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Abstract— In this paper, we introduce and study the notion
of “norm-controllability” for nonlinear systems. This property
captures the responsiveness of a system with respect to the
applied inputs, which is quantified via the norm of an output
map. As a main contribution, we obtain a Lyapunov-like
sufficient condition for norm-controllability. Several examples
illustrate the various aspects of the proposed concept, and we
also further elaborate norm-controllability for the special case
of linear systems.

I. INTRODUCTION

Controllability is one of the fundamental properties in
control theory. It is usually formulated as the ability to steer
the state of the system from any point to any other point
by choosing an appropriate control input. For linear control
systems, controllability can be easily checked via necessary
and sufficient matrix rank conditions, and controllable modes
can be identified with the help of the Kalman controllabil-
ity decomposition (see, e.g., [1]). Similar decompositions
have been studied for nonlinear systems, and for some
classes of nonlinear systems—most notably systems affine
in controls—controllability can be characterized in terms of
the rank of a certain Lie algebra of vector fields (see, e.g,
[2], [3]). However, for general nonlinear control systems our
understanding of point-to-point controllability is much less
complete compared to the linear case, and even in those
settings where tests for it are available they are more difficult
to apply.

In this paper, we propose a new notion that characterizes
the responsiveness of a nonlinear system to control inputs
differently from point-to-point controllability. Namely, we
look at the norm of the state and ask whether this norm
can be made large by applying large enough inputs for suffi-
ciently long time. A precise definition is given in Section III,
where we actually take a more general approach and work
with the norm of an output which identifies directions of
interest in the state space (and may in particular be the entire
state). This “norm-controllability” property can be viewed as
a weaker/coarser version of the standard controllability. We
believe that this concept is very natural and arises in many
settings of practical interest. In process control, for example,
one may want to know whether increasing the amount of
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reagent in a batch reaction yields an increase in the amount
of product; in economics, it may be of interest to maximize
the outcome or profit of a production unit, for which the
effects of certain inputs such as the number of employees,
production costs, etc. on the system have to be analyzed.

Our basic premise in this work is similar to that adopted
in the paper [4] which introduced and studied the concept of
norm-observability. Instead of observability, usually defined
as the ability to reconstruct the state of the system from
measurements of the output (and of the input if one is
present), norm-observability is defined in terms of being able
to obtain an upper bound on the norm of the state rather
than the precise value of the state. For linear systems the
two properties turn out to be equivalent, but for general
nonlinear systems it is natural and useful to consider the
latter, weaker notion, as demonstrated in [4]. In the present
work we follow the corresponding path for the dual notion of
controllability. (The conceptual similarity notwithstanding,
the technical developments presented here and in [4] are
completely different and there does not seem to be any direct
duality relationship between norm-controllability and norm-
observability.)

The proposed concept of norm-controllability can also be
viewed as complementary to the well-known input-to-state-
stability (ISS) property introduced in [5]. Loosely speaking,
a system is ISS if small inputs lead to small states; norm-
controllability, by contrast, asks that large inputs lead to large
states. ISS has an equivalent characterization in terms of a
Lyapunov function that decreases when the norm of the state
is large compared to the norm of the input [6]; our main result
(Theorem 1 in Section III) formulates a similar Lyapunov-
like sufficient condition for norm-controllability, but a Lya-
punov function should now increase when the norm of the
state is small compared to the norm of the input. Our proof
of this result (given in Section IV) proceeds by constructing
a specific piecewise-constant control input which yields a
trajectory with a suitably increasing norm. Parts of this proof
were inspired by [7] where the authors construct a piecewise-
constant control to asymptotically stabilize a system. (Again,
while it is instructive to note the similarities, most of the
technical ideas employed here are very different from those
used in the above references.)

In Section V we study several examples to illustrate
the new norm-controllability concept and the use of the
Lyapunov-like sufficient condition for checking it. In Sec-
tion VI we revisit the setting of linear systems and show,
among other things, that every linear system is norm-
controllable for initial conditions in its controllable subspace
(and so, in particular, every controllable linear system is
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norm-controllable for all initial conditions). Finally, Sec-
tion VII concludes the paper with a short summary and an
outlook on future research.

II. PRELIMINARIES AND SETUP

Let R+ := {x ∈ R : x ≥ 0} denote the set of nonnegative
real numbers. Let id : Rn → Rn be the identity function,
i.e., id(x) = x for all x ∈ Rn. For a set S ⊆ Rn, let co(S)
denote its convex hull, S its closure, int(S) its interior, and
∂S its boundary. A function α: R+ → R+ is of class K if α
is continuous, strictly increasing, and α(0) = 0. If α is also
unbounded, it is of class K∞. For a function V : Rn → R,
define as in [7] the lower directional derivative of V at a
point x ∈ Rn in the direction of a vector h ∈ Rn as

V ′(x;h) := lim inf
t↘0,h̄→h

V (x+ th̄)− V (x)
t

.

Note that at each point x ∈ Rn where V is continuously
differentiable, it holds that V ′(x;h) = (∂V /∂x)h. We say
that a function ω : Rn → Rl is uniformly continuous on a
set W ⊆ Rn if for every ε > 0 there exists a δ > 0 such
that for all x ∈ W and y ∈ Rn with |x − y| < δ it holds
that |ω(x) − ω(y)| < ε. Note that this property is true if ω
is continuous and the set W is compact. We will later use
this property with W := {x ∈ Rn : ω(x) = 0}; in this case,
uniform continuity on W means that level sets of |ω| do not
converge to the zero level set at ∞.

We consider nonlinear control systems of the type
ẋ = f(x, u), x(0) = x0,

y = h(x) (1)

with state x ∈ Rn, output y ∈ Rk, and input u ∈ U ⊆ Rm,
where the set U of admissible input values can be any closed
subset of Rm (or the whole Rm). Suppose that f is locally
Lipschitz in x and u. Input signals u(·) to the system (1)
satisfy u(·) ∈ L∞loc(R+, U), where L∞loc(R+, U) denotes
the set of all measurable and locally bounded functions
from R+ to U . We assume that the system (1) exhibits
the unboundedness observability property (see [8] and the
references therein), which means that for every trajectory
of the system (1) with finite escape time tesc, also the
corresponding output becomes unbounded for t→ tesc. This
is a very reasonable assumption as one cannot expect to
measure responsiveness of the system in terms of an output
map h (as we will later do) if a finite escape time cannot
be detected by this output map. All linear systems satisfy
this assumption, as do all nonlinear systems with radially
unbounded output maps.

Let µ : R+ → R+ be a function satisfying µ(s) ≥ s for
all s ∈ R+. For every b > 0, denote by

Ub := {u ∈ U : b ≤ |u| ≤ µ(b)} (2)

the set of all admissible input values with norm in the interval
[b, µ(b)]. Furthermore, for every a, b > 0, denote by
Ua,b := {u(·) : u(t) ∈ Ub, ∀t ∈ [0, a]} ⊆ L∞loc(R+, U) (3)

the set of all measurable and locally bounded input signals
whose norm takes values in the interval [b, µ(b)] on the time

interval [0, a]. Let Rτ{x0,U} ⊆ Rn∪{∞} be the reachable
set of the system (1) at time τ ≥ 0, starting at the initial
condition x(0) = x0 and applying input signals u(·) in some
set U ⊆ L∞loc(R+, U). The reachable set Rτ{x0,U} contains
∞ if for some u(·) ∈ U a finite escape time tesc ≤ τ exists.
Furthermore, let R≤τ{x0,U} :=

⋃
0≤t≤τ Rt{x0,U}. Define

Rτh(x0,U) as the radius of the smallest ball in the output
space centered at y = 0 which contains the image of the
reachable set Rτ{x0,U} under the output map h(·), or ∞
if this image is unbounded. In what follows, the reader may
wish to keep in mind that, as pointed out in the introduction,
y = x (i.e., h = id) is a meaningful special case for which
the developments simplify a bit but still retain all their main
features.

III. NORM-CONTROLLABILITY: DEFINITION AND
SUFFICIENT CONDITION

In this section, we propose a definition of norm-
controllability and establish sufficient conditions for a system
to possess this property. We want to consider the “respon-
siveness” of the system (1) with respect to the input u, i.e.,
how far and in which direction can the system evolve if
inputs of a certain magnitude are applied. We will quantify
this responsiveness in terms of the output map h.

Definition 1: The system (1) is norm-controllable from
x0 with scaling function µ and gain function γ, if there exist
a function µ : R+ → R+ satisfying µ(s) ≥ s for all s ∈
R+ and a function γ : R+ × R+ → R+ which is non-
decreasing in the first argument and a K∞-function in the
second argument, such that for all a > 0 and b > 0

Rah(x0,Ua,b) ≥ γ(a, b), (4)

where Ua,b is defined in (3). �
The above definition of norm-controllability can be inter-

preted in the following way. For each fixed time horizon a, if
the magnitude of the applied inputs is increased, then also the
smallest ball containing the image of the reachable set under
the output map h has to increase, which means that the norm
of the output y can be increased. On the other hand, for every
fixed lower bound b on the input norm, increasing the time
horizon a should not decrease the magnitude of the output.
Thus norm-controllability captures both the “short-term” as
well as the “long-term” responsiveness of the system (1) with
respect to the input u in terms of the norm of the output map
h, for which the gain γ is a quantitative measure.

The scaling function µ can be interpreted as follows. If
a system is norm-controllable with µ = id, then for each
b > 0 there exists an input with magnitude exactly b which
is “good” in the sense that the norm of y can be increased
when applying this input to the system (1). If a system is only
norm-controllable for some µ 6= id, then only inputs with
magnitude in the interval [b, µ(b)] are “good”. Furthermore,
the upper bound µ(b) on the input norm is essential, because
working with input signals with norm in the interval [b,∞)
instead of [b, µ(b)] would result in Ua,b2 ⊆ Ua,b1 for b2 > b1,
and then (4) cannot hold with γ(a, ·) of class K∞ unless the
left-hand side equals∞ for all b. Examples 5 and 6 illustrate
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the dependence of the norm-controllability property on the
choice of the scaling function µ in more detail.

We are now in a position to state our main result.
Theorem 1: Suppose there exist a continuous function

ω : Rn → Rl, 1 ≤ l ≤ n which is uniformly continuous on
the set W := {x ∈ Rn : ω(x) = 0}, a function V : Rn → R,
which is continuously differentiable with Lipschitz gradient
on Rn \ W , functions α1, α2, χ, ρ, ν ∈ K∞, a function
µ : R+ → R+ satisfying µ(s) ≥ s for all s ∈ R+, and
for each x ∈ Rn a set U(x) ⊆ U , such that the following
holds:
• For all x ∈ Rn,

ν(|ω(x)|) ≤ |h(x)| (5)
α1(|ω(x)|) ≤ V (x) ≤ α2(|ω(x)|) (6)

• For each b > 0 and x ∈ Rn,

U(x) ∩ Ub 6= ∅. (7)

• For all (x, u) ∈ Rn × Rm such that u ∈ U(x)
and |ω(x)| ≤ ρ(|u|), the lower directional derivative
V ′(x; f(x, u)) satisfies

V ′(x; f(x, u)) ≥ χ(|u|). (8)

Then the system (1) is norm-controllable from all x0 ∈ Rn
with scaling function µ and gain function

γ(r, s) = ν
(
α−1

2

(
min

{
rχ(s) + V (x0), α1(ρ(s))

}))
. (9)

Remark 1: We need to allow V to be not continuously
differentiable for all x where ω(x) = 0 because V ∈ C1

together with (6) would imply that the gradient of V vanishes
for all x where ω(x) = 0, and thus it would be impossible
to satisfy (8) there. In the examples given in Section V, a
typical choice will be V (x) = |ω(x)|. �

Remark 2: If (8) holds not just for |ω(x)| ≤ ρ(|u|) but
rather for all x, then we can let ρ→∞ and γ in (9) simplifies
to γ(r, s) = ν

(
α−1

2 (rχ(s) +V (x0))
)
. Note that in this case,

γ(r, ·) might not be of class K∞, as γ(r, 0) 6= 0 if V (x0) 6=
0. Nevertheless, γ(r, ·) still satisfies all other properties of a
class K∞ function, i.e., is continuous, strictly increasing and
unbounded. �

When the output map h is such that h(x0) = 0, norm-
controllability captures the system’s ability to “move away”
from the initial state x0. This could e.g. be of interest if one
wants to know how far one can move away from an initial
equilibrium state (x0, u0). In other settings, it makes sense
to consider h(x0) 6= 0, e.g. in a chemical process where
initially already some product is available. This allows us,
for fixed h, ω, and V , to vary the initial condition x0, and
the effect of this is given by the term V (x0) in (9).

Also, there might be several possible choices for the
functions ω and V satisfying the conditions of Theorem 1.
In this case the degrees of freedom in the choice of ω and V
can be used to maximize the gain γ in (9). Example 4 will
illustrate this in more detail.

Furthermore, if systems without outputs are considered,
i.e., an output map h is not given a priori, we might

first search for functions ω and V satisfying the relevant
conditions of Theorem 1. Then, we can quantify the respon-
siveness of the system with respect to every a posteriori
defined output map h satisfying (5). It is also useful to
note that increasing the output dimension by appending extra
variables to the output cannot destroy norm-controllability (it
can only help attain it).

IV. PROOF OF THEOREM 1

In the following, we will develop two technical lemmas
(the proofs of which are omitted in this conference paper due
to space restrictions) and then obtain the proof of Theorem 1
by combining them. Let a, b > 0 be arbitrary but fixed,
and assume in the sequel that the hypotheses of Theorem 1
are satisfied. Furthermore, we assume that no u(·) ∈ Ua,b
leads to a finite escape time tesc ≤ a, for otherwise, by the
unboundedness observability property, also Rah(x0,Ua,b) =
∞, and thus (4) is satisfied with γ as in (9) and we are done.

The idea of the proof is to show that we can construct
an input signal u ∈ Ua,b such that when applying this input
signal, V̇ (x(t)) ≥ χ(|u(t)|) holds along the resulting state
trajectory x(·) as long as |ω(x(t))| ≤ ρ(|u(t)|), from which
we can obtain the desired gain function γ. We will show that
using continuity arguments, we can construct a piecewise
constant input signal such that this is satisfied.

The first lemma considers the initial phase and proves that
we can move away from x0 with the desired speed, and
is in particular needed for the case where ω(x0) = 0, i.e.,
x0 ∈W . To this end, define the set

Xb,κ := {x ∈ Rn : κ ≤ |ω(x)| ≤ ρ(b)} (10)

with κ satisfying 0 ≤ κ ≤ ρ(b).
Lemma 1: Let u0 ∈ U(x0) ∩ Ub and assume that x0 ∈

Xb,0. For all ε > 0, there exists some t1 > 0 such that for
all t ∈ [0, t1], it holds that

V (x(t)) ≥ (1− ε)tχ(b) + V (x0), (11)

where x(·) is the trajectory of the system (1) that results from
applying the constant input u0 during this time interval. �

Next we consider the situation where the state x is already
away from the set W . Then, according to our assumptions, V
is continuously differentiable with Lipschitz gradient, which
we can use to show that if some input ui is “good” at some
point xi, it is also “good” for nearby xi.

Lemma 2: Consider some time instant 0 ≤ ti < a with
x(ti) =: xi ∈ R≤a{x0,Ua,b}, and assume that xi ∈ Xb,δ for
some δ > 0; furthermore, pick an arbitrary ui ∈ U(xi)∩Ub.
Then, for each 0 < ε ≤ 1, there exists a number ∆(ε, δ) > 0
such that

V (x(t))− V (xi) ≥ (1− ε)(t− ti)χ(b) (12)

for all t ∈ [ti, ti+∆(ε, δ))∩[0, a], where x(·) is the trajectory
that results from applying the constant input ui during this
time interval. �

Compared to Lemma 1, the statement of Lemma 2 is
stronger in the sense that the time interval ∆, over which (12)
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holds, is valid for all xi ∈ Xb,δ , whereas t1 in Lemma 1 in
general depends on x0.

Combining Lemmas 1 and 2, we are now able to prove
Theorem 1. Fix an arbitrary 0 < ε̄ < 1. Denote by Λb the
sublevel set Λb :=

{
x ∈ Rn : V (x) ≤ α1(ρ(b))

}
. We

construct a desired input signal in a recursive fashion using
the following algorithm.
Step 0: If x0 ∈ int(Λb), then by (6) we have |ω(x0)| < ρ(b)
and so x0 ∈ Xb,0 according to (10). We can then pick some
u0 ∈ U(x0) ∩ Ub, which exists by (7), and apply Lemma 1
with ε = ε̄ to find a time t1 > 0 such that the trajectory
corresponding to the constant control u ≡ u0 satisfies (11)
with ε = ε̄ for all 0 ≤ t ≤ t1. If already x0 /∈ Λb, then pick
an arbitrary u0 ∈ Ub and let t1 := a. In either case, apply the
constant input u ≡ u0 on the interval [0,min{t1, a}) for as
long as the resulting trajectory x(·) does not hit ∂Λb. If we
have x(t) ∈ ∂Λb for some t ∈ [0,min{t1, a}), then denote
this time t by ť1 and skip to Step 2. If this does not happen
but t1 ≥ a, then skip to Step 3.
Step 1: If x(t1) ∈ ∂Λb, then let ť1 := t1 and skip to Step 2.
Otherwise, x(t1) ∈ int(Λb). Let δ̄ := α−1

2

(
V (x(t1))

)
.

From (6) and the definition of Λb we have δ̄ ≤ |ω(x(t1))| <
ρ(b), hence x(t1) ∈ Xb,δ̄ by (10). We can thus pick some
u1 ∈ U(x(t1)) ∩ Ub and apply Lemma 2 with ε = ε̄
and δ = δ̄ to find a ∆(ε̄, δ̄) such that the trajectory
corresponding to the constant control u ≡ u1 on the interval
[t1,min{t1 + ∆(ε̄, δ̄), a}) satisfies (12) with ε = ε̄ on this
interval. Apply the constant input u ≡ u1 on this interval for
as long as the resulting trajectory x(·) does not hit ∂Λb. If we
have x(t) ∈ ∂Λb for some t ∈ (t1,min{t1 + ∆(ε̄, δ̄), a}),
then denote this time t by ť1 and skip to Step 2. If this
does not happen but t1 + ∆(ε̄, δ̄) ≥ a, then skip to Step 3.
Otherwise, let t2 := t1 + ∆(ε̄, δ̄). In this case, x(t2) ∈ Λb
and V (x(t2)) > V (x(t1)), and so we can check that x(t2) ∈
Xb,δ̄ in the same way as we did earlier for x(t1). Therefore,
we can repeat Step 1 for the times t2, t3, . . . (but without
changing the value of δ̄).
Step 2: We have x(ť1) ∈ ∂Λb, i.e., V (x(ť1)) = α1(ρ(b)).
If ť1 = a then skip to Step 3. Otherwise, pick some ǔ1 ∈
U(x(ť1))∩Ub, which exists by (7). Apply the constant input
u ≡ ǔ1 on the interval [ť1, ť2) where ť2 := min{inf{t :
t > ť1, x(t) ∈ ∂Λb}, a}. This interval is non-empty; in fact,
ť2 ≥ min{ť1 + ∆(1, δ̌), a} where δ̌ := α−1

2 (α1(ρ(b))) and
∆(·, ·) comes from Lemma 2. To see why this is true, note
that δ̌ ≤ |ω(x(ť1))| ≤ ρ(b) according to (6) and the definition
of ť1. Hence we can apply Lemma 2 with ε = 1 and δ =
δ̌ in order to conclude that V (x(t)) − V (x(ť1)) ≥ 0 for
all t ∈

[
ť1,min{ť1 + ∆(1, δ̌), a}). And we know (setting ε

slightly below 1 in Lemma 2) that V (x(t)) starts out strictly
increasing for t ≥ ť1. This implies that indeed ť2 ≥ min{ť1+
∆(1, δ̌), a}. Moreover, if ť2 < a then x(ť2) ∈ ∂Λb and we
can repeat Step 2 for the times ť2, ť3, and so on.
Step 3: We have now reached the time t = a and we
have constructed the following control input defined on the
interval [0, a), with the control values ui, ǔj and the times
ti, ťj as specified above (those times that are never defined

are treated as ∞):

u(t) =

 u0 0 ≤ t < min{t1, ť1, a}
ui ti ≤ t < min{ti+1, ť1, a}, i = 1, 2, . . .
ǔj ťj ≤ t < min{ťj+1, a}, j = 1, 2, . . .

This input, extended with the last value (u0, ui or ǔj) at
t = a (and arbitrarily for t > a), satisfies u ∈ Ua,b, as
by construction, u(t) ∈ Ub for all t ∈ [0, a]. For each
0 < ε̄ < 1, this input signal is piecewise constant in
the interval [0, a] with only finitely many different values
ui and ǔj ; this follows from the construction in Step 1
and the argument given in Step 2. The state trajectory x(·)
resulting from the application of the control input u(·) to the
system (1) has the following properties. First, for 0 ≤ t ≤
min{ť1, a}, using (11) and then recursively applying (12)
we have V (x(t)) ≥ (1 − ε̄)tχ(b) + V (x0). Second, if
ť1 < a, then for ť1 ≤ t ≤ a the construction guarantees
that V (x(t)) ≥ V (x(ť1)) = α1(ρ(b)). This yields

V (x(a)) ≥ min
{

(1− ε̄)aχ(b) + V (x0), α1(ρ(b))
}
.

Hence, using (6), we have

|ω(x(a))| ≥ α−1
2

(
min

{
(1− ε̄)aχ(b) + V (x0), α1(ρ(b))

})
.

Finally, using (5), we obtain

|h(x(a))| ≥ ν
`
α−1

2

`
min

˘
(1−ε̄)aχ(b)+V (x0), α1(ρ(b))

¯´´
.

As u(·) is contained in Ua,b and as the above calculations
hold for arbitrary x0, it follows that

Rah(x0,Ua,b) ≥ ν
(
α−1

2

(
min

{
(1− ε̄)aχ(b) + V (x0),

α1(ρ(b))
}))

(13)

for all x0 ∈ Rn. But as (13) holds for every 0 < ε̄ ≤ 1 and
its left-hand side is independent of ε̄, we can let ε̄→ 0 and
arrive at the desired bound (4) with γ as defined in (9). The
function γ satisfies the required properties of Definition 1,
i.e., γ(·, b) is nondecreasing for each fixed b > 0 and
γ(a, ·) ∈ K∞ for each fixed a > 0. This concludes the
proof of Theorem 1. �

Remark 3: Under the conditions of Theorem 1, the sys-
tem (1) is norm-controllable in Rn, i.e., from all initial
conditions x0 ∈ Rn. However, it might be the case that the
conditions in Theorem 1 do not hold for all x ∈ Rn, but
only for all x in some (control-) invariant subset B ⊆ Rn.
In this case, the system (1) is norm-controllable from all
initial conditions x0 ∈ B. This can be proved in the exact
same way as in Theorem 1, because the set B is assumed
to be (control-) invariant. Example 4 and Proposition 3 in
Section VI will illustrate norm-controllability on control-
invariant sets in more detail. �

V. EXAMPLES

In this section, we will illustrate the concept of norm-
controllability and the verification of this property via The-
orem 1 with several examples.

Example 1: Consider the linear one-dimensional system
ẋ = u with output h(x) = x, and take ω(x) = x and V (x) =
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|x|, which means that ν = α1 = α2 = id. For all x 6= 0 we
obtain V̇ = sign(x)u = |u| =: χ(|u|) if we choose u such
that xu ≥ 0. For x = 0 we obtain V ′(0, f(0, u)) = |u| =
χ(|u|). Hence we can take the set U(x) as

U(x) :=
{

R if x = 0
{u ∈ R : xu ≥ 0} if x 6= 0 (14)

and thus (7) holds with µ := id. Furthermore, as
V ′(x, f(x, u)) ≥ χ(|u|) for all x and u ∈ U(x), we can
choose ρ→∞ according to Remark 2. Thus we can invoke
Theorem 1 to conclude that the considered system is norm-
controllable from all x0 ∈ R with scaling function µ = id
and gain γ(r, s) = rs+ |x0|.

Example 2: Consider the system ẋ = −x3+u with output
h(x) = x, and take ω(x) = x and V (x) = |x|, which means
that ν = α1 = α2 = id. For all x 6= 0 we obtain

V̇ = −|x|3 + sign(x)u

= −|x|3 + θsign(x)u+ (1− θ)sign(x)u
≥ (1− θ)|u| =: χ(|u|), 0 < θ < 1

for all |x| ≤ 3
√
θ|u| =: ρ(|u|) if we choose u such that xu ≥

0. For x = 0 we obtain V ′(0, f(0, u)) = |u| ≥ χ(|u|). Hence
the set U(x) is given as in (14), and we can again take µ :=
id. Thus by Theorem 1 we obtain that the considered system
is norm-controllable from all x0 ∈ R with scaling function
µ = id and gain γ(r, s) = min

{
(1− θ)rs+ |x0|, 3

√
θs
}

.
Example 3: Consider the system ẋ = u

1+|u| with h(x) =
x. For this system, no scaling function µ exists such that it is
norm-controllable. Namely, it is easy to see that |ẋ| ≤ 1 for
all x and u. But this means that we cannot find a function
γ(·, ·) which is a K∞ function in the second argument such
that (4) holds, as for a given a time horizon a, the norm of
the output cannot go to infinity as b→∞. Hence this system
lacks the “short-term” responsiveness captured by the norm-
controllability property. Nevertheless, one can see that for
a→∞, also |h(x)| → ∞ for every constant control u > 0.

Example 4: Consider the system

ẋ = f(x, u) =
[
−x3

1 + x2 + u
−x2 + x1 + u

]
, h(x) = x. (15)

As pointed out in Section III, with this example we illustrate
how different functions ω and V can be used to establish the
norm-controllability property of the system (15). To this end,
consider the two functions ω1(x) = x1 and ω2(x) = x2,
as well as V1(x) = |x1| and V2(x) = |x2|. It holds that
|h(x)| ≥ |ωi(x)| for i = 1, 2; thus in both cases we can
choose νi = α1,i = α2,i = id. Furthermore, the positive
orthant R2

+ := R+ × R+ is a control-invariant set for the
system (15) if inputs u with u ≥ 0 are applied, which
can be easily seen by noting that the vector field f points
inside the positive orthant for all x on its boundary and
all u ≥ 0. Considering ω1 and V1, by similar calculations
as in the previous examples one can show via Theorem 1
that the system (15) is norm-controllable from all x0 =
[x10 x20]T ∈ R2

+ with gain γ1(r, s) = min
{

(1 − θ)rs +
|x10|, 3

√
θs
}

. Similar calculations using ω2 and V2 yield that
the system (15) is norm-controllable from all x0 ∈ R2

+ with

gain γ2(r, s) = min
{

(1− θ)rs+ |x20|, θs
}

. Hence we can
conclude that the system (15) is norm-controllable from all
x0 ∈ R2

+ with gain γ = max{γ1, γ2}, which shows how the
possible degrees of freedom in the choice of the functions
ω and V can be used to maximize the gain γ. Furthermore,
by the choice of the functions ω1, ω2 and V1, V2, we also
have proved norm-controllability of the system (15) for the a
posteriori defined output maps h1(x) = x1 and h2(x) = x2.

The following two examples illustrate the effect of an
appropriate choice of the scaling function µ on norm-
controllability.

Example 5: Consider the system

ẋ = f(x, u) =


|u|, |u| ≤ 1/2
1− |u|, 1/2 < |u| ≤ 1
0, 1 < |u| ≤ 2
|u| − 2, 2 < |u|

(16)

with output h(x) = x, for which R+ is an invariant set.
This system is not norm-controllable in R+ with µ = id,
as f(x, u) = 0 for all 1 < |u| ≤ 2 and thus no function γ
can be found such that (4) holds. Nevertheless, the system
is norm-controllable in R+ with scaling function µ(s) = cs
for every c > 2. To see why this is true, consider e.g. the
functions ω(x) = x and V (x) = |x|, and for all x ∈ R+

define the set

U(x) :=
{
u ∈ R : |u| ∈

[
0,
c+ 2

2c
]
∪
[c+ 2

2
,∞
)}

with c > 2. For each b > 0 and x ∈ R+, U(x)∩{u ∈ R : b ≤
|u| ≤ cb} 6= ∅. Furthermore, for all x ∈ R+ and u ∈ U(x),
we obtain V ′(x, f(x, u)) = f(x, u) ≥ c−2

c+2 |u| =: χ(|u|).
Thus we can infer from Theorem 1 that the system (16)
is norm-controllable in R+ with scaling function µ(s) =
cs for every c > 2. Note that c > 2 is also necessary for
the system (16) to be norm-controllable in R+ with scaling
function µ(s) = cs. Namely, if c ≤ 2, then for b = 1 we
have f(x, u) = 0 for all u ∈ [1, µ(1)], and thus no function
γ can be found such that (4) holds. One can see that the
choice of the scaling function µ affects χ and thus, according
to (9), also the gain γ. Namely, for c↘ 2, χ→ 0, whereas
for c → ∞, χ → id. Furthermore, by similar calculations
as above, one can also show that the system (16) is norm-
controllable in R+ with scaling function µ(s) = s+d if and
only if d > 1.

Example 6: Let 0 < ε < 1. Consider the system

ẋ = f(x, u) =


f1(u), |u| < 1
f2(u), k ≤ |u| < k + ε,

f3(u), k + ε ≤ |u| < k +
1 + ε

2
,

f4(u), k +
1 + ε

2
≤ |u| < k + 1

(17)

for k = 1, 2, . . . , with f1(u) = |u|, f2(u) = 1, f3(u) =
k|u| + 1 − k(k + ε), f4(u) = −k|u| + 1 + k(k + 1), and
output h(x) = x. By similar calculations as in Example 5
one can show that the system (17) is norm-controllable in
R+ with scaling function µ(s) = cs if and only if c > 1,
and also with scaling function µ(s) = s + d if and only
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if d > 1 + ε. On the other hand, if the vector field f is
modified so that the segments where f(x, u) = 1, i.e. the
segments in between two “peaks”, have length kε instead of
ε, then the system is norm-controllable in R+ with scaling
function µ(s) = cs if and only if c > 1 + ε, whereas it is
not norm-controllable with scaling function µ(s) = s+d for
any d ≥ 0.

VI. NORM-CONTROLLABILITY OF LINEAR SYSTEMS

In this section, we further elaborate the property of norm-
controllability for linear systems. We show how norm-
controllability for special linear output maps corresponding
to left eigenvectors of the system matrix can be established,
and how this can be related to the standard controllability
notion. Furthermore, we show how invariant sets can be used
in order to establish norm-controllability for a large class of
output maps h.

Consider the linear system

ẋ = Ax+Bu (18)

with A ∈ Rn×n and B ∈ Rn×m. Denote the
controllable subspace of the system (18) by1 S :=
span[B,AB, . . . , An−1B]. Furthermore, let λ1, . . . , λn de-
note the eigenvalues of A (with algebraic and geometric
multiplicity possibly greater than 1) and `T1 , . . . the corre-
sponding left eigenvectors of A.

Proposition 1: A linear system (18) is norm-controllable
from all x0 ∈ Rn with output map h(x) = `Ti x, for each
left eigenvector `i of A which is not orthogonal to S. �

Proposition 1 can be proven via Theorem 1 by considering
the functions ω(x) = h(x) and V (x) = |ω(x)|. For every
linear system (18) which is controllable, the controllable
subspace is S = Rn, and hence none of the left eigenvectors
of A is orthogonal to S , which according to Propositon 1
means that the system is norm-controllable for each output
map h(x) = `Ti x with `i being a left eigenvector of A. In
fact, it turns out that also the converse is true, which leads
to the following Proposition:

Proposition 2: A linear system (18) is controllable if and
only if it is norm-controllable from all x0 ∈ Rn with output
map h(x) = `Ti x, for all left eigenvectors `Ti of A. �

Necessity follows from Proposition 1. For proving suffi-
ciency, one can first show by a contradiction argument that
if the system (18) is norm-controllable from all x0 ∈ Rn
with output map h(x) = `Ti x, then `Ti B 6= 0, for all left
eigenvectors `Ti of A. But then it follows via the Hautus test
that the system (18) is controllable.

Furthermore, for each scalar linear function ω(x) = cTx
there exists a K∞-function ν such that (5) is satisfied for the
output map h = id (e.g., we can take ν(r) = r/|c|). Hence
we can state the following corollary:

Corollary 1: Every controllable linear system with output
y = x is norm-controllable from every x0 ∈ Rn.

The above propositions, which consider norm-
controllability of a linear system from all initial conditions

1For a matrix X ∈ Rn×m with n ≥ m, denote by span(X) the subspace
of Rn spanned by the columns of X .

x0 ∈ Rn, allow only such linear output maps h which
correspond to one of the left eigenvectors of the matrix A
which is not orthogonal to S. This might be quite restrictive,
as one might either not be able to find such eigenvectors
or want to prove norm-controllability for a different output
map. Thus in the following, we will consider situations
where the conditions of Theorem 1 are not fulfilled globally,
but only on a control-invariant set B, as explained in
Remark 3. In this conference paper we will only consider
the controllable subspace for B; results for more general
control-invariant sets for the system (18) are not included
for space reasons.

Without loss of generality, consider the linear system (18)
in the Kalman controllability decomposition (see, e.g., [1])

ẋ1 = A11x1 +A12x2 + B̃u

ẋ2 = A22x2.

Herein, dim(x1) = rank[B,AB, . . . , An−1B] =: n1, and
dim(x2) = n− n1.

Proposition 3: A linear system (18) with B 6= 0 is norm-
controllable from all x0 ∈ S with output map h(x) =
[˜̀Ti 0]x, for each left eigenvector ˜̀T

i of A11. �

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we introduced the notion of norm-
controllability as a framework to quantify the responsiveness
of a dynamical system to applied inputs. A Lyapunov-
like sufficient condition was given under which norm-
controllability can be established. Furthermore, the various
aspects of the proposed concept were illustrated with several
examples and further elaborated for linear systems.

There are many possibilities for future research. For ex-
ample, it would be interesting to obtain converse Lyapunov
results for norm-controllability. Also, further research is
needed to specify the class of nonlinear systems which are
norm-controllable with scaling function µ = id. Moreover,
relaxed sufficient conditions for norm-controllability involv-
ing higher-order derivatives, as well as weaker notions of
norm-controllability, are currently under investigation.
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