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Abstract— The paper considers a problem of consensus-based
synchronization of uncertain parameter varying multi-agent
systems with Lipschitz-continuous nonlinearities. The objective
is to construct simultaneously consensus and observer schedules
for each agent to ensure an asymptotic synchronized behaviour
of all agents. A gain-scheduling algorithm is proposed which
solves this problem while maintaining a specified suboptimal
H∞ level of relative disagreement between the agents. The
algorithm uses interpolation to ensure the continuity of the
interconnection and observer gains. It preserves the H∞ con-
sensus properties of the interpolants.

I. INTRODUCTION

It is widely recognized that multi-agent consensus prob-

lems have much similarity with problems of synchronization

of complex dynamical networks [2], [5]. However, rela-

tively few references have addressed behavior of consensus

and synchronization algorithms in the presence of noise

and uncertainty. A natural in this situation approach of

distributed and decentralized H∞ optimization has gained

some attention recently [3], [2], [7], [12], [13]. In particular,

in [12], [13] we have proposed an approach to the observer-

based synchronization of complex dynamical networks of

uncertain agents using an H∞ consensus-based estimation

methodology.

The approach in [12], [13] is based on optimization of the

cost of relative H∞ disagreement between agents. In compar-

ison with the H∞ tracking approach [3], [2], it leads to the

synchronization mechanism where an H∞-type consensus

between the agents about their estimates of the reference

plant is an essential prerequisite for synchronization. The

approach is constructive, and allows one to obtain intercon-

nection and observer gains to ensure synchronization, by

solving an LMI optimization problem.

The objective of this paper is to extend this approach to

systems which require a time-varying reference model for

synchronization. Time variations of system coefficients pose

an additional difficulty, since many standard robust control

and filtering techniques developed for time-invariant systems

are not directly transferable to time-varying systems. This

is particularly true for techniques utilizing Linear Matrix

Inequalities which were used in [12], [13]. In some cases,

the issue can be resolved by focusing on a finite-horizon

version of the problem [7]. However, this option is not always

suitable when the aim is to achieve synchronization. In
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support of this point, we refer to problems of synchronization

of nonlinear systems exhibiting chaotic behaviours, where

the system must be continuously locked into synchronous

operation, otherwise even small discrepancies between tra-

jectories will cause the system to lose synchronization in a

very short time.

Gain-scheduling techniques provide a powerful alternative

to the finite-horizon analysis and synthesis of time-varying

systems. The idea of this approach is to design a controller

or filter as a function of the varying system parameters that

are available for on-line monitoring and measurement.

One of the techniques extensively used in the controller

design for parameter-varying systems involves scheduling

controllers by interpolating the controllers designed for sev-

eral operating points. Interpolation allows to avoid detri-

mental transients caused by controller switching. Yet, in

general there is no guarantee that the system governed by

an interpolated controller remains stable while traversing

between operating points. This prompted the development of

stability and robustness preserving interpolation techniques

for gain scheduling [9], [10], [15].

This paper considers networks of uncertain dynamical

systems-agents whose linear part is parameter-varying, and

the nonlinear part is Lipschitz continuous. It develops an

interpolation technique of gain-scheduled design to construct

consensus-based synchronization protocols which enable

such networks to synchronize while reaching a desired level

of relative H∞ consensus performance. The technical idea of

our approach is based on the results in [12]. However, a direct

application of the continuous gain interpolation methods to

the synchronization scheme proposed in [12] proves to be

difficult. Therefore in this paper the methodology in [12]

is revisited to allow for such an application. This requires

us to consider a somewhat different model for information

processing by the agents. In contrast to [12] and similar to

[11], in this paper we allow for the possibility to assign indi-

vidual interconnection gains to each communication channel.

Also, we consider a more general communication model,

where links between the agents are subject to uncertain

perturbations.

The vector dissipativity theory developed in [1] plays

an instrumental role in the development of our approach.

As an extension of the classic dissipativity theory [14],

this theory enables the dissipativity properties of a large-

scale system to be studied using vector storage functions

and vector supply rates. Here, we use this methodology to

construct parameter dependent vector Lyapunov functions

to ensure robustness and H∞ consensus performance of
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interpolated gain-scheduled synchronization protocols under

consideration.

The approach undertaken in this paper is inspired by the

robustness preserving interpolation technique from [8], [9],

[15]. The common point between this paper and [8], [9],

[15] is that we interpolate Lyapunov functions rather than

controller gains. However, unlike the above publications,

linear interpolation of Lyapunov functions is sufficient in

our case to preserve synchronization and H∞ consensus

properties of the interpolants.
Notation: R

n denotes the real Euclidean n-dimensional

vector space, with the norm ‖x‖ , (x′x)1/2; the symbol ′

denotes the transpose of a matrix or a vector. Given a real

symmetric k×k matrix P , we let λmax(P ), λmin(P ), denote

the largest and smallest eigenvalues of P , respectively. Also,

for real symmetric X,Y , we write Y > X (Y ≥ X), when

the matrix Y −X is positive definite (positive semidefinite).

diag[Q1, . . . , QN ] denotes the block-diagonal matrix having

Q1, . . . , QN as its diagonal blocks. ⊗ is the Kronecker

product of matrices. 1p is the vector in R
p with all unity

components. We let ‖z‖P ,
√
z′Pz. L2[0,∞) will denote

the Lebesgue space of R
k-valued vector-functions z(·),

defined on the time interval [0,∞), with the norm ‖z‖2 ,
(∫ ∞

0
‖z(t)‖2dt

)1/2
and the inner product

∫ ∞

0
z1(t)

′z2(t)dt.

II. PROBLEM FORMULATION

In this paper we will consider a directed graph topology

G = (V,E); V, E are the set of vertices and the set of edges

(i.e, the subset of the set V×V), respectively. Without loss

of generality, we let V = {1, 2, . . . , N}. It is assumed that

the nodes of the graph G have no self-loops, i.e., (i, i) 6∈ E.

For each i ∈ V, let Vi = {j : (j, i) ∈ E} be the set

of nodes supplying information to node i, termed as the

neighbourhood of node i. The cardinality of Vi, known as

the in-degree of node i, is denoted pi. Also, qi will denote

the number of outgoing edges for node i, known as the out-

degree of node i.
Consider a multi-agent system, consisting of a reference

parameter varying nonlinear system

ẋ = A(ρ(t))x+B1φ(x), x(0) = x0, (1)

and N uncertain parameter varying nonlinear dynamical

agents,

ẋi = A(ρ(t))xi +B1φ(xi) + ui(t) +B2iwi(t), (2)

xi(0) = xi0,

Here x ∈ R
n and xi ∈ R

n are the state of the reference

plant and the i-th agent, respectively, ui ∈ R
n denotes the

control input, wi ∈ R
ri is the disturbance, and ρ(t) is the

time-varying parameter, which is available to all agents. It

is assumed that ρ : [0,∞) → Γ , [ρmin, ρmax] ⊂ R is a

continuous function. The matrix-valued function A(·) is also

assumed to be continuous on the interval Γ, while B1 is a

fixed matrix. Also, the function φ(x) : R
n → R

l satisfies

the global Lipschitz condition

‖φ(x1)−φ(x2)‖2 ≤ (x1−x2)
′R(x1−x2), ∀x1, x2 ∈ R

n;
(3)

where R = R′ ≥ 0.

It is assumed that direct measurements of the reference (1)

are not available. Instead each agent (2) receives broadcast

signals from the reference plant and its neighbours which are

corrupted by perturbations:

yi = C2ix+D2iwi,

vij = Hijxj +Gijwij , (4)

here yi, vij are the signals received by agent i from the

reference plant and agent j, respectively, and wij is a dis-

turbance affecting the information transmission from agent

j to agent i. It is assumed that wi(·), wij(·) ∈ L2[0,∞),
i, j = 1, . . . , N . Also, we assume that B2iD

′
2i = 0, E2i =

D2iD
′
2i > 0, Fij = GijG

′
ij > 0 for all i.

In a general situation the reference may be unobservable

from individual signals yi, and the agents must use their

neighbours’ broadcast for feedback to achieve synchroniza-

tion. This leads us to introduce the following protocol to

interconnect the agents over the given graph G:

ui(t) = Li(ρ(t))(yi − C2ixi)

+
∑

j∈Vi

Kij(ρ(t))(vij −Hijxi), (5)

where Li(·), Kij(·) are matrix-valued gain functions to be

constructed. The graph topology is assumed to be fixed, and

the set of neighbours of agent i, Vi remains constant.

The agents in (2) employ nonidentical matrices C2i, D2i;

i.e., the agents have nonidentical measurement models. This

distinguishes our model from other models used in the litera-

ture where all agents employ identical measurement models,

and the leader is observable from agent’s measurements; e.g.,

see [2]. Also, the controller gains Li(·), Kij(·) are regarded

as the design parameters of the protocol.

Associated with the reference system (1), the set of agents

(2) and the graph G is the disagreement function (cf. [6])

ΨG(x) =
1

N

N
∑

i=1

∑

j∈Vi

‖xj − xi‖2, (6)

where x = [x′1 . . . x′N ]′. Letting e = x−xi denote the syn-

chronization error of agent i, and letting e = [e′1 . . . e′N ]′,
we note that ΨG(x) = ΨG(e).

We now define the synchronization problems under con-

sideration in this paper. In the first problem we are concerned

with achieving synchronization with a guaranteed H∞ level

of disagreement between the agents. In the second problem, a

stronger version of disagreement performance is considered.

It involves a penalty on the synchronization transient perfor-

mance, additional to the penalty on the consensus transient

performance.

Let x0 = [x′10, . . . , x
′
N0]

′, and

‖(x0,w, w̄)‖2 , ‖1n ⊗ x0 − x0‖2
P

+
1

N

N
∑

i=1



‖wi‖2
2 +

N
∑

j=1

‖wij(·)‖2
2



 ,

where P = P ′ > 0 is a fixed matrix to be determined.
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Definition 1: The problem of (weak) robust synchroniza-

tion is to determine continuous feedback control and inter-

connection gain schedules Li(ρ), Ki(ρ), ρ ∈ Γ, for the

protocol (5) so that the following properties hold:

(i) In the absence of uncertain perturbations, the intercon-

nection of unperturbed systems describing evolution of

the synchronization error dynamics of each agent must

be exponentially stable. That is,

‖ei(t)‖2 = ‖xi(t) − x(t)‖2 ≤ ce−ωt, (∃c, ω > 0).

(ii) In the presence of uncertain perturbations, the following

H∞ consensus performance must be ensured

sup
x0i 6=x0,

(wi,wij,j∈Vi)
N
i=1

6=0

∫ ∞

0
ΨG(e(t))dt

‖(x0,w, w̄)‖2
≤ γ2. (7)

Here, γ > 0 is a given constant.

(iii) All agents synchronize asymptotically,

lim
t→∞

N
∑

i=1

‖x(t) − xi(t)‖2 = 0. (8)

The quantity on the left-hand-side of (7) defines the L2

disagreement gain of the distributed observer.

Definition 2: Let Q1 > 0, . . . , QN > 0 be given matrices,

and Q , diag[Q1, . . . , QN ]. The problem of strong robust

synchronization is to find continuous feedback control and

interconnection gain schedules Li(ρ), Ki(ρ), ρ ∈ Γ, for the

protocol (5) so that properties (i), (iii) of Definition 1 hold,

along with the following property, which replaces (7):

sup
x0i 6=x0,

(wi,wij,j∈Vi)
N
i=1

6=0

∫ ∞

0
(e(t)′Qe(t) + ΨG(e(t))) dt

‖(x0,w, w̄)‖2
≤ γ2. (9)

III. THE MAIN RESULTS

The derivation of the main result of the paper follows

the general scheme of stability and robustness preserving

interpolated gain-scheduling [8], [10], [15]. First, we revisit

the results in [12] for a fixed parameter case and a more

general class of agents under consideration in this paper.

Next, a synchronization result will be established for a class

of parameter-varying systems with a small-scale parameter

variation. This extension will serve as the basis for the

subsequent derivation of interpolated feedback schedules for

a more general class of parameter-varying systems with

bounded rate of parameter variations, which is the main result

of this paper.

A. Synchronization of fixed parameter systems

Let us fix ρ ∈ Γ and consider the fixed parameter version

of the uncertain reference system (1),

ẋ = A(ρ)x+B1φ(x) + ψ(t, x), x(0) = x0, (10)

and the corresponding N uncertain fixed-parameter dynam-

ical agents

ẋi = A(ρ)xi +B1φ(xi) + ψ(t, xi)

+ui(t) +B2iwi(t), xi(0) = xi0. (11)

Compared with the system model of the agents given in

(2), we have introduced an additional uncertainty term to

the reference plant and the equations of agents’ dynamics.

The motivation for this will become clear later, when we

will consider small parameter variations in the agents and

the reference plant. Such small variations can be treated as

an additional LFT-type uncertainty, capturing the mismatch

between fixed system parameters used in the protocol design,

and the true system parameters. It will be shown that the size

of this mismatch can be characterized in terms of a uniform

norm bound condition, such as

‖ψ(t, x) − ψ(t, xi)‖2 ≤ α2‖ei‖2, (12)

where α > 0 is a constant.

Associated with the fixed parameter system (10), (11) is

the fixed-parameter version of the protocol (5),

ui(t) = Li(ρ)(yi − C2ixi)

+
∑

j∈Vi

Kij(ρ)(vij −Hijxi), (13)

where yi, vij are defined in the same way as in (4). We

now present a sufficient condition for the existence of a

fixed parameter protocol (13) which ensures that the fixed

parameter systems (11) achieve strong synchronization.

Given constants δi > 0 and matrices Qi = Q′
i > 0,

i = 1, . . . , N , consider the following coupled Linear Matrix

Inequalities (LMIs) in scalar variables τi > 0, θi > 0 and

matrix variables Xi = X ′
i > 0:













Si ⋆ ⋆ ⋆ ⋆
B′

2Xi −γ2I ⋆ ⋆ ⋆
B′

1Xi 0 −τiI ⋆ ⋆
Xi 0 0 −θiI ⋆
Ξ′

i 0 0 0 −Zi













< 0, (14)

where

Si , Xi(A(ρ) + δiI) + (A(ρ) + δiI)
′Xi + (pi + qi)I

− γ2C ′
2iE

−1
2i C2i − γ2

∑

j∈Vi

H ′
ijF

−1
ij Hij

+Qi + τiR+ θiα
2I,

Ξi =
[

γ2H ′
ij1
F−1

ij1
Hij1− I . . . γ2H ′

ijpi
F−1

ijpi
Hijpi

− I
]

,

Zi = diag

[

2δj1
qj1 + 1

Xj1 , . . . ,
2δjpi

qjpi
+ 1

Xjpi

]

,

j1, . . . , jpi
are the elements of the neighbourhood set Vi.

Lemma 1: Let ρ ∈ Γ be given and fixed. Suppose the

graph G, the matrices Qi = Q′
i > 0 and the constants γ, δi >

0 are such that the coupled LMIs (14) corresponding to the

given ρ are feasible. Consider a collection of feasible triples

(τi,ρ, θi,ρ,Xi,ρ), i = 1, . . . , N , and define

Kij(ρ) = γ2X−1
i,ρH

′
ijF

−1
ij , Li(ρ) = γ2X−1

i,ρ C
′
2iE

−1
2i . (15)

The network of fixed parameter agents (11), (13), (15)

solves the fixed parameter version of the strong robust

synchronization problem in Definition 2, with ρ(t) ≡ ρ. The
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matrix P in condition (9) corresponding to this solution is

P = 1
γ2N diag[X1,ρ, . . . ,XN,ρ].

The main idea of the proof is to show that the intercon-

nected system describing dynamics of the synchronization

errors associated with the reference (10) and the multi-agent

system (11) has the properties of vector dissipativity [1] with

respect to the vector storage function [V1(e1) . . . VN (eN )]′,
Vi(ei) = e′iXi,ρei, and a suitably defined vector of supply

rates. An N -component large scale system

ėi = fi(ei) + g(ei)w̄i +Hi(e1, e2, . . . , eN ),

zi = hi(ei) + qi(xi)w̄i, t ≥ 0, (16)

is vector dissipative with respect to a vector of supply

rates (S1(z, w̄1), . . . , SN (z, w̄N ))′ and a vector of con-

tinuous non-negative-definite storage functions V (e) =
[V1(e1) . . . VN (eN )]′ if there exists a so-called class W

function π ∈ R
N
+ → R

N , π(0) = 0, such that the system

ṙ = π(r) is Lyapunov stable and the following vector

dissipation inequality holds for all t > t0 ≥ 0

Vi(xi(t)) − Vi(xi(t0)) ≤
∫ t

t0

Si(y(τ), ξ(τ))dτ

+

∫ t

t0

πi(V1(x1), . . . , VN (xN ))dτ.

The large-scale system (16) is exponentially vector dissipa-

tive if the system ṙ = π(r) is asymptotically stable.

The proofs of our results use linear functions π(r) = Πr,

where Π is an essentially nonnegative matrix. Such linear

functions are class W functions [1]. In the special case of

linear function Π, the above vector dissipation inequality is

equivalent to the vector differential inequality

V̇i(xi(t)) ≤ Si(y(t), ξ(t)) + [ΠV (x(t))]i. (17)

Also in this special case, the property of exponential dissi-

pativity requires that π must be a Hurwitz matrix.

B. Synchronization under small parameter variations

The fixed parameter protocol (13) can be used for syn-

chronization of the parameter varying multi-agent system

(1), (2), provided parameter variations are sufficiently small,

i.e., ρ(t) ≈ ρ0 ∀t ≥ 0. Small variations of the matrix A(·)
can be treated as parameter mismatch disturbances, and the

parameter varying systems (2) and (1) can be regarded as

a perturbation of corresponding fixed-parameter systems. To

formalize this idea, let us fix ρ0 ∈ Γ, and define

ψ(t, x) = (A(ρ(t)) −A(ρ0))x.

Then, the parameter varying multi-agent system (1), (2) can

be rewritten in the form of a collection of uncertain systems

(10), (11). The robust synchronization protocol of the form

(13) can now be designed based on the representation (10),

(11) using Lemma 1. Provided the variations of the matrix

A(ρ(t)) about A(ρ0) are small enough to satisfy (12), it will

guarantee strong robust synchronization of the agents (11) to

the plant (10), in the presence of both the disturbances wi(·)
and wij(·), and the parameter variation in A(·). In order to

proceed in this direction, a bound of the form (12) must be

established. Note that when ρ(·) ≡ ρ0, then ψ ≡ 0 and the

uncertainty constraints (12) are trivially satisfied. Also note

that since A(ρ) is continuous on the compact set Γ, then

there always exists a constant α > 0 such that (12) holds.

We conclude this discussion by formally stating the above

observation about the synchronization of the system (1), (2)

under small parameter variations as a lemma.

Lemma 2: Let a fixed ρ0 ∈ Γ be given. Suppose that

(A(ρ(t))−A(ρ0))
′(A(ρ(t))−A(ρ0)) ≤ α2I ∀t ≥ 0. (18)

Suppose the graph G and the constants γ > 0 and δi > 0 are

such that the coupled LMIs (14) with ρ = ρ0 are feasible, and

let (τi,ρ0
, θi,ρ0

,Xi,ρ0
), be a corresponding collection of fea-

sible triples, i = 1, . . . , N . Then the network of agents (11)

equipped with the protocols (13), (15), where ρ = ρ0, solves

the problem of strong robust synchronization in Definition 2.

The matrix P in conditions (7) and (8) corresponding to this

solution is P = 1
γ2N diag[X1,ρ0

, . . . ,XN,ρ0
].

C. Interpolation of synchronization protocols

Robustness of the protocol (13), (15) is due to the assump-

tion that variations of A(ρ(·)) are sufficiently small. Even

though we alluded in the previous section that an α can be

always found to satisfy (18) globally on Γ, this may lead to

an excessively conservative synchronization scheme, or even

a failure to satisfy the conditions in Lemma 1. On the other

hand, using smaller α > 0 may result in the property (18)

not holding globally. However it holds locally for any choice

of α, since the function A(·) is continuous on the compact

set Γ. This observation underlies our approach.

Our design method can be summarized as follows. First

a collection of constants αk > 0 and ‘grid points’ Γ0 =
{ρk, k = 1, . . . ,M} is selected so that for any ρ ∈ Γ there

exists at least one point ρk with the property

(A(ρ) −A(ρk))′(A(ρ) −A(ρk)) ≤ α2
kI. (19)

Let Uk be the largest connected neighbourhood of ρk consist-

ing of all ρ ∈ Γ for which (19) holds. It is natural to assume

that Γ ⊆ ∪M
k=1Uk. Next, using Lemma 1, we compute the

synchronization protocol (13) for the uncertain parameter-

varying agents plants (11) for each ρk. The robustness of

this protocol stated in Lemma 1 yields that the conclusion

of Lemma 2 holds under the condition {ρ(t), t > 0} ⊂ Uk.

Along with the condition Γ ⊆ ∪M
k=1Uk, this establishes an

analog to the stability covering condition in [8].

For the above procedure to be possible to carry out, there

must exist αk and Γ0 such that the LMIs (14) with these

parameters are feasible. We assume that this requirement

is satisfied. Then, for each fixed ρ ∈ Γ, a synchronization

protocol can be assigned to the system (2) by scheduling

one of the fixed-parameter protocols (13) corresponding to

an index k ∈ {k : ρ ∈ Uk}. However, if this selection of

protocols is applied to the parameter-varying system (1), its

gains may become discontinuous at the time instant when

the trajectory of the parameter ρ(t) exits the set Uk and

enters the set Uk+1. Such discontinuities are undesirable
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in many practical situations, since they result in transients

which usually have an adverse effect on system performance.

We therefore propose a continuous interpolation of the fixed-

parameter synchronization protocols which preserves, along

with the synchronization properties of the nominal system,

the property of interpolants to guarantee a specified level of

the relative H∞ disagreement between the agents.

Consider and arbitrary fixed ρ ∈ Γ, and the collection

of constants αk > 0, k = 1, . . . ,M , and grid points

Γ0 discussed above. Select k such that ρ ∈ Uk, and let

(τi,ρk
, θi,ρk

,Xi,ρk
), i = 1, . . . , N , be feasible triples of

the LMIs (14). It is straightforward to show that the pairs

(τi,ρk
,Xi,ρk

) are feasible solutions to the following coupled

LMIs in Xi = X ′
i > 0, τi > 0, i = 1, . . . , N :









S̄i(ρ) ⋆ ⋆ ⋆
B′

2Xi −γ2I ⋆ ⋆
B′

1Xi 0 −τiI ⋆
Ξ′

i 0 0 −Zi









< 0, (20)

where the matrices Zi and Ξi are the same as in (14), and

S̄i(ρ) , Xi(A(ρ) + δiI) + (A(ρ) + δiI)
′Xi + (pi + qi)I

− γ2C ′
2iE

−1
2i C2i − γ2

∑

j∈Vi

H ′
ijF

−1
ij Hij +Qi + τiR.

Next, suppose ρ ∈ Uk∩Uk+1. Then we conclude that both

(τi,ρk
,Xi,ρk

), and (τi,ρk+1
,Xi,ρk+1

) are feasible solutions

to the LMIs (20). This allows us to construct interpolated

feasible solutions to (20) as follows. For a λ ∈ [0, 1], define

Xi,λ = λXi,ρk
+ (1 − λ)Xi,ρk+1

,

τi,λ = λτi,ρk
+ (1 − λ)τi,ρk+1

. (21)

It is straightforward to verify that τi,λ,Xi,λ in (21) satisfy

the LMIs (20).

Using the above fact, we can now define a collection of

interpolated gains for the protocols (5), as follows. Suppose

the collection of positive constants αk and the grid points

Γ0 has the following properties:

(A(ρ) −A(ρk))′(A(ρ) −A(ρk)) ≤ α2
kI, (22)

ρk ≤ ρ < ρ̄k,

(A(ρ) −A(ρk+1))
′(A(ρ) −A(ρk+1)) ≤ α2

k+1I, (23)

ρ
k+1

< ρ ≤ ρk+1,

where ρk < ρ
k+1

< ρ̄k < ρk+1. In particular, this implies

that (ρ
k+1

, ρ̄k) ⊂ Uk ∩ Uk+1.

For every ρ ∈ Γ, select k, k + 1 such that ρ ∈ [ρk, ρk+1],

and define λ =
ρ̄k − ρ

ρ̄k − ρ
k+1

, and

Xi,ρ =











Xi,ρk
, ρ ∈ [ρk, ρk+1

],

Xi,λ, ρ ∈ [ρ
k+1

, ρ̄k],

Xi,ρk+1
, ρ ∈ [ρ̄k, ρk+1],

(24)

τi,ρ =











τi,ρk
, ρ ∈ [ρk, ρk+1

],

τi,λ, ρ ∈ [ρ
k+1

, ρ̄k],

τi,ρk+1
, ρ ∈ [ρ̄k, ρk+1],

(25)

Kij(ρ) = γ2X−1
i,ρH

′
ijF

−1
ij , Li(ρ) = γ2X−1

i,ρ C
′
2iE

−1
2i .(26)

The functions Kij , Li are continuous on Γ, since Xi,λ > 0
for all λ ∈ [0, 1].

The following theorem is the main result of the paper.

It shows that the interpolated synchronization protocol (5),

with the gains Kij(·), Li(·), defined in (26), provides robust

synchronization of the system (2) to the reference (1). Let

Γ̄ be the set consisting of all the corner points ρ
k+1

, ρ̄k,

which lie inside Γ. Without loss of generality, we assume

that ρ(0) 6∈ Γ̄.

Theorem 1: Suppose

sup
t≥0

|ρ̇| ≤ min
i







λmin(Qi)

[

sup
k

∥

∥Xi,ρk+1
−Xi,ρk

∥

∥

ρ̄k − ρ
k+1

]−1






.

(27)

Then the network of agents (2) equipped with the protocols

(5), (26), solves the robust synchronization problem in Defi-

nition 1. The matrix P in condition (7) corresponding to this

solution is P = 1
γ2N diag[X1,ρ(0), . . . ,XN,ρ(0)].

Corollary 1: Suppose there exists η ∈ [0, 1) such that

sup
t≥0

|ρ̇| ≤ ηmin
i







λmin(Qi)

[

sup
k

∥

∥Xi,ρk+1
−Xi,ρk

∥

∥

ρ̄k − ρ
k+1

]−1






.

(28)

Then the network of agents (2) equipped with the protocols

(5), (26), solves the strong robust synchronization problem

in Definition 2, with Q replaced with (1− η)Q. The matrix

P is defined in the same way as in Theorem 1.

IV. EXAMPLE

To illustrate the results of the paper, consider a problem

of synchronization of a set of 2nd-order linear parameter

varying systems to a nonlinear Lorenz system. The reference

system is described by the equations

ẋ(1) = −σx(1) + σx(2),

ẋ(2) = rx(1) − x(2) − ρ(t)x(1),

ρ̇ = −bρ(t) + x(1)x(2). (29)

It is known to exhibit chaotic dynamics when σ = 10,

r = 28, and b = 8/3. Although the system is nonlinear, the

first two equations can be regarded as a parameter varying

system, with ρ(t) interpreted as a scheduling variable. This

subsystem is of the form (1), and will be considered as a

reference system in this example. This reference system is

linear, so φ(x) ≡ 0, and R = 0.

In accordance with the aforementioned choice of the

reference system, consider 2nd-order agents whose dynamics

are described by equations of the form

ẋ
(1)
i = −σx(1)

i + σx
(2)
i + u

(1)
i +B

(1)
2i wi,

ẋ
(2)
i = (r − ρ(t))x

(1)
i − x

(2)
i + u

(2)
i +B

(2)
2i wi. (30)

These dynamics are governed by the signal ρ(t) generated by

the reference system (29). The system (30) can be rewritten

in the form of equations (2) with

A(ρ) =

[

−σ σ
(r − ρ) −1

]

, B2i =

[

B
(1)
2i

B
(2)
2i

]

, ui =

[

u
(1)
i

u
(2)
i

]

.
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As before, wi, i = 1, . . . , N , describe L2-integrable per-

turbations. In this example, we randomly chose B2i =
[0.0806 0.0232]′ for all agents.

It is easy to verify using simulations that if ui ≡ 0, the

systems (30) do not synchronize to the reference system. In

fact, when wi ≡ 0, some trajectories of the system converge

to the origin. Therefore, a feedback control is necessary to

achieve synchronization. We now show that synchronization

can be achieved by means of a protocol of the form (5).

The design of such a protocol (5) for this example pro-

ceeds as follows. First, a simple ring structure of the network

was chosen, so that agent i can receive information from

agent i− 1 and can forward its state to agent i+ 1. That is,

Vi = {i−1} for i = 2, . . ., and V1 = {N}. In this example,

we let N = 5.

Since the framework of the paper allows for synchroniza-

tion via imperfect measurements and imperfect communi-

cation, we let D2i = 0.01, Gi,i−1 = 0.2 and randomly

selected a set of matrices C2i, Hi,i−1 to provide each agent

with partial measurements of the reference plant and the

partial information about the states of its neighbours. Also,

the Lorenz system (29) was simulated on the interval [0, 10],
with the initial conditions [0.3 0.3 20]′, to determine the

range of ρ(t). It was found that on this time interval, Γ =
[8.3874, 42.7367] and |ρ̇| ≤ 264.0108.

Next, 11 equally spaced grid points were chosen as the set

Γ0, ρk = 8.3874 + 3.4349(k − 1), k = 1, . . . , 11. Then, the

LMI optimization problem min γ2 subject to the LMI (14)

was solved at each grid point, with δ = 0.01, α2
k = 12.0359,

and Q = 1000I . These parameters were chosen to ensure that

conditions (22), (23) hold with ρ̄k = ρk+1 and ρ
k+1

= ρk,

and also to ensure the satisfaction of the rate bound condition

(27). Clearly, ρ(0) = 20 6∈ Γ0.

We have verified that all of the conditions of Corol-

lary 1 Theorem 1 are satisfied in this example including

(28) which holds with η = 0.8684. The upper bound on

the H∞ disagreement gain, guaranteed by the interpolated

gain-scheduled synchronization protocol constructed in this

example will be maxk γ
2
k = 1.7501.

To verify synchronization properties of the constructed

protocol ui, the interconnected system (30), (5) was sim-

ulated on the time interval [0, 10], and error dynamics were

plotted versus time. As an example, the plot of x(1) − x
(1)
i

versus time is shown in Figure 1. It was observed in our

simulations that all synchronization errors converged to 0,

as predicted.

V. CONCLUSION

We have revisited the previous results on robust consensus-

based synchronization of uncertain multi-agent systems to

extend them to the class of parameter varying agents. In

addition, a more general model than that in [12] has been

considered which involves communications via imperfect

channels. The paper has extended the gain-scheduling via

interpolation technique to the class of synchronization prob-

lems for large-scale systems consisting of parameter vary-

ing agents with a Lipschitz continuous nonlinearity. Our
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Fig. 1. The synchronization errors x
(1)

− x
(1)
i

versus time.

gain-scheduled synchronization algorithm involves solving a

series of synchronization problems for the fixed parameter

system considered at several operating points, and a linear

interpolation of the vector storage functions constructed at

each of the operating points.

REFERENCES

[1] W. M. Haddad, V. Chellaboina, and S. G. Nersesov. Vector dissipa-
tivity theory and stability of feedback interconnections for large-scale
non-linear dynamical systems. Int. J. Contr., 77(10):907–919, 2004.

[2] Z. Li, Z. Duan, G. Chen, and L. Huang. Consensus of multiagent sys-
tems and synchronization of complex networks: A unified viewpoint.
IEEE Trans. Circuits Syst. I: Regular Papers, 57:213 –224, 2010.

[3] T. R. Nelson and R. A. Freeman. Decentralized H∞ filtering in a
multi-agent system. In Proc. American Contr. Conf., pages 5755–
5760, St. Louis, MO, 2009.

[4] H. Nijmeijer and I.M.Y. Mareels. An observer looks at synchroniza-
tion. IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications, 44(10):882–890, Oct 1997.
[5] R. Olfati-Saber, J.A. Fax, and R.M. Murray. Consensus and coop-

eration in networked multi-agent systems. Proceedings of the IEEE,
95(1):215–233, 2007.

[6] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of
agents with switching topology and time-delays. IEEE Trans. Automat.

Contr., 49:1520–1533, 2004.
[7] B. Shen, Z. Wang, and Y. S. Hung. Distributed H∞-consensus filtering

in sensor networks with multiple missing measurements: The finite-
horizon case. Automatica, 46(10):1682 – 1688, 2010.

[8] D. J. Stilwell and W. J. Rugh. Interpolation of observer state
feedback controllers for gain scheduling. IEEE Trans. Automat. Contr.,
44(6):1225–1229, 1999.

[9] D. J. Stilwell and W. J. Rugh. Stability preserving interpolation
methods for the synthesis of gain scheduled controllers. Automatica,
36:665–671, 2000.

[10] J. Stoustrup and M. Komareji. A parameterization of observer-
ased controllers: Bumpless transfer by covariance interpolation. In
American Control Conference, 2009., pages 1871 –1875, 2009.

[11] M. V. Subbotin and R. S. Smith. Design of distributed decentralized
estimators for formations with fixed and stochastic communication
topologies. Automatica, 45(11):2491 – 2501, 2009.

[12] V. Ugrinovskii. Distributed robust filtering with H∞ consensus of
estimates. Automatica, 47(1):1 – 13, 2011.

[13] V. A. Ugrinovskii and C. Langbort. Distributed filter design for
uncertain systems with H∞ consensus of estimates via dissipativity
theory. In Proc. 49th IEEE CDC, Atlanta, GA, 2010.

[14] J. C. Willems. Dissipative dynamical systems – part I: General theory.
Archive of Rational Mechanics and Analysis, 45:321–351, 1972.

[15] M. Yoon, V. Ugrinovskii, and M. Pszczel. Gain-scheduling of minimax
optimal state-feedback controllers for uncertain linear parameter-
varying systems. IEEE Transactions Autom. Contr., 52(2):311–317,
2007.

4256


