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Abstract— Helicopter unmanned aerial vehicles (UAVs) may
be widely used for both military and civilian operations. Be-
cause these helicopters are underactuated nonlinear mechanical
systems, high-performance controller design for them presents
a challenge. This paper presents an optimal controller design
for trajectory tracking of a helicopter UAV using a neural
network (NN). The state-feedback control system utilizes the
backstepping methodology, employing kinematic and dynamic
controllers. The online approximator-based dynamic controller
learns the infinite-horizon Hamilton-Jacobi-Bellman (HJB)
equation in continuous time and calculates the corresponding
optimal control input to minimize the HJB equation forward-in-
time. Optimal tracking is accomplished with a single NN utilized
for cost function approximation. The overall closed-loop system
stability is demonstrated using Lyapunov analysis, with the
position, orientation, angular and translational velocity tracking
errors, and NN weight estimation errors uniformly ultimately
bounded (UUB) in the presence of bounded disturbances and
NN functional reconstruction errors.

I. INTRODUCTION

Due to their versatility and maneuverability, unmanned
helicopters are invaluable for applications where human
intervention may be restricted. For unmanned helicopter
control [1], it is essential to produce moments and forces
on the helicopter such that the desired regulated state is
achieved and so that the helicopter can track a desired
trajectory. The dynamics of the helicopter UAV are
nonlinear, coupled with each other, and underactuated,
which makes the control design very challenging.

In order to develop the controllers for such unmanned
helicopters, Koo and Sastry [1] have utilized an approximate
linearization-based control scheme [1] that transforms the
system into linear form. Mettler et al. [2] have introduced
a model for the helicopter independent of an accompanying
control scheme [2]. Hovakimyan et al. [3] have implemented
an output feedback control scheme with a neural network
(NN)-based controller using feedback linearization [3].
Johnson and Kannan [4] have employed an inner and outer
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loop control using pseudo-control hedging [4], and Ahmed
et al. [5] have introduced a backstepping-based controller
for the helicopter. Frazzoli [6] and Mahoney [7] have both
generated control schemes for Lyapunov-based control of
helicopter UAVs. However, none of these schemes [1]-[7]
present the optimal control of the unmanned helicopter.

Although optimal control of linear systems can be
achieved by solving the Riccati equation [15], optimal
control of nonlinear systems often requires solving the
nonlinear Hamilton-Jacobi-Bellman (HJB) equation, which
does not have a closed-form solution. Therefore, Enns and
Si [8] have used neural network dynamic programming-
based optimal control of a helicopter UAV. This optimal
controller uses offline training. Stability of the control
scheme is not included. Lee et al. [9] introduced a robust
command augmentation system using a NN, but inversion
errors can lead to problems [9].

Recently, Dierks and Jagannathan [10] introduced an
optimal controller for nonlinear discrete-time systems
in affine form. Here, the discrete-time Hamilton-Jacobi-
Bellman (HJB) equation is solved online. An online
approximator (OLA) such as a NN learns the HJB equation,
with a second OLA utilized to minimize the cost (HJB)
function. Dierks and Jagannathan [11] have extended this
scheme to continuous-time systems by using a single online
approximator (SOLA). The present work is partially derived
from a modified form of this approach.

Therefore, a SOLA-based scheme for the optimal
tracking control of a helicopter’s nonlinear continuous-time
feedback system has been considered in this paper. The
dynamic controller learns the continuous-time HJB equation
and then calculates the optimal control input to minimize
the HJB equation forward-in-time. The proposed tracking
controller consists of a single NN for approximating the
cost function with the NN weights tuned online. Lyapunov
analysis is utilized to demonstrate the stability of the
closed-loop system.

II. BACKGROUND

Consider the helicopter shown in Figure 1 with six
degrees of freedom (DOF) defined in the inertial coordinate
frame Qa, where its position coordinates are given by ρ =
[x, y, z] ∈ Qa and its orientation described as yaw, pitch,
and roll, respectively, is given by Θ = [ϕ, θ, ψ] ∈ Qa.
The equations of motion are expressed in the body fixed
frame Qb which is associated with the helicopter’s center
of mass. The bx-axis is defined parallel to the helicopter’s
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Fig. 1. Helicopter Dynamics

direction of travel and the by-axis is defined perpendicular
to the helicopter’s direction of travel, while the bz-axis is
defined as projecting orthogonally downwards from the xy-
plane of the helicopter. The dynamics of the helicopter is
given by the Newton-Euler equation in the body fixed frame
and can be written as [7][

mI 0
0 J

] [
v̇
ω̇

]
+

[
0

ω × Jω

]
=

[
F
τ

]
(1)

where m ∈ R is a positive scalar denoting the mass of
the helicopter, F ∈ R3×1 is the body force applied to
the helicopter’s center of mass, τ ∈ R3×1 is the body
torque applied about the helicopter’s center of mass, v =
[vx, vy, vz] ∈ R3×1 represents the translational velocity
vector, ω = [ωx, ωy, ωz] ∈ R3×1 represents the body angular
velocity vector, I ∈ R3×3 is the identity matrix, and J ∈
R3×3 is the positive-definite inertia matrix. The kinematics
of the helicopter are given by

ρ̇ = Rv (2)

and
Θ̇ = Tω (3)

The translational rotation matrix used to relate a vector
in the body fixed frame to the inertial coordinate frame is
defined as [12]

R(Θ) =

 cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sθsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ


where s• and c• denote the sin(•) and cos(•) functions,
respectively. The rotational transformation matrix from the
body fixed frame to the inertial coordinate frame is defined
as

T (Θ) =

 1 sϕtθ cϕtθ
0 cϕ −sϕ
0

sϕ
cθ

cϕ
cθ


where t• has been used to represent tan(•). The transfor-
mation matrix is bounded according to ∥T∥F < Tmax for
a known constant Tmax, provided −π/2 < ϕ < π/2 and
−π/2 < θ < π/2 such that the helicopter trajectory does
not pass through any singularities [1]. Here, it is necessary
to mention that ∥R∥F = Rmax for a known constant Rmax
and R−1 = RT . Let the mass-inertia matrix M be defined
as M = diag{mI,J }.

Now, (1) can be rewritten in the form given in [12], but
with dynamics as given in [7] as

M

[
v̇
ω̇

]
= S̄(ω) +

[
03×1

N2

]
+

[
G(R)
03×1

]
+ U + τd (4)

where S̄(ω) = [03×1,−ω × Jω]T , N2 ∈ R3×1 represents
nonlinear aerodynamic effects, G(R) ∈ R3×1 represents the
gravity vector and is defined as G(R) = mḡe3 with ḡ the
gravitational acceleration and m the helicopter’s mass, U ∈
R6×1 is the control input vector, with u providing the thrust
in the z-direction, w1, w2, and w3 providing the rotational
torques in x−, y− and z− directions, respectively, and τd =
[τTd1, τ

T
d2]

T represents unknown bounded disturbances such
that ∥τd∥ < τM for all time t, with τM a known positive
constant. Note that (×) denotes the vector cross product. The
nonlinear aerodynamic effects taken into consideration for
modeling of the helicopter are given by N2 = QMe3−QT e2,
with QM and QT aerodynamic constants originally found
in [7]. Note that e1, e2, and e3 are unit vectors directed along
the x-, y-, and z-axes, respectively, in the inertial reference
frame.

U =

[
Ea3 03×3

03×1 diag([p11 p22 p33])

]
û
ŵ1

ŵ2

ŵ3


where pii are positive definite constants, and with Ea3 =
[0 0 1]T . Defining the new augmented variables X =
[ρT ΘT ]T ∈ R6×1 and V = [vT ωT ]T ∈ R6×1, (4) can be
rewritten employing the backstepping technique in the form
given by

Ẋ = AV + ξ (5)
V̇ = f(V ) + Ū (6)

where f(V ) = M−1(S̄(ω) + [03×1 N2]
T ) + Ḡ with Ḡ =

M−1[G(R) 03×1]T ∈ R6×1, Ū = M−1U , with ξ ∈ R6×1

the bounded sensor measurement noise such that ∥ξ∥ ≤ ξM
for a known constant ξM . Equation (5) is in the body fixed
frame, with equation (6) bringing the dynamics back to the
earth frame. Note that these last two equations take the form

ẋ1 = f1(x1) + g1(x1)x2 + ξ

ẋ2 = f2(x2) + g2(x2)u

with f1(x1) = 0. This system is a candidate for backstepping
control [13]. Also,

A =

[
R 03×3

03×3 −Rx
]

where Rx denotes a skew-symmetric representation of
the rotation matrix. In this section, the dynamic model
of the helicopter with six degrees-of-freedom (DOF) and
four inputs has been presented. The methodology for the
controller design will now be considered.
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Fig. 2. Control Scheme for Optimal Tracking

III. METHODOLOGY

A. Nonlinear Optimal Tracking of the Unmanned Helicopter

The overall control objective for the unmanned helicopter
is to track a desired trajectory Xd(t) and a desired heading
(yaw) while maintaining stable flight. The universal approx-
imation property of NNs may be used in the design of the
dynamic controller for tracking the desired trajectory in an
optimal manner. In Figure 2, the entire NN-based control
scheme for optimal tracking of the desired trajectory by the
helicopter is illustrated. Note that the dynamic controller is
comprised of the items within the dashed boundary and that
the virtual controller will be addressed later as part of the
dynamic controller.

B. Kinematic Controller

To design the kinematic controller for the unmanned
helicopter, the tracking error for the position must first be
defined. The position tracking error is given by

δ1 = ρd − ρ ∈ Qa (7)

Also, it is essential to define v = ρ̇, which then yields the
desired velocity, vd as in [7] as vd = v−δ1/m. In addition, it
is important to note that there exist desired trajectories which
may reach unstable operating regions as the orientation about
the x- and y- axes approaches ±π/2.

C. Hamilton-Jacobi-Bellman Equation

In this section the optimal control input u∗e is designed
to ensure that the unmanned helicopter system in (4) tracks
a desired trajectory Xd(t). For optimal tracking, the desired
dynamics are defined as

V̇d = f(Vd) + gud(Vd) (8)

where f(Vd) ∈ R6×1 is the internal dynamics of the
helicopter system rewritten in terms of the desired state
Vd ∈ R6×1, g is such that guV = M−1U ∈ R6×1 is
bounded satisfying gmin ≤ ∥g∥F ≤ gmax, and ud(Vd)
is the desired control input corresponding to the desired
states. It has been assumed that the system is observable
and controllable, with e = 0 a unique equilibrium point on

compact set Υ ⊂ R6×1. Under these conditions, the optimal
control input for the unmanned helicopter system given in
(8) can be determined [15]. Next, the state tracking error is
defined as

e = V − Vd (9)

and considering the actual dynamics V̇ = f(V ) + guV , the
tracking error dynamics in (9) can be written as

ė = f(V ) + guV − V̇d = fe(e) + gue (10)

where fe(e) = f(V ) − f(Vd) and ue = uV − ud. In order
to control (10) in an optimal manner, the control policy ue
should be selected such that it minimizes the cost function
given by

WT (e(t)) =

∫ ∞

t

r(e(τ), ue(τ))dτ (11)

where r(e(τ), ue(τ)) = Q(e) + uTe Beue, Q(e) > 0 is the
penalty on the states, with Be ∈ R6×6 a positive semi-
definite matrix. After this, the Hamiltonian for the HJB
tracking problem is defined as

HT (e, ue) = r(e, ue) +WT
Te(e)(fe(e) + gue) (12)

where WTe(e) is the gradient of WT (e) with respect to e.
The basis function used for the neural network law is Φ(e) =
[∇e ∇e2 ∇e3 ∇sin(e) ∇sin(2e) ∇tanh(e) ∇tanh(2e)]T .
Now applying stationary condition ∂H(e, ue)/∂ue = 0, the
optimal control input is found to be

u∗e(e) = −B−1
e gTW ∗

Te(e)/2 (13)

with u∗e(e) ∈ R4. Substituting the optimal control input from
(13) into the Hamiltonian (12) generates the HJB equation
for the tracking problem as

0 = Qe(e) +W ∗T
Te (e)fe(e)

−W ∗T
Te (e)g(e)B

−1
e gTW ∗

Te(e)/4 (14)

with W ∗
T (0) = 0. The control input must be selected such

that the cost function in (11) is finite, or ue must be
admissible [10]. At this point, Lemma 1 will be introduced.

Lemma 1 (Boundedness of system state errors). Given
the unmanned helicopter system with cost function (11) and
optimal control input (13), let J1(e) be a continuously dif-
ferentiable, radially unbounded Lyapunov candidate function
such that J̇1(e) = JT1e(e)ė = JT1e(e)(fe(e) + gu∗e) < 0
with J1e(e) the partial derivative of J1(e). In addition,
let Q̄(e) ∈ R6×6 be a positive definite matrix satisfying
∥Q̄(e)∥ = 0 only if ∥e∥ = 0 and Q̄min ≤ ∥Q̄(e)∥ ≤ Q̄max
for emin ≤ ∥e∥ ≤ emax for positive constants Q̄min, Q̄max,
emin, and emax. Also, let Q̄(e) satisfy lime→∞ Q̄(e) = ∞
as well as

W ∗T
e Q̄(e)J1e = r(e, u∗e) = Q(e) + u∗Te Bu∗e (15)

then the following relation is true

JT1e(fe(e) + gu∗e) = −JT1eQ̄(e)J1e (16)
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Proof: Applying the optimal control input, the cost func-
tion becomes Ẇ ∗(e) =W ∗T

e (e)ė =W ∗T
e (e)(fe(e)+gu

∗
e) =

−Qe(e)− u∗Te Beu
∗
e . Because

(fe(e) + gu∗e) = −(W ∗
eW

∗T
e )−1W ∗

e (Qe(e) + u∗Te Beu
∗
e) =

−(W ∗
eW

∗T
e )−1W ∗

eW
∗T
e Qe(e)J1e = −Qe(e)J1e

One then has JT1e(fe(e)+gu
∗
e) = −JT1eQ̄e(e)J1e, concluding

the proof for Lemma 1. It is apparent that an expression
including the optimally augmented control input in (13) can
be written as

ûV = ud −B−1
e gTW ∗

Te(e)/2 (17)

and the desired feedforward control input ud is obtained
from [7]. Note that this ûV becomes the input U which is
used as the system input, with the ˆ(•) notation here used to
denote an estimate. Next, the SOLA is introduced.

D. Single Online Approximator (SOLA)-Based Optimal Con-
trol of Helicopter

In this paper, the adaptive critic for optimal control of
a helicopter is realized online using only one OLA. For the
SOLA to learn the cost function, the cost function is rewritten
using the OLA representation as

W (e) = ΓTΦ(e) + ε(e) (18)

where Γ ∈ RL is the constant target OLA vector, Φ(e) :
Rn → RL is a linearly independent basis vector which
satisfies Φ(e) = 0, and ε(e) is the OLA reconstruction error.
The basis vector used in this case is the same as in the
previous section. The target OLA vector and reconstruction
errors are assumed to be upper bounded according to ∥Γ∥ ≤
ΓM and ∥ε(e)∥ ≤ εM , respectively [14]. The gradient of the
OLA cost function in (18) is written as

∂W (e)/∂e =We(e) = ∇T
e Φ(e)Γ +∇eε(e) (19)

Using (19), the optimal control input in (13) and the HJB
equation in (14) can be written as

u∗e = −B−1gT∇T
e Φ(e)Γ/2−B−1gT∇eε(e)/2

H∗(e,Γ) = Q(e) + ΓT∇eΦ(e)fe(e) (20)
−ΓT∇eΦ(e)C∇T

e Φ(e)Γ/4 + εHJB = 0

where C = gB−1gT > 0 is bounded such that Cmin ≤
∥C∥ ≤ Cmax for known constants Cmin and Cmax and
εHJB =∇eε

T (fe(e) − 1
2gB

−1gT (∇T
e Φ(e)Γ + ∇eε)) +

1
4∇eε

T gB−1gT∇e ε
=∇eε

T (fe(e) + gu∗e) +
1
4∇eε

TC∇eε
is the OLA reconstruction error. The OLA estimate of (18)
is

Ŵ (e) = Γ̂TΦ(e) (21)

with Γ̂ the OLA estimate of the target vector Γ. In the
same way, the estimate for the optimal control input and
the approximate Hamiltonian in (20) in terms of Γ̂ can be
expressed as

û∗e = −B−1gT∇T
e Φ(e)Γ̂/2 (22)

Employing (20) and (21), the approximate Hamiltonian may
now be written as

Ĥ∗(e, Γ̂) = Q(e) + Γ̂T∇eΦ(e)fe(e)

−Γ̂T∇eΦ(e)C∇T
e Φ(e)Γ̂/4 (23)

Recollecting the HJB equation in (12), the OLA estimate
Γ̂ should be tuned to minimize Ĥ∗(e, Γ̂). However, merely
tuning Γ̂ to minimize Ĥ∗(e, Γ̂) does not ensure the stability
of the nonlinear helicopter system during the OLA learning
process.

Therefore, the OLA tuning algorithm is designed to
minimize (23) while considering the system stability and is
given below

˙̂
Γ = −(α1β̂/(β̂

T β̂ + 1)2)(Q(e) + Γ̂T∇eΦ(e)fe(e)

−Γ̂T∇eΦ(e)C∇T
e Φ(e)Γ̂/4)

+Σ(e, ûe)
α2

2
∇eΦ(e)gB

−1gTJ1e(e) (24)

where β̂ = ∇eΦ(e)fe(e) − ∇eΦ(e)C∇T
e Φ(e)Γ̂/2, α1 > 0

and α2 > 0 are design constants, J1e(e) is defined in Lemma
1, and the operator Σ(e, ûe) is given by

Σ(e, ûe) = 0 if JT1e(e)ė = JT1e(e)

(fe(e)− gB−1gT∇T
e Φ(e)Γ̂/2) < 0

1 otherwise (25)

The first term in (24) is the portion of the tuning law
which tries to minimize (23) and has been derived using a
normalized gradient descent scheme with the auxiliary HJB
error defined as below

EHJB = (Ĥ∗(e, Γ̂))2/2 (26)

The second term in the OLA tuning law in (24) ensures that
the system states remain bounded while the SOLA scheme
learns the optimal cost function.

The dynamics of the OLA parameter estimation error
is considered as Γ̃ = Γ − Γ̂. Since this yields Q(e) =
−ΓT∇eΦ(e)fe(e)+ΓT∇eΦ(e)C∇T

e Φ(e)Γ/4− εHJB from
(20), the approximate HJB equation in (23) can be expressed
in terms of Γ̃ as

Ĥ(e, Γ̂) = −Γ̃T∇eΦ(e)fe(e) +
1

2
Γ̃T∇eΦ(e)C∇T

e Φ(e)Γ

−1

4
Γ̃T∇eΦ(e)C∇T

e Φ(e)Γ̃− εHJB (27)

Then, since ˙̃Γ =
˙̂
Γ and β̂ = ∇eΦ(e)(ė

∗ + C∇eε/2) +
∇eΦ(e)C∇T

e Φ(e)Γ̃/2, where ė = fe(e) + gu∗e , the error
dynamics of (24) are

˙̃Γ =
α1

ρ21
(∇eΦ(e)(ė

∗
1 +

C∇eε

2
) +

∇eΦ(e)C∇T
e Φ(e)Γ̃

2
)

(Γ̃T∇eΦ(e)(ė
∗
1 +

C∇eε

2
) +

Γ̃T∇eΦ(e)C∇T
e Φ(e)Γ̃

2

+εHJB)− Σ(e, ûe)
α2

2
∇eΦ(e)gB

−1gTJ1e(e) (28)

where ρ1 = (β̂T β̂ + 1). Next, it is necessary to examine
the stability of the SOLA-based adaptive scheme for optimal
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control along with the stability of the helicopter system.
Definition: An equilibrium point ee is said to be uniformly

ultimately bounded (UUB) if there exists a compact set
S ⊂ Rn such that for every e0 ϵ S there exists a bound
D and time T (D, e0) such that ∥e(t) − ee∥ ≤ D for all
t ≥ t0 + T .

Theorem 2 (SOLA-based scheme for convergence to the
HJB function and system stability). Given the unmanned
helicopter system with target HJB equation (14), let the
tuning law for the SOLA be given by (24). Then there
exist constants bJe and bΓ such that the OLA approximation
error Γ̃ and ∥J1e(e)∥ are UUB for all t ≥ t0 + T with
ultimate bounds given by ∥J1e(e)∥ ≤ bJe and ∥Γ̃∥ ≤ bΓ.
Further, OLA reconstruction error ∥W ∗ − Ŵ∥ ≤ εr1 and
∥u∗e − ûe∥ ≤ εr2 for small positive constants εr1 and εr2,
respectively. Proof will be provided later for the tracking
case.

E. NN Control Scheme for the Dynamic Controller

The next step will be to consider how to obtain ud =
[ζ w1d w2d w3d]

T . This is done by obtaining w̃1d, w̃2d,
w̃3d, and ζ̃ (with ζ̃ obtained recursively) with the equations
below [7] w̃1d

w̃2d

ζ̃

 =

 0 ζ 0
−ζ 0 0
0 0 1

−1

R(Θ)T (Ẏd −

2ζ̇R(Θ)skew(ω)e3 + δ3 + δ4)

and

w̃3d =
cθ
cψ

(
¨̂
ϕ− ϵ4 − ϵ3 + eT1W

−1
Θ ẆΘW

−1
Θ ω − sψ

cθ
w̃2d)

where Yd is defined as

Yd = δ2 + δ3 +
d
dt (mḡe3 −mv̇d + δ2 +

1
mδ1)

with δ1 = ρd−ρ, δ2 = m(v−vd), ϵ3 = ϕd−ϕ, ϵ4 = ϕ̇− ϕ̇d,
as well as

δ3 = mḡe3 −mv̇d + δ2 +
1
mδ1 − ζR(Θ)e3

δ4 = Yd − (ζ̇R(Θ)e3 + ζR(Θ)skew(ω)e3)

WΘ =

 −sθ 0 1
cθsψ cψ 0
cθcψ −sψ 0


and from the kinematic controller

vd = v − 1
mδ1

Now the real inputs must be obtained. To do this, first restate
a portion of the dynamics to obtain wd from

wd = P−1(J w̃d + ω × Jω −QMe3 +QT e2)

with P = diag([p11 p22 p33]
T ) and then obtain ζ by double-

integrating from

ζ̈ = ζ̃

by using the value that has just been obtained for ζ̃. Com-
bining the preceding results yields

ud = [ζ w1d w2d w3d]
T (29)

from the values that have just been obtained for ζ, w1d,
w2d, and w3d. Proof that the inputs generated by these
equations will assure convergence is provided in [7]. The
proofs to be introduced shortly will be built on the basis of
the work of [7] and [11]. It is found that the control input
consists of a predetermined feedforward term, ud, and an
optimal feedback term. In order to implement the optimal
control in (11), the SOLA based control law is used to learn
the optimal feedback tracking control, such that the OLA
tuning algorithm is able to minimize the Hamiltonian while
maintaining the system stability.

Lemma 1 has been introduced and gives the boundedness
of ||J1e|| and therefore the system state errors, which is
necessary for Theorem 2. Theorem 2 was also introduced and
reveals that the SOLA convergence to the HJB function is
UUB for regulation of the states. Theorem 3, to be provided
next, establishes the optimality of the SOLA-based adaptive
critic controller feedback term. Lemma 4 will then provide a
stability condition needed for the proof for Theorem 5, which
establishes the stability of the entire closed-loop system.

Theorem 3 (Optimality and convergence of the SOLA-
based adaptive critic controller feedback term). Given the
nonlinear system defined in (4), with target HJB equation
(14), let the SOLA tuning law be given by (24) and the
control input be given by (6). Then the velocity tracking
error and NN parameter estimation errors of the cost function
term are UUB for all t ≥ t0 + T , and the tracking error
feedback system is controlled in a near optimal manner. That
is, ∥u∗e − ûe∥ ≤ εu for a small positive constant εu.
Theorems 3 and 5 are proven the same way as Theorem 2,
with proof to follow shortly for Theorem 5.

Lemma 4 (Stability condition). If an affine nonlinear
system is asymptotically stable and the cost function given
in [10] is smooth, then the closed-loop dynamics are asymp-
totically stable [10].

Theorem 5 (Overall system stability). Given the unmanned
helicopter system with target HJB equation (14), let the
tuning law for the SOLA be given by (24), and let the
feedforward control input be as in (29). Then there exist
constants bJe and bΓ such that the OLA approximation
error Γ̃ and ∥J1e(e)∥ are UUB for all t ≥ t0 + T with
ultimate bounds given by ∥J1e(e)∥ ≤ bJe and ∥Γ̃∥ ≤ bΓ.
Further, OLA reconstruction error ∥W ∗ − Ŵ∥ ≤ εr1 and
∥u∗e − ûe∥ ≤ εr2 for small positive constants εr1 and εr2.

Proof: First, begin with the positive definite Lyapunov
function candidate

J = α2J1(e) + Γ̃T Γ̃/2 + 1
2δ
T
1 δ1 +

1
2δ
T
2 δ2 +

1
2δ
T
3 δ3 +

1
2ϵ
T
3 ϵ3 +

1
2δ
T
4 δ4 +

1
2ϵ
T
4 ϵ4

The proof may then be divided into steps, with the first part
of the Lyapunov function candidate considered first.
Step 1: consider the optimal control Lyapunov function
candidate JHJB = α2J1(e) + Γ̃T Γ̃/2. Differentiating,
one obtains J̇HJB = α2J

T
1e(e)ė + Γ̃T ˙̃Γ. Using the

nonlinear system, the optimal control input, and the
tuning law’s error dynamics along with the derivative
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of the Lyapunov candidate function, then completing
the square, simplifying, and using Cauchy-Schwartz
yields J̇HJB ≤ α2J

T
1e(e)(fe(e) − 1

2gB
−1
e gT∇T

e Φ(e)Γ̂) −
Σ(e, ûe)

α2

2 Γ̃T∇eΦ(e)gB
−1
e gTJT1e(e) − α1

ρ2 ||Γ̃||
4β1 +

α1

ρ2 η(ε) +
α1

ρ2 β2δ
4(e) where β1 = ∇Φ4

minC
2
min/64, β2 =

1024/C2
min + 1.5, η(ε) = 64/C2

min + 1.5(ε
′4
M + ε

′4
MC

2
max),

ε
′

M is an upper bound on the OLA reconstruction
error, and 0 < ∇Φmin ≤ ||∇Φ(e)||. Now it is
necessary to consider the case Σ(e, ûe) = 0: J̇HJB ≤
−(α2ėmin − α1β2K

∗)||J1e(e)|| − α1||Γ̃||4β1

ρ2 + α1η(ε)
ρ2 . This

is less than zero if α2/α1 > β2K
∗/ėmin, ||J1e(e)|| >

α1η(ε)
(α2ėmin−α1β2K∗) ≡ bJe0, or ||Γ̃|| > 4

√
η(ε)/β1 ≡ bΓ0.

Next, to consider the case Σ(e, ûe) = 1: J̇HJB ≤
α2J

T
1e(e)(fe(e)− 1

2C(∇
T
e Φ(e)Γ+∇eε))+

α2

2 J
T
1e(e)C∇eε−

α1

ρ2 ||Γ̃
T ||4β1+α1η(ε)

ρ2 +α1

ρ2 β2δ
4(e) = α2J

T
1e(e)(fe(e)+gu

∗)+
α2

2 J
T
1e(e)C∇eε− α1

α1β1

ρ2 ||Γ̃||4 + α1

ρ2 β2K
∗||J1e||. Lemma 4

yields J̇HJB ≤ −α2Qe,min||J1e(e)||
2

2 − α1||Γ̃||4β1

ρ2 + α1η(ε)
ρ2 +

α2C
2
maxε

′2
M

(4Qe,min)
+

α2
1β

2
2K

∗2

(α2ρ4Qe,min)
with 0 < Q̄e,min ≤ ||Qe(e)||.

The second part of the Lyapunov function candidate will be
considered next.
Step 2: consider the feedforward control Lyapunov
function candidate Jfeedforward = S1 + S2 + S3 + S4

with S1 = 1
2δ
T
1 δ1, S2 = 1

2δ
T
2 δ2, S3 = 1

2δ
T
3 δ3 + 1

2ϵ
T
3 ϵ3,

and S4 = 1
2δ
T
4 δ4 + 1

2ϵ
T
4 ϵ4. It has been shown that this

selection of Lyapunov candidate will guarantee stability
in [7]. Differentiating, J̇feedforward = Ṡ1 + Ṡ2 + Ṡ3 + Ṡ4 =
−δT1 δ1/m − δT2 δ2 − δT3 δ3 − δT4 δ4 − ϵT3 ϵ3 − ϵT4 ϵ4 so
J̇feedforward < 0.
Step 3: consider the stability of the entire system.
Combining

J̇HJB + J̇feedforward = −0.5α2Qe,min||J1e(e)||2

−α1||Γ̃||4β1
ρ2

+
α1η(ε)

ρ2
+
α2C

2
maxε

′2
M

(4Qe,min)
+

α2
1β

2
2K

∗2

(α2ρ4Qe,min)

− 1

m
δT1 δ1 − δT2 δ2 − δT3 δ3 − δT4 δ4 − ϵT3 ϵ3 − ϵT4 ϵ4

Lemma 1 and Lemma 4 will then ensure J̇HJB < 0 given
that

||J1e(e)|| >
√
C2
maxε

′2
M/(2Q

2

e,min) ≡ bJe1
′ (30)

and

||Γ̃|| > 4

√
η(ε)/β1 + α1β2

2K
∗2/(β1α2Qe,min) ≡ bΓ1 (31)

which allows the conclusion that ||W ∗(e) − Ŵ (e)|| ≤
||Γ̃||||Φ(e)||+ εM ≤ bΓΦM + εM ≡ εr1 and
||u∗e(e) − ûe(e)|| ≤ λmax(B

−1
e )gMbΓΦ

′
M/2 +

λmax(B
−1
e )gMε

′
M/2 ≡ εr2. Then J̇HJB+ J̇feedforward < 0

provided that (30) and (31) hold. In other words, the overall
system is UUB with the bounds from (30) and (31),
completing the proof.�

IV. CONCLUSIONS

A NN-based optimal control law has been proposed, which
uses a single online approximator for optimal regulation
and tracking control of a helicopter UAV having a dynamic
model in backstepping form. The SOLA-based approach is
designed to learn the infinite horizon continuous-time HJB
equation, and the optimal control input that minimizes the
HJB equation is calculated forward-in-time. A feedforward
controller has been introduced to compensate for the
helicopter’s weight and requirement for rotor thrust when in
hover, and to permit trajectory tracking. Further, Theorem
2 illustrates that the estimated control input approaches the
target optimal control input with a small bounded error.
A kinematic control structure has been used to obtain the
desired velocity such that the desired position is achieved.
The stability of the system has been analyzed, and the
unmanned helicopter is capable of regulation and trajectory
tracking.
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