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Abstract—In this paper, we propose a stable fuzzy model 
predictive controller based on extended-fuzzy Lyapunov 
function. The main idea of the proposed approach is to design a 
free control variable and a non-parallel distributed 
compensation control law in such a way that an extended-fuzzy 
Lyapunov function is constructed with minimizing the upper 
bound of the infinite horizon objective function in the fuzzy 
model predictive control. Therefore, the predictive controller 
can guarantee both the stability of the closed-loop fuzzy model 
predictive control system and input constraints while obtaining 
the optimal transient performance. It is shown that the 
controller is obtained by solving a set of linear matrix 
inequalities. The extended-fuzzy Lyapunov function reduces the 
conservatism of common Lyapunov function and fuzzy 
Lyapunov function, and it also enlarges the feasible area of the 
predictive controller. Moreover, appropriate slack and 
collection matrices are used in all linear matrix inequalities, 
which can further reduce the conservatism. The simulations on 
a numerical example and a nonlinear boiler-turbine 
coordinated system demonstrate the advantage and 
effectiveness of the proposed approach. 

Index Terms—TS fuzzy model, model predictive control, 
extended-fuzzy Lyapunov function, slack and collection 
matrices. 

I. INTRODUCTION 
ODEL predictive control (MPC) uses an explicit model 
to predict the future behavior of the plant and solves a 

constrained optimization problem on-line to obtain the 
optimal control sequence [1],[2]. Since MPC can guarantee 
the stability of the closed-loop system and deal with the input 
constraint in an optimal way, MPC has become a popular 
strategy in process control [3],[4]. Generally, there are two 
problems with conventional MPC; the first is that it is 
difficult to analyze the stability of the closed-loop system 
while considering the constraint, the second is that the exact 
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model of the nonlinear plant is difficult to obtain and the 
computational burden of nonlinear optimization is heavy. 

One way to deal with the above problems is using the 
combination of several linear models to approximate the 
behavior of nonlinear plant and adopting the infinite horizon 
objective function in MPC.  Based on linear 
parameter-varying (LPV) systems, Kothare et al. [5] have 
used a feedback control law to minimize an upper bound of 
the “worst-case” infinite horizon objective function. The 
stability and robustness of the closed-loop system can be 
guaranteed through solving a convex optimization problem in 
the form of linear matrix inequalities (LMIs). The approaches 
proposed in [6], [7] have used a quasi-infinite horizon 
objective function to improve the method in [5]. By 
separating the first or several control moves from the rest of 
the control moves governed by the feedback law and setting 
them as free variables, the designed controller can be less 
conservative. However, these model predictive controllers 
are developed based on common Lyapunov function (CLF) 
which need to find a common positive definite matrix for all 
submodels. This may lead to conservatism since it is difficult 
to find such a matrix, especially for complex systems. Zhang 
et al. [8] have proposed a Takagi-Sugeno (TS) fuzzy model 
predictive controller based on piecewise Lyapunov function 
(PLF) which can reduce the conservatism in CLF. However, 
the stability result of this method depends on the partitions of 
state space. An alternative way to reduce the conservatism in 
CLF is to adopt fuzzy Lyapunov function (FLF) which only 
needs to find an independent positive definite matrix for each 
submodel. The FLF has been used successfully in fuzzy 
model predictive controllers [9]. More recently an 
extended-fuzzy Lyapunov function has been proposed to 
improve the previous results [10], and it can also be used to 
obtain better results of MPC. 

Besides improving Lyapunov functions, recently, the 
technique of slack and collection matrices has been 
continuously developed in fuzzy control to reduce the 
conservatism in stability analysis or stabilization results 
[11]-[13] . Yu et al. [14] have used slack and collection 
matrices in MPC for the LPV systems; however, they do not 
use this technique to constrain the upper bound of the infinite 
horizon objective function. Moreover, with the improved 
Lyapunov functions more slack matrices and collection 
matrices can be used to further reduce the conservatism [13].  

Based on discrete TS fuzzy model, a stable model 
predictive controller using extended-fuzzy Lyapunov 
function is proposed in this paper. The main idea of the
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proposed approach is to design a free control variable and a 
non-parallel distributed compensation (non-PDC) control 
law in such a way that an extended-fuzzy Lyapunov function 
is constructed with minimizing the upper bound of the 
infinite horizon objective function in the fuzzy model 
predictive control. Therefore, the predictive controller can 
guarantee both the stability of the closed-loop fuzzy model 
predictive control system and input constraints while 
obtaining the optimal transient performance. Combined with 
some new results in fuzzy control, we use appropriate slack 
and collection matrices with extended-fuzzy Lyapunov 
function to further reduce the conservatism and enlarge the 
feasible area of the predictive controller. The simulation on a 
numerical example demonstrates the advantage and 
effectiveness of the proposed approach. Then, the proposed 
stable model predictive controller will be applied to a 
nonlinear boiler-turbine coordinated system of a power unit 
to change the load in a wide range. 

II.   PRELIMINARIES 

A. TS Fuzzy Model 
Suppose a nonlinear discrete system can be represented as 

the following TS fuzzy model: 

1 1 2 2:  ( )    M , ( )    M ,..., ( )    M
         ( 1) ( ) ( )
       1,2,...

i i i i
n n

i i

R IF z k is z k is z k is
THEN x k A x k B u k
i r

+ = +

=       (1)  
where iR denotes the i -th fuzzy inference rule, r  is the 
number of inference rules, M ( 1,2,..., )i

j j n= are fuzzy sets, 

( ) Rnx k ∈ , ( ) Rmu k ∈ are respectively the system state and 
input variables, 1 2( ( ), ( ),..., ( ))k nz z k z k z k= are premise 
variables such as known state variables, and ( , )i iA B is the 
i -th local model of the fuzzy system.  

By using fuzzy blending, the dynamic fuzzy model (1) can 
be expressed by the following global model: 

1
( 1) ( )( ( ) ( ))

( ) ( )

r

i k i i
i

z z

x k w z A x k B u k

A x k B u k
=

+ = +

= +

∑                                   (2) 

where
1 1

( )  ,  ( )   
r r

z i k i z i k i
i i

A w z A B w z B
= =

= =∑ ∑

 
1

1

M ( )
( ) ,   M ( ) M ( ( ))

M ( )

i n
i ik

i k k j jr
i j

k
i

z
w z z z k

z =

=

= = ∏
∑

. 

B. Extended-Fuzzy Lyapunov Function 
As shown in [10], an extended-fuzzy Lyapunov function is 

defined by: 

1

1 1
( ( ), ) ( ) ( ( ) ( ) ) ( )

r r
T

k i k j k ij
i j

V x k z x k w z w z S x k−

= =

= ∑∑            (3)              

For notational convenience, we denote the following 
notations for a matrix X : 

z
1 1

z+ 1
1 1

zz
1 1 1 1

zz+ 1 1
1 1 1 1

X ( )X ( )X           

X ( )X ( )X       

X ( ) ( )X ( ) ( )X

X ( ) ( )X ( ) ( )X

r r

i i i k i
i i

r r

i i i k i
i i
r r r r

i j ij i k j k ij
i j i j

r r r r

i j ij i k j k ij
i j i j

w z w z

w z w z

w z w z w z w z

w z w z w z w z

= =

+ +
= =

= = = =

+ + + +
= = = =

= =

= =

= =

= =

∑ ∑

∑ ∑

∑∑ ∑∑

∑∑ ∑∑

 

thus the extended-fuzzy Lyapunov function can be simply 
described as: 

1( ( ), ) ( ) ( )T
k zzV x k z x k S x k−=                                                (4) 

Then we have: 
1 1( ( ), ) ( 1) ( 1) ( ) ( )T T

k zz zzV x k z x k S x k x k S x k− −
+Δ = + + −        (5)               

If the Lyapunov function (4) satisfies 0VΔ < for all time, 
the system can be guaranteed to be stable in the sense of 
Lyapunov. 

III. STABLE MPC BASED ON TS FUZZY MODEL  
The closed-loop system stability as well as a satisfactory 

control performance is more desirable for industrial 
processes such as fossil fired power plant, and MPC is an 
excellent strategy to achieve these goals. 

The dynamic fuzzy model (1) can be rewritten in a 
predictive form as: 

( 1| ) ( | ) ( | )z zx k s k A x k s k B u k s k+ + = + + +                   (6) 

Considering the infinite horizon objective function: 

0 0
0

0

( ) [ ( | ) ( | )

( | ) ( | )]

T

s
T

J k x k s k Q x k s k

u k s k R u k s k

∞
∞

=

= + + +

+ +

∑
                            (7)  

where 0 0 0 00, 0T TQ Q R R= >   = >  are respectively 
symmetric weighting matrices of states and control moves, 
we present the following main result. 

Theorem 1: For the discrete TS fuzzy system (1) under 
input constraint: ,max| ( | ) | ,  0, =1,2,...,p pu k s k u s p m+ ≤ ≥ , 

if there exist control variable ( | )u k k , 

matrices , , ( )  ( )kk kk T
i i ij jiY G Q Q j i= > , ( )kl lk kl T

ij ij jiQ Q Q+ = +

( )  ( , )lk T
jiQ j i l k> > , ( )  ( )T

kl lk l kΘ = Θ > , ( )T
ij jim m=
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( ),  ( )  ( )T
ij jij i c c j i> = >  and symmetric 

matrices  ( )ij jiS S j i= > , kl lk
ii iiQ Q= ( )l k≥ , kkΘ , iim , 

iic such that the following convex optimization problem is 
feasible: 

, ( | ), , , , , , ,
min    

. .(9) (22)

kl
i i ij kl ij ij iju k k Y G Q m c S

s t
γ

γ
Θ

−
                                                 (8) 

then, the control action ( | )u k k  and non-PDC law 
1( | ) ( | )z zu k s k Y G x k s k−+ = + , 0s >  minimize the upper 

bound of the objective function (7) while guaranteeing the 
stability of the closed-loop system. 

           , 1,2,...,kk kk
ii iir Q i k r≥ =                                             (9)                                        

    ;  , , 1,2,...,kk kk kk kk
ij ji ij jir r Q Q j i i j k r+ ≥ + > =                 (10)          

     ;  , , 1,2,...,kl lk kl lk
ii ii ii iir r Q Q l k i k l r+ ≥ + > =                   (11)                    

           ,  ;  , , , 1,2,...,

kl kl lk lk kl kl lk lk
ij ji ij ji ij ji ij jir r r r Q Q Q Q

j i l k i j k l r

+ + + ≥ + + +

> > =
                       (12)       

11 12 1

21 22

( 1)

1 ( 1)

0

r

r r

r r r rr

−

−

Θ Θ Θ⎡ ⎤
⎢ ⎥Θ Θ⎢ ⎥Ψ = >
⎢ ⎥Θ
⎢ ⎥
Θ Θ Θ⎢ ⎥⎣ ⎦

                           (13)       

0             1,2,...,kk k rΦ ≥ =                                                   (14) 
0        ;  , 1,2,...,kl lk l k k l rΦ + Φ ≥ > =                              (15) 

      1,2...ii iin m i r≥ =                                                         (16) 
      , 1,2,...,ij ji ij jin n m m i j r+ ≥ + =                                 (17)                                       

11 12 1

21 22

( 1)

1 ( 1)

0

r

r r

r r r rr

m m m
m m

m
m m m

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥Μ = >
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                (18) 

,max( | )p pu k k u≤   1,2,...,p m=                                        (19)                                              

      1,2...ii iio c i r≥ =                                                          (20) 
      , 1,2,...,ij ji ij jio o c c i j r+ ≥ + =                                       (21) 

11 12 1

21 22

( 1)

1 ( 1)

0

r

r r

r r r rr

c c c
c c

c
c c c

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥Γ = >
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                     (22) 

where 

1
0

1
0

* * *
( ) 0 0

0 0
0 0

          , , , 1,2,...,

T
i j ij

i j i j klkl
ij

j

j

G G S
A G B Y S

r
G Q
Y R

i j k l r

γ
γ

−

−

⎡ ⎤+ −
⎢ ⎥

+⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

                          (23) 

11 12 1

21 22

( 1)

1 ( 1)

kl kl kl
kl kl r kl

kl kl
kl klkl

kl
r r kl

kl kl kl
r kl r r kl rr kl

Q Q Q
Q Q

Q
Q Q Q

−

−

⎡ ⎤− Θ − Θ − Θ
⎢ ⎥

− Θ − Θ⎢ ⎥Φ = ⎢ ⎥− Θ
⎢ ⎥

− Θ − Θ − Θ⎢ ⎥⎣ ⎦
, 1,2,...,k l r=                            (24) 

1/2
0
1/2
0

1 * * *
( ) ( | ) ( ) ( | ) 0 0

( | ) 0 0
( | ) 0 0

z z ij
ij

A k x k k B k u k k S
n

Q x k k I
R u k k I

γ
γ

⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

   , 1,2...i j r=                                (25) 

   , 1,2,...,j
T Tij

j i j ij

U Y
o i j r

Y G G S
⎡ ⎤

= =⎢ ⎥+ −⎣ ⎦
                                    

2
,max  , 1,2,...,pp pU u p m≤ =                                 (26) 

where ppU  is the diagonal elements of the matrixU . 

“* ” in a matrix stands for the corresponding terms of a 
symmetric matrix. 

Proof:  
Part 1(minimizing the upper bound of infinite horizon 

objective function): For the infinite horizon objective 
function (7), divide it into two parts [6]: 

0 0 0

1

( ) ( | ) ( | ) ( | ) ( | )

             ( ) 

T TJ k x k k Q x k k u k k R u k k

J k

∞

∞

= +

+
        (27) 

Suppose the extended FLF satisfies: 

0 0

( ( 1| )) ( ( | )) [ ( | )

( | ) ( | ) ( | )]

T

T

V x k s k V x k s k x k s k

Q x k s k u k s k R u k s k

+ + − + ≤ − +

× + + + +
  (28) 

Summing (28) from 1s = to s = ∞ , and with ( | ) 0x k∞ =  
and ( ( | )) 0V x k∞ = , we get: 

1
1 ( ) ( ( 1| )) ( 1| ) ( 1| )T

zzJ k V x k k x k k S x k k∞ −≤ + = + +        (29)                     

Thus we can get the upper bound of 0 ( )J k∞ : 

0 0 0
1

( ) ( | ) ( | ) ( | ) ( | )

( 1| ) ( 1| )

T T

T
zz

J k x k k Q x k k u k k R u k k

x k k S x k k

∞

−

≤ + +

+ +
         (30)  

We also divide the control input into two parts: 

0 1[ ( | ), ]U u k k U∞ ∞= , where the first computed move 
( | )u k k is defined as a free input variable and implemented 

on the plant, while 1U ∞ are given through the non-PDC law 
[15],[10]: 

1( | ) ( | ),   0z zu k s k Y G x k s k s−+ = + >                         (31)          

At sampling time k , since the current premise variables 

kz are assumed to be available, the current 
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model{ ( ), ( )}z zA k B k  can be obtained and ( 1| )x k k+ can be 
predicted exactly as: 

( 1| ) ( ) ( | ) ( ) ( | )z zx k k A k x k k B k u k k+ = +                 (32)         

Substituting(32) into(30), we can obtain 

0 0 0
1

( ) ( | ) ( | ) ( | ) ( | )

[ ( ) ( | ) ( ) ( | )]
   [ ( ) ( | ) ( ) ( | )]

T T

T
z z zz

z z

J k x k k Q x k k u k k R u k k

A k x k k B k u k k S
A k x k k B k u k k

∞

−

≤ + +

+
× +          (33) 

Define a scalar γ and suppose 

0 0
1

( | ) ( | ) ( | ) ( | ) [ ( ) ( | )

( ) ( | )] [ ( ) ( | ) ( ) ( | )]

T T
z

T
z zz z z

x k k Q x k k u k k R u k k A k x k k

B k u k k S A k x k k B k u k k γ−

+ +

+ + ≤     
(34) 

Then minimizing the upper bound of 0 ( )J k∞  is equivalent to 
the minimization of γ , subject to (34).  
    By defining  

1
1 zz

zz
SS
γ

−
− =                                                                      (35)                                                             

and using Schur complements [5],(34) can be expressed as:  

1/2
0
1/2
0

1 * * *
( ) ( | ) ( ) ( | ) 0 0

0
( | ) 0 0
( | ) 0 0

z z zzA k x k k B k u k k S
Q x k k I
R u k k I

γ
γ

⎡ ⎤
⎢ ⎥+⎢ ⎥ ≥
⎢ ⎥
⎢ ⎥
⎣ ⎦        (36) 

which is equivalent to(37) according to (25),  

1 1
( ) ( ) 0     , 1,2...

r r

i j ij
i j

w z w z n i j r
= =

≥ =∑∑                             (37) 

Now we use slack matrices and collection matrices to relax 
the sufficient conditions for (37).             

By applying (16), (17) and (18) , the left side of (37) 

[ ]
[ ]

2

1 1

2

1 1

1 2

1 2

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )

  ( ) ( ) ( ) 0

r r r

i ii i j ij ji
i i j i

r r r

i ii i j ij ji
i i j i

r

T
r

w z n w z w z n n

w z m w z w z m m

w z I w z I w z I

M w z I w z I w z I

= = >

= = >

= + + ≥

+ +

=

× >

∑ ∑∑

∑ ∑∑

         (38)             

Therefore, (37) holds. 
Part 2(stability constraint): With the non-PDC law: 

1( | ) ( | ), 0z zu k s k Y G x k s k s−+ = + >                                   (39) 

the predictive closed-loop fuzzy system can be described as: 

1

1

( 1| ) ( | ) ( | )

( ) ( | )
z z z z

z z z z

x k s k A x k s k B Y G x k s k

A B Y G x k s k

−

−

+ + = + + +

= + +      (40) 

Substituting (35), (39) , (40) into (28) and noticing that 
1 1( ) ( ) 0 ,T T T

z zz zz z zz z zz z z z zzG S S G S G S G G G S− −− − > ⇒ ≥ + −
 the stability constraint (28) is satisfied if: 

1

0 0

( ) ( )

0

T T
z z zz z z z z zz z z z z

T T
z z z z

G G S A G B Y S A G B Y
Q R

G G Y Y
γ γ

−
++ − − + + −

− >
    (41) 

(41) can be expressed by the LMI below: 

1
0

1
0

* * *
( ) 0 0

0       
0 0
0 0

T
z z zz

z z z z zz

z

z

G G S
A G B Y S

G Q
Y R

γ
γ

+
−

−

⎡ ⎤+ −
⎢ ⎥

+⎢ ⎥ >⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

           (42)              

which is equivalent to (43) according to (23):  

1 1 1 1
( ) ( ) ( ) ( ) 0   

r r r r
kl

k l i j ij
k l i j

w z w z w z w z r+ +
= = = =

>∑∑ ∑∑                          

, , , 1,2,...,i j k l r=                                                    (43)                      

Next, combined with the approach in [13], we use slack 
matrices and collection matrices to obtain less conservative 
sufficient condition for (43). 

Applying (9)-(12), yields: 
The left side of (43) 

2 2

1 1 1

2

1 1

( )[ ( ) ( ) ( )( )]

   ( ) ( )[ ( )( )

r r r r
kk kk kk

k i ii i j ij ji
k i i j i

r r r
kl lk

k l i ii ii
k l k i

w z w z Q w z w z Q Q

w z w z w z Q Q

+
= = = >

+ +
= > =

≥ + + +

+ +

∑ ∑ ∑∑

∑∑ ∑

   
1

        ( ) ( )( )]
r r

kl kl lk lk
i j ij ji ij ji

i j i
w z w z Q Q Q Q

= >

+ + +∑∑             (44)                     

Let  

2

1 1
( ) ( ) ( )( )

r r r
kk kk kk

i ii i j ij ji kk
i i j i

w z Q w z w z Q Q
= = >

+ + ≥ Θ∑ ∑∑     (45)         

2

1

1

( )( )

( ) ( )( )

r
kl lk

i ii ii
i
r r

kl kl lk lk
i j ij ji ij ji kl lk

i j i

w z Q Q

w z w z Q Q Q Q

=

= >

+ +

+ + + ≥ Θ + Θ

∑

∑∑
  (46)      

and apply (13), we have: 
The left side of (43) 

[ ]

2

1 1

1 2

( ) ( ) ( )[ ]

( ) ( ) ( )

r r r

k kk k l kl lk
k k l k

r

w z w z w z

w z I w z I w z I

+ + +
= = >

+ + +

≥ Θ + Θ + Θ

=

∑ ∑∑
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[ ]1 2 ( ) ( ) ( ) 0T
rw z I w z I w z I+ + +× Ψ >                (47) 

Therefore, (43) holds. 
Similarly,  by applying (14), (15) and (24), we can show 

that (45) and (46) hold. 
Part 3(input constraint): Since we split the input into free 
variables and future control moves determined by non-PDC 
law, we must constrain them accordingly. 

For the free variables, we directly constrain them by the 
peak bound (19). For the future input moves, by using the 
approach in [5] and considering 1 1( )T

z zz zG S G− − ≤  
1( )T

z z zzG G S −+ − , the constraint is satisfied if  there exists a 
matrix U , such that the following LMIs are feasible: 

2
,max0 ,  , 1,2...z

pp pT T
z z z zz

U Y
U u p m

Y G G S
⎡ ⎤

≥ ≤ =⎢ ⎥+ −⎣ ⎦
 (48)                  

Similarly using the slack and collection matrices, we can 
show that (20)-(22) guarantee (48). Therefore, the input 
constraint  is achieved. 

Remark 1: We apply an extended-FLF to improve the 
stability condition of MPC. Note that if we impose 

1 2 ....i i ir iS S S S= = = = , the extended-FLF reduces to FLF; 

and if  all Lyapunov matrices ijS  are imposed to be the same, 

the extended-FLF reduces to CLF. Therefore the 
extended-FLF leads to less conservatism in stability analysis 
and stabilization design.  

Remark 2: The technique of slack and collection matrices 
is used in all LMIs, including minimization of the upper 
bound of infinite horizon objective function; stability 
constraint and input constraint. This technique can reduce the 
conservatism in that it collects the interactions among 
subsystems.  Notice that, combined with the extended-FLF, 
we use the slack and collection matrices twice in stability 
constraint, thus less conservative result can be obtained. If all 
slack matrices are chosen to be zeros, the conventional result 
will be achieved. And since we use this technique in all LMIs, 
we can reduce the number of matrices to reduce the 
computational burden for some matrices appearing in the 
form of summations. Take ijS  and jiS , ( )j i> for example, 

since they always appear in the form of ij jiS S+ ,we can 

set  ( )ij jiS S j i= >  to reduce the number of matrices. 

Remark 3: Compared with the conventional fuzzy control, 
the proposed approach has the advantage that it can achieve 
stability in an optimal way; moreover, (28) guarantees the 
Lyapunov function of stable MPC to decrease faster than 
conventional fuzzy control ( 0VΔ ≤ ).  

IV. ILLUSTRATIVE EXAMPLE 
In this section, an example is presented to show the 

advantage of the proposed stable MPC. 

Consider the following discrete nonlinear model: 

1 1 1 2 1

2 1 2 1

( 1) ( ) ( ) ( ) (5 ( )) ( )
( 1) ( ) 0.5 ( ) 2 ( ) ( )

x k x k x k x k x k u k
x k x k x k x k u k

+ = − + +
+ = − − +

          (49)            

Define 1x  as the premise variable, then (49) can be described 
by the TS fuzzy model: 

1:  (k)    M
        ( 1) ( ) ( )           1,2

i i

i i

R IF x is
THEN x k A x k B u k i+ = + =      

with membership functions: 

1 21 11.65 ( ) 1.65 ( )M ( )  ;   M ( )
3.3 3.3

x k x kk k+ −
= =                                      

The system matrices are given by: 
 

1 1
1 1.65 6.65

,    
1 0.5 3.3

A B
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

2 2
1 1.65 3.35

,    
1 0.5 3.3

A B⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 

We apply the approach in Theorem1 and approaches in [6], 
[9] and [16] to this model with the initial state 

[ ](0)= 1.65 5 Tx − ; controller parameters 0
0.8 0
0 0.95

Q ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 

0 0.9R =  and input constraint | | 1.3u ≤  . 
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Fig.1. Closed-loop control performance for Theorem 1 and 

approach in [16]. (solid line: Theorem 1; dotted line: approach in 
[16])  

 
Simulation results shows that there are no feasible 

solutions for the approach in [6] and [9] which are MPC 
based on CLF and FLF. While the other two approaches can 
find feasible solutions and their control results are shown in 
Fig.1. This clearly demonstrated the advantage of the 
extended-FLF. Approach in [16] is another MPC based on 
extended-FLF, however, since we use appropriate slack and 
collection matrices in all LMIs and take full advantage of 
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extended-fuzzy Lyapunov function, the approach we propose 
has better performance.  

V.   APPLICATION TO A BOILER-TURBINE COORDINATED 
SYSTEM OF POWER UNIT 

In this section, the proposed controller is applied to the 
typical Bell-Åström boiler–turbine dynamic model [17]. The 
model is a 3rd order MIMO system which has the 
characteristics of highly nonlinearity. 

The state variables in 1 2 3[ , , ]Tx x x x= denote the drum 
pressure (kg/cm2), the power output (MW) and the density of 
fluid in the system (kg/cm3), respectively. The normalized 
input variables in 1 2 3[ , , ]Tu u u u= denote the position of fuel 
flow valve, the position of steam control valve and the 
position of feedwater flow valve, respectively. All valve 
position variables are constrained to lie in the interval [0, 1]. 
The output variables in 1 2 3[ , , ]Ty y y y= denote the drum 
pressure (kg/cm2), the power output (MW) and the drum 
water level (m), respectively. 
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Fig. 2. Membership functions of the boiler-turbine fuzzy model.  
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Fig. 3. Closed-loop control performance of the boiler-turbine 
coordinated system for theory 2 (output). 
 

Linearizing the nonlinear system around heavy load 
operating point (120%) and low load operating point (80%) 
using Taylor’s series approximation, then choosing the 
membership function as shown in Fig.2, we can easily obtain 
a two rules TS fuzzy model in form of (1) to represent the 
nonlinear BA model. Owing to space limitations, we shall 

omit the system matrices here. 
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Fig. 4. Closed-loop control performance of the boiler-turbine 
coordinated system for theory 2 (input).    
 

We now apply the proposed controller to the boiler-turbine 
coordinated system and consider the case of load change in a 
wide range. The control mission is tracking the expected 
operating points of drum pressure and output power while 
maintaining the drum water level. We assume that at t=20s, 
the desired operating point changes in step from 70% to 
130%, and the setpoint of drum water lever maintains at zero. 
With controller parameters: 

3
0 0

1 0 0 2 0 0
0 50 0 ; 0 100 0 10
0 0 1 0 0 4

Q R
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = ×⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

the simulation results are shown in Fig. 3 and Fig. 4. 
From the control results, we can see that when the load is 

increased, the drum pressure and power output respond 
rapidly, and then approaches to the expected operating points, 
while the drum water level jumps and then gradually return to 
zero after a period of fluctuation. The proposed fuzzy stable 
MPC can control the boiler-turbine coordinated system 
effectively. 

VI. CONCLUSION 
    The combination of model predictive control and TS fuzzy 
model is an effective way to solve the control problem of 
nonlinear system, which motivates us to propose a stable 
fuzzy MPC based on extended-FLF. By solving a set of LMIs, 
both the stability of the closed-loop system and the 
satisfaction of input constraint can be achieved in an optimal 
way. The extended-FLF reduces the conservatism of CLF 
and FLF; and enlarges the feasible area of the predictive 
controller. Moreover, combined with some new results in 
fuzzy control, we use appropriate slack and collection 
matrices with extended-FLF to further reduce the 
conservatism. The simulations on numerical example and 
nonlinear boiler-turbine coordinated system of power plant 
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demonstrate the advantage and effectiveness of the proposed 
approach. 
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