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Abstract— This paper investigates the consensus problems
in directed networks under communication constraints. Each
agent has a real-valued state but can only exchange finitely
many bits information with its neighbors at each time step.
Based on dynamic difference encoding and decoding, a dis-
tributed algorithm is proposed to achieve quantized consensus
asymptotically with as few as only one bit information exchange
at each time step. The upper bound of asymptotic convergence
rate and the group decision value are given. Furthermore,
simulations are provided that demonstrate the effectiveness of
the theoretical results.

I. INTRODUCTION

Since the pioneering works of Vicsek et al. [1] and

Jadbabaie et al. [2], the consensus problems attract a lot

of attention from the control community. Olfati-Saber and

Murray [3] solved the average consensus problems for a

network of first-order integrators using directed graphs. From

then on, quite a tremendous amount of interesting results [4],

[5], [6], [7], [8] have been addressed, to name a few. Due to

the fact that communication channels have a limited channel

bandwidth, i.e., agents can only transmit a finite amount of

information at each time step, message quantization should

be considered.

The investigation of consensus under quantized commu-

nication started with [9], [10]. Kashyap et al. [9] and Nedic

et al. [10] designed average consensus protocols under the

assumption that each agent has integer-valued state. These

protocols drive each agent to integer approximation of the

average of the initial states. From then on, several results

appeared recently that tackle this issue; there include [10],

[11], [12], [13], [14], [15], [16], [17], [18], [19]. In [13] and

[16], based on the dynamic encoding and decoding, Carli et

al. designed a distributed protocol with error compensation

and showed that the average consensus can be achieved

asymptotically. Li et al. [20] adopted the same scheme and

obtained stronger results: Consensus with the 1 bit quantizer.

This paper follows the work in [20] and investigates

consensus problem for a more general class of networks;

that is, information consensus under directed graphs. Dealing

with directed and possibly unbalanced graphs, we need to

take into account two difficulties: 1) that the Laplacian

matrix, not being symmetric, might be not diagonalizable,

2) that the left eigenvector of the Laplacian matrix cor-

responding to the eigenvalue 1 is possibly different from

[1,1, . . . ,1]T . Three lemmas are used to tackle with the
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difficulties. We adopt the coding/decoding schemes used

in [20] with the discrete-time first-order direct networks

under communication constrains. The control parameters

are adjusted to ensure that as time progresses the state of

each agent approaches a common group decision value. It

is shown that if the network contains a spanning tree, the

proposed algorithm guarantees quantized consensus with any

given bits information exchange at each time step. An upper

bound of asymptotic convergence rate and the group decision

value are given. Different from the algorithm proposed in

[20], the control parameters are chosen by solving a second-

order equation to tackle with the difficulty caused by directed

communication graphs and achieve average consensus in any

rate communication. Finally, simulation results are provided

to show the effectiveness of the proposed algorithm.

The paper is organized as follows. Section II introduces

some notations and preliminaries on graph theory and gives a

detailed description of the proposed protocol. In Section III,

based on 3 lemmas, it is proved that quantized consensus can

be achieved asymptotically with any data rate. We provide

simulations results in Section IV and conclude the paper in

Section V.

II. PROBLEM FORMULATION

This section introduces the networks of dynamic agents

and presents the quantized consensus algorithm.

A. Graph Model

The information flow topology between agents is rep-

resented as a directed graph G = (V ,E ,A ), where V =
{1,2, . . . ,N} is the set of vertices with i representing the

ith agent, E ⊂ {(i, j) : i, j ∈ V } is the set of edges and

A = [ai j] ∈ RN×N is the weighted adjacency matrix of G

satisfying ai j ≥ 0,∀i, j ∈ V . A directed edge denoted by the

pair ( j, i) represents a communication channel from j to i.

The neighbors, Ni, of node i are all nodes that communicate

to i, i.e., Ni = { j : ai j 6= 0}. Also, degin(i) = ∑N
j=1 ai j is called

the in-degree of i, and the out-degree of i is defined as

degout(i) = ∑N
j=1 a ji. d = maxi degin(i) is called the degree

of G . The Laplacian matrix of G is defined as L = D −
A , where D = diag(degin(1), . . . ,degin(N)). A sequence of

edges (i1, i2),(i2, i3), . . . ,(ik−1, ik) is called a directed path

from node i1 to node ik. A directed tree is a directed graph,

where every node, except the root, has exactly one parent. A

spanning tree of a directed graph is a directed tree formed

by graph edges that connected all the nodes of the graph.

We say that a graph contains a spanning tree if a subset of

the edges forms a spanning tree.
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B. Quantized Consensus Algorithm

In [6], a consensus algorithm was defined as

xi(t + 1) = xi(t)+ h∑ j∈Ni
ai j (x j(t)− xi(t)) ,

t = 0,1, . . . , i = 1,2, . . . ,N,
(1)

where xi(t) ∈ R is the state of the ith agent, and h is

the control gain. Here we assume that the communication

network is constituted of digital links. Thus only symbolic

data can be exchanged between agents. The exchanged data

is quantized by a (2F +1)-level uniform quantizer, which is

given by

q
F
(x) =























0, −1/2 < x < 1/2,
i, (2i−1)/2 ≤ x < (2i+ 1)/2,

i = 1,2, . . . ,F −1,
F, x ≥ (2F −1)/2,

−q
F
(−x), x ≤−1/2.

(2)

In this paper, we adopt the coding/decoding schemes in

[20] as follows. The difference encoder Ei of the ith agent

has an internal state yi(t) with the dynamics














yi(0) = 0,

Oi(t) = q
F

[

1

g(t −1)
(xi(t)− yi(t −1))

]

,

yi(t) = g(t −1)Oi(t)+ yi(t −1),

(3)

where g(t)> 0 is the scaling function, and Oi(t) is the output

of Ei. For each edge (i, j) ∈ E , the jth agent receives Oi(t)
and uses the following decoder to estimate xi(t):

{

zi j(0) = 0,
zi j(t) = g(t −1)Oi(t)+ zi j(t −1),

(4)

where we define the decoder Di j by Di j(Oi(t)) = zi j(t).
In [20], the consensus algorithm is given by

xi(t + 1) = xi(t)+ h ∑
j∈Ni

ai j (z ji(t)− yi(t)) . (5)

By (3) and (4), we have

zi j(t) = yi(t), j ∈ Ni, (6)

i.e., the internal state yi(t) of encoder Ei equals to

the estimates of xi(t) by its neighbors. Denote X(t) =
[x1(t),x2(t), . . . ,xN

(t)]T , Y (t) = [y1(t),y2(t) . . . ,yN
(t)]T ,

quantization error e(t) = X(t) − Y (t), consensus error

c(t) = X(t) −
(

pT X(0)
)

1, where the vector p ∈ RN×1

satisfies

p ≥ 0, pT 1 = 1 and pT
L = 0T , (7)

and 1 and 0 denote column vectors with all ones and zeros,

respectively. Then from (3), (4), (6) and (7), (5) can be

written in a vector form as






X(t + 1) = (I −hL )X(t)+ hL e(t),

Y (t + 1) = g(t)QF

(

X(t + 1)−Y(t)

g(t)

)

+Y (t),
(8)

where QF

(

[x1,x2, . . . x
N
]T
)

= [q
F
(x1),qF

(x2), . . . ,qF
(x

N
)]T .

III. MAIN RESULTS

Before moving on, we make the following assump-

tions: A1) G contains a spanning tree; A2) maxi |xi(0)| ≤
Cx, maxi |ci(0)| ≤ Cc, where Cx and Cc are known nonneg-

ative constants; A3) L is diagonalizable; A4) L is not

diagonalizable.

A. Supporting Lemmas

To tackle with the technical difficulties in the general-

ization from undirected to directed graphs, the following

lemmas are needed to derive the main results.

Lemma 3.1: ([5]). If Assumption A1) holds, the graph

Laplacian L has exactly one zero eigenvalue λ1(L ), and

all of the other eigenvalues λ2(L ), λ3(L ), . . ., λN(L ) are

in the open right half plane.

Denote

ρh = max
2≤i≤N

|1−hλi(L )| . (9)

Then we have the following lemma.

Lemma 3.2: If Assumption A1) holds and h ∈ (0,1/d),
then ρh < 1 and

lim
h→0

1−ρh

h
= min

2≤i≤N
Re (λi(L )) , (10)

where d is the degree of the graph G .

Proof: Fig. 1 is used to show the notations used in the

proof. In complex plane, denote circle H and circle I for

the circles centered at point H(1,0) and point I(d,0) intersect

the real axis at point C(2,0) and L(2d,0), respectively. For

any given i = 2,3, . . . ,N, let vector
−→
OJ = λi(L ). The straight

line OJ intersects circle H and circle I at point A and point

M, respectively. Following from Gershgorin theorem and the

definition of weighted matrix A , we know that point J is

located in circle H or falls on the circumference of the

circle. Noting that ∠OAC = ∠OML = π/2, we have

OM

OA
=

OL

OC
=

2d

2
= d.

where OM denotes the length of the vector
−−→
OM , and so do

OA, OL and OC. This together with h ∈ (0,1/d) leads to

OG = hOJ < OA, i.e., point G is located in circle H , which

implies that

|1−hλi(L )| = HG < 1.

Let’s denote by ai and bi the real and the imaginary part

of λi, respectively. Noticing that ai > 0 by Lemma 3.1, we

have

ρh = max
2≤i≤N

|1−h(ai + jbi)|

= max
2≤i≤N

√

1−2aih +
(

a2
i + b2

i

)

h2

= max
2≤i≤N

{1−aih + o(h)}

= 1−h min
2≤i≤N

ai + o(h), h → 0,

which leads to (10).

Lemma 3.3: If Assumption A1) holds, the graph Lapla-

cian can be decomposed as

L = VDK (11)
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Fig. 1. Notations used in the proof for Lemma 3.2.

where D ∈ C
N×N is the Jordan canonical form of L with

the first diagonal entry equals to zero, V = [1,R] ∈ CN×N

and K =
[

p,QT
]T

∈ C
N×N are nonsingular matrices. For any

given h ∈ (0,1/d) and r ∈ (ρh,1), denote J1(h) as the sub-

matrix of I−hD formed by deleting the first row and the first

column, J2(h,r) = r−1J1(h). Then there exist real numbers

C′
J(h,r) = max

i∈N

∥

∥

∥
[J2(h,r)]i

∥

∥

∥

∞
, (12)

and

CJ(h,r) = lim
n→∞

n

∑
i=0

∥

∥

∥
[J2(h,r)]i

∥

∥

∥

∞
. (13)

Proof: Noting that L 1 = L T p = 0, (11) can be derived

using the Jordan canonical form. By Lemma 3.2 and the

definition of J2(h,r), all the eigenvalues of J2(h,r) are of

modulus less or equal to
ρh
r

< 1. Thus, J2(h,r) is a convergent

matrix, i.e., [J2(h,r)]m → 0 as m → ∞, which implies that

‖[J2(h,r)]m‖∞ → 0 as m → ∞. Then there exists real number

C′
j(h,r) ∈ R≥0 satisfying (12).

If Assumption A3) holds, for any given i ∈ N,

∥

∥

∥
[J2(h,r)]i

∥

∥

∥

∞
=
(ρh

r

)i

, (14)

which leads to

lim
n→∞

n

∑
i=0

∥

∥

∥
[J2(h,r)]i

∥

∥

∥

∞
= lim

n→∞

n

∑
i=0

ρ i
h =

r

1−ρh

. (15)

If Assumption A4) holds, (13) can be found in Example

7.9.3 in [21].

B. Convergence Analysis

The main theorems in this subsection are the generaliza-

tions to directed graphs of the work in [20], where only

undirected graphs were considered.

Theorem 3.1: If Assumptions A1),A2) and A3) hold, for

any given h ∈ (0,1/d ) and r ∈ (ρh,1), let

M1(h,r) =
1 + 2hd

2r
+

2h2d2‖R‖∞‖Q‖∞

r(r−ρh)
, (16)

F1(h,r) = ⌊M1(h,r)−1/2⌋+ 1, (17)

where R and Q are defined in Lemma 3.3, and for any given

F ≥ F1(h,r), let

g0 > max

{

(Ccr + 2hCxd)(r−ρh)

hd
,

Cx

F + 1/2

}

. (18)

Then under the protocol given by (3), (4) and (5) with the

(2F +1)-level uniform quantizer (2) and the scaling function

g(t) = g0rt , the closed loop system (8) satisfies

lim
t→∞

xi(t) = pT X(0), i = 1,2, . . . ,N, (19)

and rasym ≤ r, where

rasym = sup
X(0) 6=(pT X(0))1

lim
t→∞

(
∥

∥X(t)−
(

pT X(0)
)

1
∥

∥

∞

‖X(0)− (pT X(0))1‖∞

)1/t

,

(20)

which is defined as convergence rate of maximal consensus

error.

Proof: Noting that L T p = L 1 = 0, we rewrite (8) as














c(t + 1) = (I−hL )c(t)+ hL e(t),
e(t + 1) = (I + hL )e(t)−hL c(t)

−g(t)Q

(

(I + hL )e(t)−hL c(t)

g(t)

)

.

(21)

Let 













w(t) =
1

g(t)
c(t),

z(t) =
1

g(t)
e(t).

(22)

From (22) and g(t) = g0rt , we have
{

w(t + 1) = r−1(I −hL )w(t)+ r−1hL z(t),
z(t + 1) = r−1∆(t),

(23)

where

∆(t)= (I+hL )z(t)−hL w(t)−Q((I + hL )z(t)−hL w(t)) .

The paragraph proves by induction that if a (2F +1)-level

uniform quantizer with F ≥ F1(h,r) is applied, the quantizer

will never be saturated. When t = 0, from Y (0) = 0, we get

(I + hL )z(0)−hL w(0)

=
1

g0

(I + hL )(X(0)−Y(0))+
1

g0

hL
(

X(0)−
(

pT X(0)
)

1
)

=
1

g0

(I + hL )X(0)−
1

g0

hL X(0) =
1

g0

X(0).

This together with (18) gives

‖(I + hL )z(0)−hL w(0)‖∞ =
1

g0

‖x(0)‖∞ ≤
1

g0

Cx < F +
1

2
,

i.e., the quantizer is unsaturated. For any given nonnegative

integer k, suppose that when t = 0,1, . . . ,k, the quantizer is

not saturated, i.e.,

sup
0≤t≤k

‖∆(t)‖∞ ≤
1

2
,

which together with (23) gives

sup
1≤t≤k+1

‖z(t)‖∞ ≤
1

2r
. (24)

6429



Following Lemma 3.3, let

w(t) = Kw(t) = r−1(K −hKL )w(t)+ hKL z(t)

= r−1(K −hDK)w(t)+ hDKz(t)

and decompose w(t) =
[

w1(t) wT
2 (t)

]T
with a scalar

w1(t). Considering that X(t + 1) = X(t)−hLY (t), we have

pT X(t + 1) = pT X(t), t = 0,1, . . ., which leads to

pT c(t) = pT X(t)− pT
(

pT X(0)
)

1 = pT X(t)− pT X(0) = 0

and

w1(t) = pT w(t) = 0, t = 0,1, . . . .

On the other hand,

w2(t + 1) =J2(h,r)w2(t)+ r−1hQL z(t)

=[J2(h,r)]t+1
w2(0)+ r−1h [J2(h,r)]t QL z(0)

+ r−1h
t−1

∑
i=0

[J2(h,r)]i QL z(t − i).

Thus, when t = k+1, noting that w(t) = Rw2(t) and w2(t) =
Qw(t), we have

w(k + 1) =R [J2(h,r)]k+1
Qw(0)+ r−1hR [J2(h,r)]k QL z(0)

+ r−1hR
k−1

∑
i=0

[J2(h,r)]i QL z(k− i).

(25)

Now we estimate the three items on the right hand side of

(25), separately. For the first item, we have
∥

∥

∥
R [J2(h,r)]k+1

Qw(0)
∥

∥

∥

∞

≤‖R‖∞

∥

∥

∥
[J2(h,r)]k+1

∥

∥

∥

∞
‖Q‖∞ ‖w(0)‖∞

≤
‖R‖∞ ‖Q‖∞ Cc

g0

(ρh

r

)k+1

≤
‖R‖∞ ‖Q‖∞ Cc

g0

(ρh

r

)k

.

(26)

For the second item, we have
∥

∥

∥
r−1hR [J2(h,r)]k QL z(0)

∥

∥

∥

∞

≤r−1h‖R‖∞ ‖Q‖∞

∥

∥

∥
[J2(h,r)]k

∥

∥

∥

∞
‖L ‖∞ ‖z(0)‖∞

≤2r−1hd ‖R‖∞ ‖Q‖∞

Cx

g0

(ρh

r

)k

=
2hd ‖R‖∞ ‖Q‖∞ Cx

g0r

(ρh

r

)k

.

(27)

Similarly, for the last item, by (24) we have
∥

∥

∥

∥

∥

r−1hR
k−1

∑
i=0

[J2(h,r)]i QL z(k− i)

∥

∥

∥

∥

∥

∞

≤r−1h2d
1

2r
‖R‖∞

k−1

∑
i=0

∥

∥

∥
[J2(h,r)]i

∥

∥

∥

∞
‖Q‖∞

≤
hd

r2
‖R‖∞ ‖Q‖∞

1−
(ρh

r

)k

1−
ρh

r

=
hd ‖R‖∞ ‖Q‖∞

r(r−ρh)

[

1−
(ρh

r

)k
]

.

(28)

Then by r ∈ (ρh,1), (18) and (26)-(28), we get

‖w(k + 1)‖∞ ≤
hd ‖R‖∞ ‖Q‖∞

r(r−ρh)
, (29)

which together with (16), (17) and (24) gives

‖(I + hL )z(k + 1)−hL w(k + 1)‖∞

≤‖I + hL ‖∞ ‖z(k + 1)‖∞ + h‖L ‖∞ ‖w(k + 1)‖∞

≤
1 + 2hd

2r
+ 2hd

hd ‖R‖∞ ‖Q‖∞

r(r−ρh)

=
1 + 2hd

2r
+

2h2d2 ‖R‖∞ ‖Q‖∞

r(r−ρh)

=M1(h,r) < F1(h,r)+
1

2

≤F +
1

2
,

(30)

i.e., the quantizer is unsaturated when t = k + 1. Thus, by

induction, the applied (2F + 1)-level uniform quantizer will

never be saturated. By the definition of w(t) and (29), (19)

holds.

From c(k +1) = g0rk+1w(k +1) and (25), similar to (26)-

(28), we have

‖c(k + 1)‖∞

‖c(0)‖∞

≤‖R‖∞ ‖Q‖∞ ρk+1
h

+
2hd ‖R‖∞ ‖Q‖∞ ρk

hCx

‖c(0)‖∞

+
g0hd ‖R‖∞ ‖Q‖∞

(r−ρh)‖c(0)‖∞

(

rk −ρk
h

)

.

This together with r ∈ (ρh,1) gives

lim
k→∞

(

‖c(k + 1)‖∞

‖c(0)‖∞

)
1

k+1

= lim
k→∞

exp

{

1

k + 1
ln

(

‖c(k + 1)‖∞

‖c(0)‖∞

)}

≤ lim
k→∞

exp

{

1

k + 1

[

ln

(

g0hd ‖R‖∞ ‖Q‖∞

(r−ρh)‖c(0)‖∞

rk

)

+ o(1)

]}

= lim
k→∞

exp

{

1

k + 1
[k lnr + o(1)]

}

= r, ∀c(0) 6= 0,

(31)

i.e., rasym ≤ r.

Remark 3.1: In [4], the asymptotic convergence factor

was defined as

rasym = sup
X(0) 6=(pT X(0))1

lim
t→∞

(
∥

∥X(t)−
(

pT X(0)
)

1
∥

∥

2

‖X(0)− (pT X(0))1‖2

)1/t

.

In this paper, we adopt ‖ · ‖∞ vector norm rather than ‖ · ‖2

vector norm, because for finite-dimensional real or complex

vector spaces, all vector norms are equivalent. Intuitively

speaking, we consider the maximal consensus error at each

time step, neglecting the number of agents.

If the Laplacian L is not diagonalizable, similar to the

proof of Theorem 3.1, we have the following results.
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Theorem 3.2: If Assumptions A1), A2) and A4) hold, for

any given h ∈ (0,1/d ) and r ∈ (ρh,1), let

M2(h,r) =
1 + 2hd

2r
+

2h2d2‖R‖∞‖Q‖∞

r(r−ρh)
CJ(h,r), (32)

F2(h,r) = ⌊M2(h,r)−1/2⌋+ 1, (33)

where CJ(h,r) is defined in Lemma 3.3. For any given F ≥
F2(h,r), let

g′0 > max

{

(Ccr + 2hCxd)(r−ρh)

hd
,

Cx

F + 1/2

}

. (34)

Then under the protocol given by (3), (4) and (5) with the

(2F +1)-level uniform quantizer (2) and the scaling function

g(t) = g′0rt , the closed loop system (8) satisfies (19) with

rasym ≤ r.

C. Any Rate Consensus

For any given h ∈ (0,1/d), ρh is the convergence rate of

the system (1) in the case of perfect communication in [4]. In

Theorem 3.1, the number of quantization levels F(h,r) → ∞
as r → ρh. Fortunately, the information consensus can be

achieved with limited communication data rate at the cost of

slower convergence.

If Assumptions A1),A2) and A3) hold, for any given F ∈
N∗, let

ΩF =

{

(α,β )|α ∈ (0,1/d), β ∈ (ρα ,1), M1(α,β ) < F +
1

2

}

,

(35)

where ρα is defined by (9) and M1(α,β ) is defined by (16).

Obviously, for any (h,r) ∈ ΩF , under the protocol given by

(3), (4) and (5) with the (2F + 1)-level uniform quantizer

(2), the closed loop system (8) satisfying (19).

Theorem 3.3: Suppose Assumptions A1)-A3) hold. For

any given F ∈ N∗ , ΩF is nonempty.

Proof: By the definition of ρα and Lemma 3.2, ρα → 1

and
α2

1−ρα
→ 0 as α → 0, which together with β ∈ (ρα ,1)

gives that

lim
α→0

M1(α,β ) = lim
α→0

(

1 + 2αd

2
+

2α2d2 ‖R‖∞ ‖Q‖∞

1−ρα

)

=
1

2
.

Thus, for any given F ∈ N
∗, there exist α ∈ (0,1/d) and

β ∗ ∈ (ρα∗ ,1) such that

M1(α
∗,β ∗) < F +

1

2
.

The following algorithm generates h and r which are fitting

for any number of quantization levels.

Theorem 3.4: For any given F ∈ N∗, choose a constant

h∗ ∈ (0,1/d) satisfying

2d2‖R‖∞ ‖Q‖∞ (h∗)2 +(1−ρh∗)dh∗−(1−ρh∗)F < 0. (36)

(ii) Choose a constant r∗ ∈ (rF ,1), where rF denotes the

larger solution of the following second-order equation

(2F + 1)x2 − [(1 + 2h∗d)+ ρh∗(2F + 1)]x+
[

ρh∗(1 + 2h∗d)−4d2‖R‖∞ ‖Q‖∞ (h∗)2
]

= 0.
(37)

Then we have

M1 (h∗,r∗) ∈ ΩF(h,r). (38)

Proof: From (10) and the definition of ρh∗ , we can

easily get h∗ satisfying (36) and 0 < h∗ < 1/d. Consider now

the following quadratic function

f (r) =(2F + 1)r2 − [(1 + 2h∗d)+ ρh∗(2F + 1)]r

+
[

ρh∗(1 + 2h∗d)−4d2‖R‖∞ ‖Q‖∞ (h∗)2
]

.

Note that

f (ρh∗) = −4d2‖R‖∞ ‖Q‖∞ (h∗)2 < 0 (39)

and

−
1

2
f (1)= 2d2‖R‖∞ ‖Q‖∞ (h∗)2 +(1−ρh∗)dh∗−(1−ρh∗)F.

This together with (36) gives

f (1) > 0. (40)

By (39), (40) and the definition of rF , for any given r∗ ∈
(rF ,1) ⊂ (ρh∗ ,1), we have f (r∗) > 0, which leads to

1 + 2h∗d

2r∗
+

2(h∗)2d2‖R‖∞‖Q‖∞

r∗(r∗−ρh∗)
< F +

1

2
,

i.e., (38) holds.

IV. SIMULATION RESULTS

This section provides two simulation examples to illustrate

the proposed protocol and show its effectiveness. Consider

now a random geometric graph generated by choosing N =
20 points at random in the unit square, and then placing

a directed edge between each pair of points at distance less

than 0.3. The entries of A are randomly chosen from 1, 2 and

3. In the case we have that d = 12 and ‖R‖∞‖Q‖∞ = 60.342.

where max1≤i≤N |λi| = 11.552. In Fig. 2, the parameters h

and r are 0.08 and 0.751, respectively. It is shown that

the consensus is achieved with a 2-level uniform quantizer

within 25 steps. Notice that r = 0.751 is relatively near by

ρh = 0.750, which is the convergence rate under perfect

communication channel. In Fig. 3, a larger r = 0.9 is used

and one bit consensus comes true at the cost of slower

convergence.

V. CONCLUSIONS

Taking into account the general case of directed informa-

tion exchange, this paper has studied the quantized consensus

problem for directed networks of discrete-time first-order

agents under a bounded number of bits communication.

Based on dynamic difference encoding and decoding, the

proposed algorithm achieves quantized consensus asymptot-

ically with as few as only one bit information exchange

at each time step. The upper bound of convergence rate

is defined as the maximal consensus error and depends

on the number of quantization levels and the topology of

networks. It is shown that faster convergence requires more

bits of information to exchange with both theoretical and

experimental results.
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