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Abstract— In this paper, we consider an optimal control
problem for a linear discrete time system with stochastic
parameters in the infinite time horizon case. This paper focuses
on optimal control for systems with stochastic parameters
whereas the traditional stochastic optimal control theory mainly
considers systems with deterministic parameters with stochastic
noises. This paper extends the authors’ former result on the
same subject in the finite time horizon case to the infinite
time horizon case. The main result is to provide a feedback
controller suppressing the variation of the state and to prove
stochastic stability of the corresponding feedback system by
taking care of both the average and the variance of the state
transient. Furthermore, a numerical simulations demonstrate
the effectiveness of the proposed method.

I. INTRODUCTION

Stochastic and statistical methods are used in several
problems in control systems theory. In particular, system
identification and estimation methods rely on them. Recently,
it is reported that Bayesian inference and the related es-
timation tools in machine learning [1], [2] are applied to
system identification of state-space models [3], [4], [5], [6].
Consequently, statistical information of the system parame-
ters become available for control. There also exists a result
reporting that the quality of the manufactured products are
estimated by those methods in process control [7]. So called
randomized approach is also proposed to apply statistical
tools to controller design problems [8], [9].

On the other hand, optimal control is an important and
established control method. LQG (Linear Quadratic Gaus-
sian) method can take care of optimal control problems with
stochastic disturbances [10], [11]. Stochastic control theory
has been developed by many authors based on it which
mainly focuses on systems with deterministic parameters
and stochastic noises. In stochastic control theory, MCV
(Minimum Cost Variance) control [12], [13] and RS (Risk
Sensitive) control [14] are proposed which can suppress the
variance of the cost function with respect to the stochastic
disturbance. There is a paper comparing those method as
well [15].

Those existing results focus on the systems with deter-
ministic parameters with stochastic disturbances. In order
to utilize the Bayesian estimation results for state space
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models, controller design methods for state space systems
with stochastic parameters are needed. For this problem, De
Koning proposed a controller design method for state space
systems with stochastic system parameters [16], [17], [18]
which employs standard LQG type cost function. The results
in the paper, however, cannot suppress the variance of the
state transient of the resulting control system caused by the
variation of the system parameters.

The authors proposed a generalized version of [16] to
take the variation of the state into account by adopting a
novel cost function including the covariance of the states
[19]. But the result in [19] only considers an optimal control
problem in the finite time horizon case. The present paper
extends the authors’ former result to the infinite time horizon
case. The optimal state feedback controller suppressing the
variation of the transient is derived. Furthermore, stability
of the corresponding feedback system is proved using the
analysis tools for stochastic systems provided by De Koning
[16]. Furthermore, numerical simulations demonstrate the
effectiveness of the proposed method. The proposed method
can provide a new framework to stochastic control which
can be used together with Bayesian inference of the system
parameters.

II. PRELIMINARIES

This section gives notations and some preliminary results
according to [1], [16].

• The symbol N denotes the space of natural numbers. Rn

denotes the n-dimensional Euclidean space. Mmn and
Mn denote the space of m × n real valued rectangular
matrices and that of n× n real valued square matrices,
respectively. Sn denotes the space of n× n real valued
symmetric matrices.

• The symbol vec(·) denotes a function satisfying

vec(A) =


a1

a2

...
an

 ∈ Rmn, ai :=


a1i

a2i

...
ami

 ∈ Rm.

where aij is the (i, j) element of the matrix A ∈ Mmn.
• The expectation of a time-varying stochastic parameter

at is denoted without the time parameter t as E[a]
instead of E[at], if its statistics is time invariant.

We use several transformations for symmetric matrices.
Let us define a monotonic transformation.

Definition 1: [16] A transformation for symmetric matri-
ces A : Sn → Sn is said to be monotonic if it satisfies
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AX � AY , for any symmetric matrices X, Y ∈ Sn

satisfying 0 � X � Y .
The following lemma holds for monotonic transforma-

tions.
Lemma 1: [16] Consider the following equation.

X = AX + B, X,B ∈ Sn (1)

Suppose that the transformation A is linear, monotonic and
stable and that B � 0. Then there exists a solution X � 0
satisfying (1).

Further, the next lemma holds.
Lemma 2: Suppose that the transformation Ai : Sn → Sn

is monotonic and X � 0 ⇒ AiX � 0 holds for any integer
i. Then a composition of the transformations Ai’s

Ai:j :=
{

AjAj−1 · · · Ai (i ≤ j)
id (i > j) (2)

is monotonic and X � 0 ⇒ Ai:jX � 0 holds for any
integers i and j.

Proof: Lemma is proved by induction. In the case
j − i ≤ 0, the claim holds obviously. Suppose that it
holds when j − i = k for a non-negative integer k. Then
Ai:j is monotonic. Since Aj+1 is also monotonic, we have
X � 0 ⇒ Ai:jX � 0 ⇒ Aj+1Ai:jX � Aj+10 ⇒
Ai:j+1X � 0. Further, the monotonicity of Ai:j and Aj+1

implies 0 � X � Y ⇒ Ai:jX � Ai:jY ⇒ Aj+1Ai:jX �
Aj+1Ai:jY ⇒ 0 � Ai:j+1X � Ai:j+1Y . Therefore, Ai:j+1

is monotonic. This implies that the claim holds for the case
j − i = k + 1. Hence the claim holds for any integers i and
j, which proves the lemma.

Next, let us consider a discrete time system

xt+1 = Atxt + Btut (3)

where xt ∈ Rn is the state, ut ∈ Rm is the control input,
At ∈ Mn and Bt ∈ Mnm are the system matrices. Suppose
that the system matrices At and Bt consist of stochastic
variables with time invariant statistics. Assume also that the
initial state x0 is deterministic. Apply a state feedback

ut = −Lxt (4)

to the system (3) with a feedback gain L ∈ Mmn. Then the
resulting feedback system is described by

xt+1 = ΨL,txt (5)

with a new system matrix ΨL,t := At−BtL ∈ Mn. Stability
of this feedback system is defined as follows.

Definition 2: [16] The feedback system (5) is said to be
m-stable if limt→∞ E[xt|x0] = 0 holds for ∀x0 ∈ Rn. It is
said to be ms-stable if limt→∞ E[‖ xt ‖2 |x0] = 0 holds for
∀x0 ∈ Rn.

In order to describe the behavior of the state xt with its
variance, let us define a transformation AL : Sn → Sn

describing the expectation of a quadratic function along the
feedback system (5) as follows.

ALX := E[ΨT
LXΨL], X ∈ Sn (6)

The transformation AL thus defined satisfies the following
lemma.

Lemma 3: [16] (a) E[xT
i Xxi|x0] = xT

0 Ai
LXx0 holds

for any natural number i ∈ N and any symmetric matrix
X ∈ Sn.
(b) The transformation Ai

L is linear and monotonic for any
natural number i ∈ N.
(c) The feedback system (5) is m-stable if and only if E[ΨL]
is Hurwitz (asymptotically stable). Furthermore, it is ms-
stable if and only if the transformation AL is stable.

Stabilizability of the system (3) with (At, Bt) is defined
as follows.

Definition 3: [16] The pair (At, Bt) is said to be m-
stabilizable if there exists a feedback gain L ∈ Mmn in such
a way that the feedback system (5) is m-stable. It is said to
be ms-stable if if there exists L such that (5) is ms-stable.

Lemma 3 (c) and Definition 3 imply the following lemma.
Lemma 4: [16] The pair (At, Bt) is m-stabilizable if and

only if there exists a feedback gain L in such a way
that E[ΨL] is asymptotically stable. Furthermore, it is ms-
stabilizable if and only if there exists L such that AL is
stable.

III. OPTIMAL CONTROL FOR VARIANCE SUPPRESSION

This section is devoted to optimal control for variance
suppression.

A. The finite time horizon case

In the authors’ former result [19], optimal control for
variance suppression in the finite time case is presented. This
subsection briefly reviews this result.

Consider a linear discrete-time system with stochastic
parameters

xt+1 = Atxt + Btut + Gtεt (7)

where εt ∈ Rn is a stochastic external noise. Matrices At ∈
Mn, Bt ∈ Mnm, and Gt ∈ Mn are stochastic parameters
defined by time invariant statistics. For this system, let us
consider the following cost function.

JN (UN , x0) = E

[
N−1∑
t=0

{
xT

t Qxt + uT
t Rut

+ tr(S cov[xt+1|xt])

}
+ xT

NFxN

∣∣∣∣∣x0

]
(8)

Here the matrices Q � 0 ∈ Sn, R � 0 ∈ Sm, F � 0 ∈ Sn,
and S � 0 ∈ Sn are design parameters and UN = {ut, 0 ≤
t ≤ N − 1} denotes the collection of the input. The third
term in the right hand side of Equation (8) reduces to

tr (S cov[xt+1|xt])

= E
[
xT

t+1Sxt+1|xt

]
− E[xt+1|xt]TS E[xt+1|xt]

which is the weighted sum of the covariance of the states.
The coefficient matrix S can be used to select the weights
between the variation and the average of the state.

For this system, the optimal control problem for variance
suppression is defined as follows.
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Definition 4: Consider the system (7) and the cost func-
tion (8). For a given initial condition x0 ∈ Rn, find an input
sequence U∗

N = {u∗
t , 0 ≤ t ≤ N − 1} minimizing the cost

function JN (UN , x0) and the corresponding minimum value
of the cost function J∗

N (x0). We call this control problem as
a finite time optimal control for variance suppression.

Before solving the variance suppression problem, let us
consider the relationship between the value of the cost
function at the time t with the state xt and that at the time
t − 1 with the state xt−1. Suppose that a state feedback
ut = −Lxt is employed, then the term to evaluate the
variance of the state E[tr(S cov[xt+1|xt])|x0] in the cost
function can be calculated as E[tr(S cov[xt+1|xt])|x0]

E [tr(S cov[xt+1|xt])|x0]

= E
[
E[xT

t+1Sxt+1|xt] − E[xt+1|xt]TS E[xt+1|xt]|x0

]
= E

[
xT

t

(
E[ΨT

Lt
SΨLt ] − E[ΨT

Lt
]S E [ΨLt ]

)
xt|x0

]
= E

[
xT

t

(
ALtS − E[ΨT

Lt
]S E[ΨLt ]

)
xt|x0

]
= E

[
xT

t−1ALt

(
ALtS − E[ΨT

Lt
]S E[ΨLt ]

)
xt−1|x0

]
= E

[
xT

0

{
A0:t

L S −A1:t
L

(
E[ΨT

L0
]S E[ΨL0 ]

)}
x0|x0

]
= xT

0

{
A0:t

L S −A1:t
L

(
E[ΨT

L0
]S E[ΨL0 ]

)}
x0 (9)

Here we use the notation Ai:j
L = ALjALj−1 · · · ALi as in

Equation (2). Now the function BL : Sn → Sn is defined by

BLX := ALX + Q + LTRL + ALS − E[ΨT
L]S E[ΨL],

X ∈ Sn. (10)

The function β : Sn → R is defined by

β(X) := E[εTGTXGε]. (11)

Then the value of the cost function (8) becomes

JN (UN , x0)

= E

[
N−1∑
t=0

{
xT

t (Q + LT
t RLt)xt

+ tr(S cov[xt+1|xt])
}

+ xT
NFxN

∣∣∣∣ x0

]

= xT
0

{
N−1∑
t=0

A0:t
L

(
Q + LT

0 RL0

+ AL0S − E[ΨT
L0

]S E[ΨL0 ]
)

+ A0:N
L F

}
x0

+ β

(
N−1∑
t=0

{
A1:t

L F +
t−1∑
j=0

A1:j
L

(
Q + LT

0 RL0

+ AL0S − E[ΨT
L0

]S E[ΨL0 ]
)}

+ NS

)

= xT
0 B0:N−1

L Fx0 + β

(
NS +

N−1∑
t=0

B1:t
L F

)
(12)

We can prove a property of the transformation Bi:j
L as

follows.

Lemma 5: The transformation Bi:j
L is monotonic and X �

0 ⇒ Bi:j
L X � 0 holds for any non-negative integers i and j.

Proof: Proof is omitted for the limitation of space.
Using this lemma, we can prove the main theorem which

provides the solution to the optimal control for variance
suppression.

Theorem 1: [19] The optimal control law to minimize the
cost function (8) and the minimum value of the cost function
J∗

N (x0) are given as follows.

u∗
t = −LBN−t−1

∗ F xt, t = 0, . . . , N − 1 (13)

J∗
N (x0) = xT

0 BN
∗ Fx0 + β

(
NS +

N−1∑
t=0

Bt
∗F

)
, ∀x0 (14)

Here the function B∗ : Sn → Sn is defined by

B∗X := BLX X, X ∈ Sn. (15)

The function BLX
is defined in Equation (10) and the gain

matrix LX is defined by

LX := (E[BTXB] + ΣBB + R)−1(E[BTXA] + ΣBA),
X ∈ Sn (16)

where ΣXY := E[XTSY ] − E[X]TS E[Y ].
Let us denote the value of the cost function at the time t by

Vt = xT
0 Πtx0. Then Equation (15) reduces to the following

recursive equation similar to the Riccati equation.

Πt−1 = Q + ΣAA + E[ATΠtA] −
(
E[ATΠtB] + ΣAB

)(
E[BTΠtB] + ΣBB + R

)−1 (
E[BTΠtA] + ΣBA

)
(17)

Here ΠN = F and Bk
∗F = ΠN−k, namely,

u∗
t = −LΠtxt.

Furthermore, Equation (17) reduces to a Riccati equation for
the conventional LQG problem if the parameters At and Bt

are deterministic. This implies that the proposed method is
a natural generalization of the conventional LQG method.
Note that the computation of Πt using Equation (17) needs
the 2nd order statistics of the stochastic variables At and Bt.

B. The infinite time horizon case

This subsection derives the optimal control law for the
infinite time horizon which is the main result of the present
paper. Let us consider the system (7) with Gt ≡ 0, that is,
the system (3) without the noise εt is considered.

For this system, the following cost function with the
infinite time horizon is adopted

J∞(U∞, x0) = E
[ ∞∑

t=0

{
xT

t Qxt + uT
t Rut

+ tr(S cov[xt+1|xt])
} ∣∣∣∣ x0

]
(18)

where U∞ = {u0, u1, . . .}.
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The optimal control problem considered here is formalized
as follows.

Definition 5: Consider the system (3) and the cost func-
tion (18). For a given initial condition x0, find the control
input U∗

∞ = {u∗
t } minimizing the cost function J∞(U∞, x0).

The corresponding minimum value is denoted by J∗
∞(x0).

This problem is called an infinite time optimal control
problem for variance suppression.

Before stating the main result, we need to clarify some
properties of the optimal control for variance suppression in
the finite time horizon case.

The transformation B∗ : Sn → Sn in Equation
(15) is to convert the matrix Πt characterizing the cost
Vt(xt) = xT

t Πtxt to another Πt−1 corresponding the cost
Vt−1(xt−1) = xT

t−1Πt−1xt−1. The difference between B∗
and BL defined in Equation (10) is explained as follows.
Since BL corresponds to the constant feedback gain L,
the resulting cost function is J(x0) = xT

0 BN
L Fx0. On the

other hand, since B∗ := BLX corresponds to the time-
varying feedback gain LX , the resulting cost function sat-
isfies J∗

N (x0) 6= xT
0 BN

LX
Fx0 whereas we can still use the

expression J∗
N (x0) = xT

0 BN
∗ Fx0. The following lemma on

the transformation B∗ is useful in proving the main theorem.
Lemma 6: (a) An inequality 0 � BN

∗ F � B0:N−1
L F

holds for any natural number N ∈ N, any matrix L ∈
Mn×m, and any symmetric matrix F � 0, F ∈ Sn.

(b) The transformation BN
∗ is monotonic for any natural

number N ∈ N.
Proof: (a) Due to the optimality of the solution, we

have

0 ≤ J∗
N (x0) ≤ JN (UN , x0)

0 ≤ xT
0 BN

∗ Fx0 ≤ xT
0 B0:N−1

L Fx0, ∀x0

Hence the claim of the lemma holds.
(b) The part (a) implies that B∗X � 0 holds for any X � 0.
Lemma 5 suggests that B∗X = BLX

X � BLY
Y = B∗Y

holds for any X and Y satisfying 0 � X � Y . Hence
B∗ is monotonic. It follows from Lemma 2 (a) that BN

∗ is
monotonic for any natural number N ∈ N.

Now we are ready to prove the main result.
Theorem 2: Suppose that the system (At, Bt) is ms-

stabilizable. Then Π := limN→∞ BN
∗ 0 exists and Π is the

minimum positive semi-definite solution to

Π = B∗Π

= ALΠΠ + Q + LT
ΠRLΠ + ALΠS − E[ΨT

LΠ
]S E[ΨLΠ ]

= Q + ΣAA + E[ATΠA] − (E[ATΠB] + ΣAB)

(E[BTΠB] + ΣBB + R)−1(E[BTΠA] + ΣBA).
(19)

Furthermore, the optimal feedback input is given by

u∗
t = −LΠxt

= −(E[BTΠB] + R + ΣBB)−1(E[BTΠA] + ΣBA)xt

(20)

for which the cost function (18) takes its minimum value
J∗
∞(x0) = xT

0 Πx0.

Proof: First of all, we prove that the function J∗
N (x0)

is monotonically non-decreasing with respect to the terminal
time N . Select N1 and N2 satisfying 0 < N1 < N2, then
the following equations hold for any initial state x0.

J∗
N1

(x0) = xT
0 BN1

∗ 0x0

J∗
N2

(x0) = xT
0 BN2

∗ 0x0.

The definition (15) of the transformation B∗ implies that
B∗0 � 0. Furthermore, it follows from Lemma 6 (b) that
BN
∗ is monotonic hence

BN2
∗ 0 = BN2−1

∗ B∗0 � BN2−1
∗ 0 � · · ·

� BN1+1
∗ 0 = BN1

∗ B∗0 � BN1
∗ 0.

This means J∗
N1

(x0) ≤ J∗
N2

(x0) and, consequently, the
cost function J∗

N (x0) is monotonically non-decreasing with
respect to the terminal time N . Therefore, there exists a lower
bond of J∗

N (x0).
Next we prove the existence of Π = limN→∞ B∗X .

Since the system (At, Bt) is ms-stabilizable, it follows from
Lemma 5 that there exists a feedback gain L such that AL

is stable. Hence Lemma 1 implies that the equation

Π = BLΠ(= ALΠ + Q + LTRL + ALS − E[ΨT
L]S E[ΨL])

has a solution Π � 0. Further, by induction, we have BN
L Π =

Π. Lemma 6 suggests

Π = BN
L Π � BN

∗ Π � BN
∗ 0. (21)

So the sequence {BN
∗ 0} has an upper bound and is

monotonically non-decreasing. Therefore, the limit Π =
limN→∞ BN

∗ � 0 exists. The equation BN+1
∗ 0 = B∗BN

∗ 0
implies

Π = B∗Π (22)

by taking the limit N → ∞.
Next we prove that Π = limN→∞ BN

∗ � 0 is the minimum
solution to (22). Suppose that Π̃ � 0 is another solution of
(22). Then Lemma 6 (b) implies that BN

∗ is monotonic for
any natural number N ∈ N. Hence BN

∗ 0 � BN
∗ Π̃ = Π̃ holds.

Taking the limit N → ∞, we obtain Π � Π̃ which means
that Π is the minimum solution.

Finally, let us prove that the feedback (20) is the optimal
input. Let Û∞ := {ût}, t ≥ 0 denote the sequence of the
feedback input ût = −LΠxt. Let JN (UN , x0, X) denote the
cost (8) where the terminal time is N and the terminal cost
F = X . Then we have

JN (Û∞, x0, 0) ≤ JN (Û∞, x0, Π) = xT
0 BN

LΠ
Πx0 = xT

0 Πx0

for any N ∈ N. Taking the limit N → ∞,

J∞(Û∞, x0) ≤ xT
0 Πx0. (23)

On the other hand,

xT
0 BN

∗ 0x0 = J∗
N (x0, 0) ≤ J∗

∞(x0) ≤ J∞(Û∞, x0) (24)

also holds. Inequalities (23) and (24) suggest

xT
0 BN

∗ 0x0 ≤ J∗
∞(x0) ≤ J∞(Û∞, x0) ≤ xT

0 Πx0.
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Again, taking the limit N → ∞,

J∗
∞(x0) = J∞(Û∞, x0) = xT

0 Πx0. (25)

which implies U∗
∞ = Û∞. Therefore u∗

t = ût = −LΠxt for
t ≥ 0. This completes the proof.

Equation (19) reduces to the algebraic Riccati equation
for the (conventional) discrete time optimal control if the
system parameters At and Bt are constant (deterministic).
However, in the stochastic case, Equation (19) is not a
Riccati equation anymore and it cannot be solved with
the conventional technique in the linear control systems
theory. For instance, although E[ATΠB] is linear in Π, there
does not exist constant (deterministic) matrices X and Y
satisfying E[ATΠB] = XΠY in general because the system
parameters At and Bt are stochastic variables. Therefore we
need to employ nonlinear optimization to solve Equation
(19). Here we use the following procedure to obtain the
solution Π. First of all, define the cost function for nonlinear
optimization Γ(Π) as follows.

Γ(Π) : = −Π + Q + ΣAA + E[ATΠA] − (E[ATΠB] + ΣAB)

(E[BTΠB] + ΣBB + R)−1(E[BTΠA] + ΣBA)

Since Equation Γ(Π) = 0 is equivalent to Equation (19),
we compute Π numerically by minimizing ‖Γ(Π)‖F =
‖ vec(Γ(Π))‖ where ‖ · ‖F is the Frobenius norm. Here
we select the initial value Π = Π0 the solution to the
conventional Riccati equation in the deterministic case

Π0 =Q + ΣAA + E[A]TΠ0 E[A] − (E[A]TΠ0 E[B] + ΣAB)

(E[B]TΠ0 E[B] + ΣBB + R)−1(E[B]TΠ0 E[A] + ΣBA).

This procedure often gives us the true solution when
the variances of the system parameters are small. When
the nonlinear optimization does not give the global optimal
(the solution to Equation (19)), then applying the nonlinear
optimization procedure recursively by changing the variances
of the system parameters from 0 to the true value would give
us the global optimal.

IV. NUMERICAL EXAMPLE

This section gives a numerical example to demonstrate
the effectiveness of the proposed method in comparison to
the conventional LQG method. Let us consider the plant
described by Equation (3) with the state xt ∈ R2 and the
input ut ∈ R.

E[A] =
[

1 0.1
−0.01 0.99

]
E[B] =

[
0

0.01

]

cov [vec([A, B])]

=


0 0 0 0 0 0
0 4.0 × 10−6 0 0 0 0
0 0 0 0 0 0
0 0 0 0.0392 0 0
0 0 0 0 0 0
0 0 0 0 0 4.0 × 10−6


Q =

[
10 0
0 10

]
R = 1

x0 =
[
10
10

]
The covariance cov [vec([A,B])] are selected in such a way
that the parameters A21, A22 and B2 have 20% standard
deviations. Fig.1 shows the time responses of 100 random
samples of the feedback system with the conventional LQG
controller. Fig.2 shows the time responses by the proposed
method with the design parameter S = 1000I . In those
figures, the plus signs + denote the upper and lower bounds
of the 1σ deviation from the average and the solid lines
denote the sampled responses.

Figures show that both the conventional LQG controller
and the proposed controller achieve both m-stability and ms-
stability. The response with the proposed controller in Fig.2
achieves smaller variance than that with the LQG controller
in Fig.1 which indicates the effect of the proposed method.

0 100 200
-30

-20

-10

0

10

20

30

time

st
at
e 
x1

(i) State transition of x1

0 100 200
-30

-20

-10

0

10

20

30

time

st
at
e 
x2

(ii) State transition of x2

Fig. 1. State transition (LQG)
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Fig. 2. State transition (proposed method)

Next, Figs.3–4 show the case in which the variances of
the parameters are bigger than the case in Figs.1–2. The
covariance of the system parameters A and B is selected as
follows in such a way that the parameters A21, A22 and B2
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have 40% standard deviations.

cov [vec([A, B])]

=


0 0 0 0 0 0
0 1.6 × 10−5 0 0 0 0
0 0 0 0 0 0
0 0 0 0.1568 0 0
0 0 0 0 0 0
0 0 0 0 0 1.6 × 10−5


Figs.3–4 show the time responses of 100 random samples by
the LQG method and the proposed method with the design
parameter S = 1000I , respectively. In those figures, the
plus signs + denote the upper and lower bounds of the 1σ
deviation from the average and the solid lines denote the
sampled responses as in Figs.1–2.
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Fig. 3. State transition (LQG)
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Fig. 4. State transition (proposed method)

Fig.3 shows the time responses of the state of the feedback
system with the LQG controller. In the figure the states
diverge, since the LQG controller does not take care of the
variance of the system parameters. Fig.4 shows the time
responses of the state with the proposed controller for the
parameter S = 1000I . This result shows that the proposed
method can stabilize the variance of the states in the sense
of ms-stability, whereas the variance of the feedback system
with the LOG controller becomes unstable (in the sense of
ms-stability). Those results confirms the effectiveness of the
proposed method.

V. CONCLUSION

This paper generalizes the authors’ former result on op-
timal control with variance suppression to the infinite time
horizon case. We have derived an algebraic equation similar
to the algebraic Riccati equation to characterize the solution
to the optimal control problem and proved stochastic stability

of the corresponding feedback system by taking care of the
average and the variance of the state transient. Furthermore,
some numerical simulations exhibit the effectiveness of the
proposed method. We believe that the proposed method
provides a new stochastic control framework to work with
the Bayesian inference methods.
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