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Abstract— For a network of identical linear objects an output
synchronization problem is considered. Problem of synchroniza-
tion is solved under conditions of incomplete measurements,
incomplete control and without constructing observers. Pa-
rameters of of static controller and sufficient synchronization
conditions are obtained by means of passification method.

I. INTRODUCTION

The problems of network systems control have a broad
area of important applications: formation control of mobile
robots [5], [14], control of power networks, control of
physical, mechanical networks, etc. Also network systems
are subject of study of a new field called “Cybernetical
Physics” [?].

Synchronization is a one of the network control problems.
Graph theory is often used for description and analysis of a
network systems since informational flows in such systems
can be described by the graphs. Design of a controller provid-
ing a synchronization in directed networks (i.e. described by
directed graphs) is a more important and challenging problem
than same problem in undirected networks since decrease of
information exchange (traffic) [12].

Laplace matrices of graphs play important role when
consensus control is used [3], [13], [12].

The aim of this paper is to design controllers providing
convergence of a solutions of linear dynamical systems
between themselves under conditions of incomplete measure-
ments and incomplete control for a different cases applying
consensus control. Mentioned dynamical systems form a
network of objects which aren’t dynamically interconnected,
i.e. objects doesn’t have a direct influence on each other.

Using passification method parameters of static controller
and conditions of synchronization by output in directed
networks consisting of linear objects are obtained for dif-
ferent informational graphs under conditions of incomplete
measurements and incomplete control. Dynamical controller
which is more complex considered in [5]. In [14] problem
solved by constructing observers, it leads to a growth of
system order if number of agents in network is growing.
Moreover, conditions of operability is quite hard to analyze.
In [9] network consisting of linear objects with incomplete
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measurements and incomplete control is considered. It is
assumed that zero eigenvalue of Laplace matrix is simple.
Problem of synchronization by output (consensus problem)
is solved using observers and conditions of synchronization
is formulated using LMI.

II. AUXILIARY RESULTS

A. Graph theory

In this section some terms of graph theory, definition and
properties of Laplace matrix (Laplacian) needed in this paper
are listed.

A pair G = (V , E), where V – set of vertices E ⊆ V ×
V – set of arcs, is called digraph (directed graph). Let V
have d elements, d ∈ N. If for any arc (α, β) ∈ E , where
α, β ∈ V, arc (β, α) ∈ E , then graph called undirected. It is
assumed hereafter that graphs doesn’t have a self-loops, i.e.
for any vertex α ∈ V arc (α, α) /∈ E . If for any vertex there
exists path to any other vertex then digraph is called strongly
connected and undirected graph is called connected. In this
case (di)graph has one connected component. It is known
that undirected graph is connected iff it has a spanning tree.

Let’s introduce a directed spanning tree as in [1], [13].
Digraph is called directed tree if all its vertices except one
(called root) have exactly one parent. Directed spanning tree
of a digraph G is a directed tree formed of by digraph G arcs
such that there exists path from root to any other vertex of
G in this tree.

An undirected graph is called weighted if for any pair
of vertices α, β ∈ E a number (weight) w(α, β) ≥ 0 with
following properties is assigned:

1) w(α, β) > 0 if (α, β) ∈ E and w(α, β) = 0 if (α, β) /∈
E ,

2) w(α, β) = w(β, α).

A digraph is called weighted if for any pair of vertices
α, β ∈ E a such number w(α, β) ≥ 0 is assigned that first
property holds. An adjacency matrix A(G) = [aij ] is d × d
matrix whose i− th, j− th entry is equal to w(αi, αj), i, j =
1, . . . , d. Let us define in-degree of vertex αi:

din(αi) =
d∑

j=1

aji,

and out-degree:

dout(αi) =

d∑
j=1

aij .

A (di)graph G is called balanced if for any vertex αi ∈ V
in-degree is equal to out-degree ( [3], [12]):

din(αi) = dout(αi).

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 8188



Introduce d× d matrix

D(G) = diag{dout(α1), dout(α2), . . . , dout(αd)}.
Laplace matrix (Laplacian) of (di)graph G is defined as
follows:

L(G) = D(G)−A(G).
Denote 1d column vector of order d cosisting of ones. It

is known [3], [11], [13], [12], that introduced Laplacian L
has following properties:

1) Matrix L(G) has zero eigenvalue with corresponding
right eigenvectorvector 1d : L(G)1d = 0.

2) For undirected graph G the multiplicity of the zero
value as an eigenvalue of L(G) is equal to the number
of connected components of G.

3) Zero eigenvalue of L is simple if corresponding di-
graph is strongly connected.

4) Zero eigenvalue of L is simple iff corresponding di-
graph has a directed spanning tree.

5) All eigenvalues of Laplacian matrix have a nonnegative
real parts.

6) If graph is balanced then 1d is left eigenvector corre-
sponding to zero eigenvalue:

1T

dL(G) = 0.

B. Passification method

In this section some information about method of linear
systems passification is listed [6], [8].

Let A,B,C,G,R be complex valued matrices of sizes
n×n, n×m,n× l, l×m,n×n accordingly (m ≤ n, l ≤ n),
and R = R∗ ≥ 0. Asterisk stands for transposition of the
matrix and complex conjugation of its elements. Consider the
following problem. Find conditions of existence Hermitian
n × n matrix H = H∗ > 0 and complex l × m matrix θ
such that

HA(θ) +A(θ)∗H +R < 0, (1)

HB = CG, (2)

where
A(θ) = A+Bθ∗C∗. (3)

The case when matrices A,B,C,G,R are real valued is
called real case. Let In stand for identity matrix of order n.
Denote

δ(s) = det(sIn −A), χ(s) = C∗(sIn −A)−1B.

Let W (s) - m×m-matrix consisting of proper fractional
rational functions, α(s) be least common multiple of W (s)
elements denominators. Let

ϕ(s) = δ(s)detW (s),Γ = lim
s→∞ sW (s).

Definition 1: Matrix is called minimum-phase if ϕ(s) - is
Hurwitz polynomial. Matrix W (s) is called strictly minimum
phase if it is minimum phase and matrix Γ is nonsingular:
det Γ �= 0. Matrix is called hyper minimum phase if it is
minimum phase and Γ is Hermitian and positive definite.

Solution to the problem provides the Passification lemma.

Lemma 1: For the existence of the matrices H = H∗ > 0
and θ satisfying relations (1)-(3) and being real valued in the
real case, it is sufficient (and when rankB = m it is also
necessary) that the matrix G∗χ(s) be hyper minimum phase.

The definition simplifies for SISO systems.
Definition 2: Let W (s) = β(s)/α(s), z ∈ C be proper

fractional rational function, β(s), α(s) are real polynomials.
If numerator β(s) of W (s) is Hurwitz polynomial then W (s)
is called minimum phase. If W (s) is minimum phase and
number lims→+∞ sW (s) is positive then W (s) is called
hyper minimum phase.

Remark 1: Vector θ in (3) can be chosen in form

θ = −κ ·G,

where number

κ = inf
ω∈R1

Re
(
detW (iω)

)
,

see [7], [8].

III. PROBLEM STATEMENT

Let the network S consist of d agents Si, i = 1, . . . , d.
Each agent Si, i = 1, . . . , d is modeled as a linear controlled
system:

ẋi = Axi +Bui, yi = CTxi, (4)

where xi(t) ∈ R
n is state vector, ui(t) ∈ R

1 is controlling
input (control), yi(t) ∈ R

l is the vector of measurements
(output), time t ∈ [0,+∞).

Consider digraph G = (V, E), with the set of vertices V
and the set of arcs E ⊆ V × V. Let us associate vertex vi
with agent Si for each i = 1, . . . , d.

The arc (vi, vj) will be considered to belong to the set of
arcs E if an information from agent Sj is received by agent
Si. In addition let the weigh of each arc be equal to 1.

Let control law for agent Si be

ui = K
∑
j∈Ni

(yi − yj) = KCT
∑
j∈Ni

(xi − xj), K ∈ R
1×l,

(5)
where Ni = {k = 1, . . . , d|(vi, vk) ∈ E} is the set of
neighbor vertices to vi. It is assumed that graph has no
selfloops i.e. (vi, vi) /∈ E for all i = 1, . . . , d. Such control
is called “consensus control” in some papers.

Let the control goal be in a form of state synchronization:

lim
t→∞(xi(t)− xj(t)) = 0, i, j = 1, . . . , d. (6)

The problem is to find K from (5) ensuring the goal (6).
In the case of goal (6) achievement asymptotic behaviour

of all network S agents will be same. By denoting c(t) this
asymptotic synchronous behaviour of agents the control goal
(6) can be reformulated as follows:

lim
t→∞(xi(t)− c(t)) = 0, i = 1, . . . , d. (7)
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IV. CONDITIONS OF GOAL ACHIEVEMENT IN THE CASE
OF BALANCED GRAPH

Denote χ(s) = CT(sIn − A)−1B, s ∈ C and make
following assumptions.

A1) Digraph G has an oriented spanning tree.

This assumption ensures simplicity of Laplace matrix
L(G) zero eigenvalue (see section II-A).

A2) There exists a vector g ∈ R
l such that function gTχ(s)

is hyper minimum phase.

According to lemma 1 from section II-B the latter
assumption ensures existence of such matrix H = HT > 0
and vector θ ∈ R

l that:

HA∗ +AT

∗H < 0, HB = Cg, A∗ = A+BθTCT. (8)

and vector θ can be taken as follows:

θ = −κ · g, (9)

where number κ > inf
ω∈R1

Re
(
g

T

χ(iω)
)

(see remark 1 sec-

tion II-B).
Let us take feedback gain row vector K of control law (5)

as follows:
K = −k · gT, k ∈ R

1. (10)

Associate graph Ĝ with digraph G such that A(Ĝ) =
A(G)+A(G)T. Laplace matrix L(Ĝ) of constructed graph Ĝ
is symmetric and has simple zero eigenvalue. Matrix L(Ĝ)
has the following eigenvalues 0 = λ1 < λ2 ≤ . . . ≤ λd. Let
x = col(x1, . . . , xd), and ⊗ stand for Kronecker product of
matrices.

Theorem 1: Let assumptions A1, A2 hold and graph G be
balanced. Then for k such that

k ≥ 2κ

λ 2
, (11)

where number κ = inf
ω∈R1

Re
(
g

T

W (iω)
)
, control (5) with

feedback gain (10) ensures achievement of the goals (6) and
(7) with function c(t) = d−1/2eAt(1T

d ⊗ In)x(0).
Proof. Some properties of matrix Kronecker product will

be used (see [2], [10]). For the sake of brevity denote L =
L(G), L̂ = L(Ĝ). Let P be real orthogonal matrix such that

PTL̂P = diag(0, λ2, . . . , λd)

with first column equal to d−1/21d. First column of product
LP is zero vector since 1d is right eigenvector of matrix
L. Therefore first column of PTLP is also zero vector.
According to assumption A1 digraph G is balanced, therefore
L has left eigenvector consisting of ones corresponding to
zero eigenvalue. Consequently first row of PTLP is zero
row. Thus:

PTLP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 . . . 0
0
...
0 Λe

...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

where Λe ∈ R
(d−1)×(d−1).

Let u = col(u1, . . . , ud). Then (5) can be rewritten as
follows

u = (L⊗KCT)x. (13)

Let us rewrite (4) using (13):

ẋ = ((Id ⊗A) + (L⊗BKCT))x. (14)

The idea of coordinate transformation was taken from [14].
Let z = (PT ⊗ In)x, z ∈ R

dn and z = col(z1, ze), z1 ∈
R

n, ze ∈ R
(d−1)n. Taking in account (12), whole system

dynamics (14) can be represented as follows

ż1 = Az1, (15)

że = ((Id−1 ⊗A) + (Λe ⊗BKCT)) ze. (16)

If solution ze(t) ≡ 0 of comined equations (16) is
asymptotically stable then goal (7) is achieved with function
c(t) = d−1/2eAt(1T

d ⊗ In)x(0).
Let us take following Lyapunov function:

Ve = zT

e (Id−1 ⊗H)ze,

where matrix H is defined from (8). Derivative of Ve along
the trajectories of (16):

V̇e =zT

e (Id−1 ⊗ (ATH +HA) + ΛT

e ⊗ CKTBTH+

Λe ⊗HBKCT)ze = zT

e (Id−1 ⊗ (ATH +HA)+

ΛT

e ⊗ CKTgTCT + Λe ⊗ CgKCT)ze.

Equality HB = Cg was used here, see (8). Denote

P = Id−1⊗(ATH+HA)+ΛT

e⊗CKTgTCT+Λe⊗CgKCT.

If P < 0, then zero solution of (16) is asymptotically stable,
since V̇e = zT

ePze.
Denote

K =− Id−1 ⊗ (CθgTCT + CgθTCT)+

ΛT

e ⊗ CKTgTCT + Λe ⊗ CgKCT.

Note that

ATH +HA = AT

∗H +HA∗ − (CθgTCT + CgθTCT).

Taking in account the last equality, P can be represented in
the following way

P = Id−1 ⊗ (AT

∗H +HA∗) +K.

If K ≤ 0, then P < 0. Using (9), let us rewrite expression
for K : (10):

K =− Id−1 ⊗ (−κCggTCT − κCggTCT)−
ΛT

e ⊗ CgkgTCT − Λe ⊗ CgkgTCT =

(2κId−1 − k(Λe + ΛT

e ))⊗ (CggTCT).

We conclude that K ≤ 0, since CggTCT ≥ 0 and 2κId−1−
k(Λe + ΛT

e ) ≤ 0 by conditions of theorem.
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V. CONDITIONS OF GOAL ACHIEVEMENT IN THE CASE OF
UNBALANCED GRAPH

Let assumption A1 hold, then zero eigenvalue of Laplace
matrix is simple.

Let us represent Laplace matrix L in Jordan form

Λ =

(
0 0
0 Λe

)
= P−1LP,

assuming that first column of nonsingular matrx P is equal
to d−1/21. Denote by l1 left eigenvector of Laplace matrix
L corresponding to zero eigenvalue such that lT1d

−1/21 = 1.
Let us choose feedback gain row vector K of control law

(5) in following form:

K = k · θT, k ∈ R
1. (17)

Theorem 2: Let assumptions A1, A2 hold and Λe+Λ∗
e >

0. Then for k such that

Id−1 +
k

2
(Λe + Λ∗

e) ≤ 0

control (5) with feedback gain (17) ensures achievement of
the goal (7) with function c(t) = d−1/2eAt(lT1 ⊗ In)x(0).

Proof is similar to the proof of Theorem 1.

VI. CONDITIONS OF GOAL ACHIEVEMENT IN THE CASE
OF UNDIRECTED GRAPH

In this section conditions of goal achievement in the case
of undirected graph G is formulated. Let us make next
assumption

A3) Undirected graph G has a spanning tree.

It is known that this assumption is equivalent to connec-
tivity of graph G. Thus, if this assumption holds, then zero
eigenvalue of Laplace matrix L = L(G) is simple. Denote
eigenvalues of matrix L as follows: 0 = λ1(L) < λ2(L) ≤
. . . ≤ λd(L).

Theorem 3: Let assumptions A2, A3 hold. Then for k
such that

k ≥ κ

λ2(L)
,

where number κ = inf
ω∈R1

Re
(
g

T

W (iω)
)
, control (5) with

feedback gain (10) ensures achievement of the goal (7) with
function c(t) = d−1/2eAt(1T

d ⊗ In)x(0).
Proof is similar to the proof of Theorem 1.

VII. EXAMPLE. NETWORK OF DOUBLE INTEGRATORS

A. System description and theoretical study

Consider network S, consisting of four agents Si, i =
1, . . . , 4. Each agent Si, i = 1, . . . , 4 is modelled as follows:

ẋi = Axi +Bui, yi = CTxi,

where xi(t) ∈ R
2 is state vector, ui(t) ∈ R

1 is control,
yi(t) ∈ R

1 is vector of measurements.
Let

A =

(
0 0
1 0

)
, B =

(
2
0

)
, C =

(
0.5
0.5

)
.

�1 �2

�3�4

�

�
�

�

Fig. 1. Digraph G.
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Fig. 2. Phase plane, k = 1.

Let digraph G describing informational flows in the net-
work be balanced and such as illustrated on Fig. 1. Then
Laplace matrix Ĝ has following eigenvalues: 0,2,2,4.

Let us apply Theorem 1. Transfer function

χ(s) = CT(sI2 −A)−1B =
s+ 1

s2
,

is hyper minimum phace when g = 1. It is not difficult to
show that number κ from (9) can be taken as follows: κ > 1.

Thus, according to Theorem 1, if k ≥ 1, then the
controller (5) with feedback gain (10) ensures achievement
of the goal (7).

First component of a single agent’s state vector can be in-
terpreted as a velocity, second component can be interpreted
as a position on a straight line. Achievement of control goal
means convergence of four points on straigh line and their
motion with constant non-zero velocity.

B. Simulation results

Let agents have following initial conditions

x1(0) = col(0.5, 2), x2(0) = col(−7, 3),

x3(0) = col(1, 0), x4(0) = col(10,−10).

When k = 1 achievement of the control goal is illustrated
by results of 50 second modelling. Trajectories of agents on
a same phace plane with different values of k are shown on
figures 2-5.
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Fig. 3. Phase plane, k = 0.3.
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Fig. 4. Phase plane, k = 0.5.
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Fig. 5. Phase plane, k = 0.7.

VIII. CONCLUSION

By means of passification method sufficient conditions of
state synchronization in linear object networks using static
output feedback without constructing observers are found.
Theoretical study is illustrated by example of synchroniza-
tion in network consisting of four double integrators.

The obtained results can be extended to the case on
nonlinear Lurie type dynamics of agents with sector bounded
nonlinearities.
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