. This
section investigates the invariance of this algorithm under
coordinate transformations and proves that the probabilities
of two estimated state-space models which are transformed
to each other by coordinate transformations are the same.

A. Problem setting
The system (7) is described on the new coordinate x̄ = Tx

as follows.
x̄t+1 = Āx̄t + B̄ut + w̄t, p(w̄t) = N (w̄t|0, Q̄)

yt = C̄x̄t + D̄ut + v̄t, p(v̄t) = N (v̄t|0, R̄)
(29)

The objective is to prove that the posterior distributions of
the systems (7) and (29) are the same.

Let fT denote the transformation of the system parameters
corresponding to the coordinate transformation x̄ = Tx
described by

(Ā, B̄, C̄, D̄, Q̄, R̄) = fT (A,B, C, D, Q, R)

:= (fA
T (A), fB

T (B), fC
T (C), fD

T (D), fQ
T (Q), fR

T (R))

fA
T (A) := TAT−1, fB

T (B) := TB, fC
T (C) := CT−1

fD
T (D) := D, fQ

T (Q) := TQTT, fR
T (R) := R.

Let fθ
T denote the transformation between the parameters

θ = {A,B, C, D} and θ̄ = {Ā, B̄, C̄, D̄} as

fθ
T (A, B,C, D) := (fA

T (A), fB
T (B), fC

T (C), fD
T (D)). (30)

Let µA and ΣAA denote the average and the covariance of the
system parameters A. Then the average and the covariance
of Ā are calculated as follows.

µĀ = E[vec(Ā)]
= E[vec(TAT−1)]

= E[(T−T ⊗ T )vec(A)]

= (T−T ⊗ T )E[vec(A)] = (T−T ⊗ T )µA (31)
ΣĀĀ = E[(vec(Ā)− E[vec(Ā)])

× (vec(Ā)− E[vec(Ā)])T]

= E[(T−T ⊗ T )(vec(A)− E[vec(A)])

× (vec(A)− E[vec(A)])T(T−1 ⊗ TT)]

= (T−T ⊗ T )E[(vec(A)− E[vec(A)])

× (vec(A)− E[vec(A)])T](T−1 ⊗ TT)

= (T−T ⊗ T )ΣAA(T−1 ⊗ TT) (32)

Note that Equation (13) implies that the statistics µA and
ΣAA have the relation to the parameters µAB , G and Q as
follows.

µAB :=
(
µT

A µT
B

)T
, G⊗Q :=

(
ΣAA ΣAB

ΣBA ΣBB

)
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The averages and covariances of the other parameters B, C
and D are defined similarly to those of A, we can compute
their statistics as follows.

µB̄ = (Iu ⊗ T )µB

ΣB̄B̄ = (Iu ⊗ T )ΣBB(Iu ⊗ TT)

µC̄ = (T−T ⊗ Iy)µC

ΣC̄C̄ = (T−T ⊗ Iy)ΣCC(T−1 ⊗ Iy)
µD̄ = µD (33)

ΣD̄D̄ = ΣDD

ΣĀB̄ = (T−T ⊗ T )ΣAB(Iu ⊗ TT)

ΣC̄D̄ = (T−T ⊗ Iy)ΣCD (34)

Here Iu and Iy are the identity matrices corresponding to
the vectors u and y, respectively.

B. Invariance of the posterior distributions

This section proves the invariance of the posterior distri-
butions under coordinate transformations. To this end, we
start from the following lemma.

Lemma 1: The following relationship holds for the trans-
formation (30) of the parameter θ.

dρĀdρB̄dρC̄dρD̄ = dρAdρBdρCdρD (35)

Here ρA, ρB , ρC and ρD are the measures of the parameters
A, B, C and D, respectively. They satisfy

dρA =
∏

dai,j , dρB =
∏

dbi,j

dρC =
∏

dci,j , dρD =
∏

ddi,j

where ai,j , bi,j , ci,j and di,j are the (i, j) elements of the
matrices A, B, C and D, respectively.

Proof: Proof is omitted due to lack of space.
This lemma proves that the measures of the system pa-

rameters are invariant under coordinate transformations. The
next theorem follows this lemma.

Theorem 1: The joint probability distribution of the sys-
tem parameters A, B, C and D and that of the parameters
Ā, B̄, C̄ and D̄ are equivalent, i.e.,

p(Ā, B̄, C̄, D̄) = p(A,B, C,D). (36)
Proof: Proof is omitted for the reason of space.

This theorem shows that the probability distribution does
not change for any coordinate transformation. Next, the
relation between the Bayesian inference and the coordinate
transformation is considered. To this end, the following
assumption is employed.

Assumption 1: The prior distribution p(A,B, C,D|Q,R)
satisfies

p(A,B,C, D|Q,R) = N (vec(A,B, C,D)|µABCD, Σ)
(37)

where

µABCD :=
(
µT

AB µT
CD

)T
, Σ :=

(
G⊗Q 0

0 H ⊗R

)
.

(38)

In order to explain the result, we employ the following
notations.

TAB :=
(

T−T ⊗ T 0
0 Iu ⊗ T

)
TCD :=

(
T−T ⊗ Iy 0

0 Iu ⊗ Iy

)
TABCD :=

(
TAB 0

0 TCD

)
Lemma 2: Consider the probability density function in

Equation (37) in Assumption 1. The transformation (30)
converts it to

p(Ā, B̄, C̄, D̄|Q̄, R̄) = N (vec(Ā, B̄, C̄, D̄)|µĀB̄C̄D̄, Σ̄)
(39)

where µĀB̄C̄D̄ := TABCD µABCD and Σ̄ :=
TABCD Σ TT

ABCD. Furthermore, we have

p(Ā, B̄, C̄, D̄|Q̄, R̄) = p(A,B, C, D|Q, R). (40)
Proof: Proof is omitted for the limitation of the space.

Finally, the main result is stated as follows.
Theorem 2: Consider the variational Bayes algorithm in

Algorithm 2. Let

q(A, B,C, D|Q,R)
= N (vec(A,B, C,D)|µABCD, Σ)

denote the posterior distribution of θ derived using the initial
prior distribution in Equation(37) in Assumption 1. Let

q(Ā, B̄, C̄, D̄|Q̄, R̄)
= N (vec(Ā, B̄, C̄, D̄)|µ̄ABCD, Σ̄)

denote the posterior distribution of θ̄ derived using the initial
prior distribution in Equation (39) in Lemma 2. Then we have

q(Ā, B̄, C̄, D̄|Q̄, R̄) = q(A, B,C, D|Q,R). (41)

Furthermore, they satisfy∫
fθ

T
(Ω)

q(Ā, B̄, C̄, D̄|Q̄, R̄)dρĀdρB̄dρC̄dρD̄

=
∫

Ω

q(A,B, C,D|Q,R)dρAdρBdρCdρD (42)

for any region Ω.
Proof: Equation (41) is proved by substituting Equa-

tions (31)–(34) for Equation (42). Equation (42) follows from
Lemmas 1 and 2. This completes the proof.

The theorem suggests that two estimated state-space real-
izations which can be transformed to each other have same
probabilities. Namely, Algorithm 2 is invariant under the
transformation fT . This is a natural property of the state-
space systems since input-output behavior of the state-space
systems should be invariant under coordinate transforma-
tions. Furthermore, since the prior and posterior distributions
have the same forms in the proposed algorithm, it can be used
iteratively to obtain a more accurate estimation.
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V. NUMERICAL EXAMPLE

This sections gives a numerical example to exhibit how
the proposed method in Algorithm 2 works.

A. Plant system

Consider the system (7) with the following parameters.

A =
(

1 0.3
−0.06 0.94

)
, B =

(
0

0.06

)
(43)

C =
(
1 0

)
, D = 0 (44)

The terminal time is N = 250. We use 10 sets of input-
output data. The averages of the noises wt and vt are zero
and their covariance matrices are Q = diag(1, 1) and R = 1,
respectively. The initial estimates are selected as follows.

µ0 = 0, V = 100I

µAB =
(
0.1, 0.1, 0.1, 0.1, 0.1, 0.1

)T

G = 100I, Q = 100I

µCD =
(
0.1, 0.1, 0.1

)T

H = 100I, R = 100

The input signal is the M-sequence whose elements are
within [−50, 50].

B. Estimation result

Fig.1 shows the time responses of the measured (true) y
and its estimate ye computed by ye,t = µ̂C x̂t|N + µ̂Dut

where µ̂C and µ̂D are the averages of the posterior distri-
butions of C and D, respectively. The solid line depicts the
true y and the line with ◦ depicts its estimate ye.

Fig.3 shows the bode diagrams of the true plant and its
estimate. The dashed line depicts the bode diagram of the
transfer function computed by the true system parameters

A, B, C and D. The solid line depicts that computed by the
averages of their estimations given as follows.

A =
(

0.7480 −0.3735
−0.1820 1.1994

)
, B =

(
0.2847
−0.0717

)
(45)

C =
(
0.0944 0.5175

)
, D = −0.0070 (46)

Q =
(

17.6189 −9.3673
−9.3673 9.9706

)
, R = 1.0639

Fig.2 shows the history of the norm of the covariance
matrix Σ of the parameter θ in Equation (38) along the
number of the input-output data sets used for the estimation.

C. Comments

Fig.1 shows that the estimated output ye is very close to
the true output y. Fig.3 indicates that the transfer function
of the estimated model is very similar to that of the true
plant. These figures show that the proposed method gives
a very accurate estimation of the plant model, although the
parameters A, B, C and D and their estimations are not
identical due to the freedom of the coordinate transformation.
Fig.2 shows that the variance Σ decreases monotonically.
This means that the reliability of the estimation increases as
the number of the used data increases.

VI. CONCLUSION

This paper proposes a system identification method for
linear discrete-time state-space systems based on the varia-
tional Bayes method. The invariance of the algorithm under
coordinate transformations is proved, that is, two estimated
systems which are converted to each other have the same
probabilities in the proposed algorithm. Also, since the
posterior distribution has the same form as the prior one,
the proposed algorithm can be used iteratively to obtain
an accurate estimation. Furthermore, a numerical example
confirms the effectiveness of the proposed method.

REFERENCES

[1] H. Attias, “Inferring parameters and structure of latent variable models
by variational bayes,” in Proc. 15th Conf. on Uncertainty in Artificial
Intelligence, 1999, pp. 21–30.

[2] L. Ljung, System Identification: Theory for the User, Prentice-Hall,
Upper Saddle River, New Jersey, second edition, 1999.

[3] T. Katayama, Subspace Methods for System Identification, Springer
Verlag, London, 2005.

[4] C. M. Bishop, Pattern Recognition and Machine Learning, Springer,
New York, 2006.

[5] K. Fujimoto, S. Ogawa, Y. Ota, and M. Nakayama, “Optimal control
of linear systems with stochastic parameters for variance suppression:
The finite time horizon case,” in Proceedings of the 18th IFAC World
Congress, 2011.

[6] S. Gibson and B. Ninness, “Robust maximum-likehood estimation of
multivariable dynamic systems,” Automatica, vol. 41, pp. 1667–1682,
2005.

[7] M. J. Beal, Variational Algorithms for Approximate Bayesian infer-
ence, Ph.D. thesis, University of Londong, London, UK, 2003.

[8] D. Barber and S. Chiappa, “Unified inference for variational Bayesian
linear Gaussian state-space models,” in Advances in Neural Informa-
tion Processing Systems 19 (NIPS 20), pp. 81–88. The MIT Press,
2007.

[9] D. Persi and Y. Donald, “Conjugate priors for exponential families,”
The Annals of Statistics, vol. 7, no. 2, pp. 269–281, 1979.

[10] G. E. P. Box, “Sampling and Bayes’s inference in scientific modelling
and robustness,” Journal of the Royal Statistical Society, vol. 143, no.
4, pp. 383–430, 1980.

3887



[11] B. Ninness and S. J. Henriksen, “Bayesian system identification via
markov chain monte carlo techniques,” Automatica, vol. 46, no. 1, pp.
40–51, 2010.

[12] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society, vol. 39, no. 1, pp. 1–38, 1977.

[13] K. Fujimoto, A. Satoh, and S. Fukunaga, “System identification
based on variational bayes method and the inavriance under coordinate
transformations,” Submitted, 2011.

APPENDIX

Appendix shows the detailed calculation of the posterior
distributions in Equations (17)–(20). First of all, marginal-
ization of the distribution (18) is

q(vec(A)|Q−1) = N (vec(A)|µ̂A, Σ̂A ⊗Q)

q(vec(B)|Q−1) = N (vec(B)|µ̂B , Σ̂B ⊗Q).

Using the operator ‘mat’ denoting the inverse of ‘vec,’ we
obtain

Ŝ−1
Q := WA + S−1

Q + mat(µAB)G−1{Ix

− (Σ−1
Q + G−1)−1G−1}mat(µAB)T

− (ST
A M̃T)G−1mat(µAB)T

− (ST
A M̃T)(Σ−1

Q + G−1)−1(ST
A M̃T)T

Σ̂−1
A := VA + MA − (GA + MT

C )(UU + MD)−1

× (GT
A + MC) (47)

µ̂A := (ΣA ⊗ Ix)([{MA − (GA+MT
C )(UU +MD)−1

×MC} ⊗ Ix]µA + [{MB − (GA + MT
C )

× (UU + MD)−1MD} ⊗ Ix]µB + vec(ST
A)

− {(GA + MT
C )(UU + MD)−1 ⊗ Ix}vec(M̃T))

(48)

Σ̂−1
B := UU + MD − (GT

A + MT
B )(VA + MA)−1

× (GA + MB)

µ̂B := (ΣB ⊗ Ix)([{MC − (GT
A+MT

B )(VA+MA)−1

×MA} ⊗ Ix]µA + [{MD − (GT
A + MT

B )

× (VA + MA)−1MB} ⊗ Ix]µB + vec(M̃T)

+ {(GT
A + MT

B )(UU + MD)−1 ⊗ Ix}vec(ST
A))

Σ−1
Q :=

[
VA GA

GT
A UU

]
G−1 :=

[
MA MB

MC MD

]
.

Similarly, we have

q(R−1) =W(R−1|η + N, ŜR)

q(vec(C)|R−1) = N (vec(C)|µ̂C , Σ̂C ⊗R)

q(vec(D)|R−1) = N (vecD|µ̂D, Σ̂D ⊗R)

Ŝ−1
R := (YY + S−1

R −mat(µCD)H−1{I
− (Σ−1

R + H−1)−1H−1}mat(µCD)T

− (ST
C UT

Y )H−1mat(µCD)T

− (ST
C UT

Y )(Σ−1
R + H−1)−1(ST

C UT
Y )T)

Σ̂−1
C := WC + HA − (GC + HT

C )(U ′
U + HD)−1

× (GT
C + HC)

µ̂C := (ΣC ⊗ Iy)([{HA − (GC +HT
C )(U ′

U +HD)−1

×HC} ⊗ Iy]µC + [{HB − (GC + HT
C )

× (U ′
U + HD)−1HD} ⊗ Iy]µD + vec(ST

C)

− {(GC + HT
C )(U ′

U + HD)−1 ⊗ Iy}vec(UT
Y ))

Σ̂−1
D := U ′

U + HD − (GT
C + HT

B)(WC + HA)−1

× (GC + HB)

µ̂D := (ΣD ⊗ Iy)([{HC − (GT
C +HT

B)(WV +HA)−1

×HA} ⊗ Iy]µC + [{HD − (GT
C + HT

B)

× (WC + HA)−1HB} ⊗ Iy]µD + vec(UT
Y )

+ {(GT
C + HT

B)(U ′
U + HD)⊗ Iy}vec(ST

C))

H−1 :=
[
HA HB

HC HD

]
Σ−1

R :=
[
WC GC

GT
C U ′

U

]
.

Here the symbols YY , UY , UU , U ′
U denote the input and

output data using YN , UN as follows.

YY :=
N∑

t=0

yty
T
t , UY :=

N∑
t=0

uty
T
t (49)

UU :=
N−1∑
t=0

utu
T
t , U ′

U :=
N∑

t=0

utu
T
t (50)

The symbols VA,WA, GA, M̃ , SA,WC , GC , SC denote the
sufficient statistics defined as follows.

VA :=
N−1∑
t=0

〈xtx
T
t |Y 〉 =

N−1∑
t=0

{x̂t|N x̂T
t|N + Pt|N} (51)

WA :=
N−1∑
t=0

〈xt+1x
T
t+1|Y 〉=

N−1∑
t=0

{x̂t+1|N x̂T
t+1|N+Pt+1|N}

GA :=
N−1∑
t=0

〈xt|Y 〉uT
t =

N−1∑
t=0

x̂t|NuT
t

M̃ :=
N−1∑
t=0

ut〈xt+1|Y 〉T =
N−1∑
t=0

utx̂
T
t+1|N

SA :=
N−1∑
t=0

〈xtx
T
t+1|Y 〉 =

N−1∑
t=0

{ ˆxt|N x̂T
t+1|N + Mt+1|t}

WC :=
N∑

t=0

〈xtx
T
t |Y 〉 =

N∑
t=0

{x̂t|N x̂T
t|N + Pt|N}

GC :=
N∑

t=0

〈xt|Y 〉uT
t =

N∑
t=0

x̂t|NuT
t

SC :=
N∑

t=0

〈xt|Y 〉yT
t =

N∑
t=0

x̂t|NyT
t (52)

Here Mt+1|t is the outcome of the Kalman smoother with
the initial condition MN |N−1 = (I−KN C̃)ÃPN−1|N−1 and
compute it from t = N to t = 1 as follows.

Mt|t−1 = Pt|tS
T
t−1 + St(Mt+1|t − ÃPt|t)ST

t−1
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