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Abstract— This paper proposes a new approach to design
a robust model predictive control (MPC) algorithm for LTI
discrete time systems. By using a randomization technique,
the optimal control problem embedded in the MPC scheme
is solved for a finite number of realizations of model un-
certainty and additive disturbances. Theoretical results in
random convex programming (RCP) are used to show that the
designed controller achieves asymptotic closed loop stability
and constraint satisfaction, with a guaranteed level of prob-
ability. The latter can be tuned by the designer to achieve a
tradeoff between robustness and computational complexity. The
resulting Randomized MPC (RMPC) technique requires quite
mild assumptions on the characterization of the uncertainty and
disturbances and it involves a convex optimization problem to
be solved at each time step. The technique is applied here to a
case study of an electro-mechanical positioning system.

I. INTRODUCTION

Model Predictive Control (MPC) is a model based control
technique which is receiving an ever-increasing attention,
mainly thanks to its capability of handling in an effective
way the presence of input and state constraints. In MPC,
the control input ut ∈ Rm is computed by solving, at each
sampling time t, a constrained finite horizon optimal control
problem (FHOCP), according to a receding horizon (RH)
strategy [1]. A still very active research direction is the study
of robust MPC approaches, that are able to guarantee stability
and constraint satisfaction also in the presence of model
uncertainty and external disturbances. In the last decade,
a quite extensive literature has been developed, both in
the case of linear time invariant (LTI) models and in the
case of nonlinear models [1], [2]. As regards LTI models,
uncertainty is typically taken into account by assuming that
the system matrices A(θ), B(θ) depend on some unknown
but bounded parameter vector θ ∈ Θ ⊂ Rg and belong
to a bounded set Σ, and disturbances are modeled by an
external input γt ∈ Γ ⊂ Rmγ that affects the system
dynamics through an input matrix Bγ(θ). Then, one of the
most common approaches for robust MPC design aims to
minimize the worst-case performance, while satisfying input
and state constraints for all possible realizations of θ and
γt. In this approach, a deterministic min-max optimization
problem has to be solved on-line and a tractable (i.e. convex)
solution can be obtained at the price of conservativeness,
since typically an upper bound of the worst-case cost is
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minimized [3], [4], [5], [6]. The problem of robust MPC in
the presence of additive bounded disturbances has been also
studied, see e.g. [7], [8], [9], [10], [11] and the references
therein, often assuming a convex set Γ and exact knowledge
of the system A, B matrices. Some of these approaches
minimize a nominal cost function (i.e. computed in absence
of disturbance) and rely on constraint tightening to robustly
enforce state and input constraint satisfaction [8]. Yet, the
assumption of exact knowledge of the system matrices and
the polytopic characterization of the disturbance set Γ may
limit the applicability of these approaches. Finally, some
works in the literature address the robust MPC design in
the presence of both system uncertainty and additive dis-
turbances [5], assuming convex/polytopic sets Σ and Γ so
to achieve a convex formulation of the problem. In the last
years, stochastic MPC techniques have been also developed
(see e.g. [12], [13], [14] and the references therein). By
assuming some known statistical description of the uncertain
parameters and/or of the additive disturbance, these tech-
niques employ a deterministic algorithm to address the robust
MPC design problem. This way, the cost function becomes
a random variable and the MPC algorithm aims to minimize
its expectation.
In this paper, we address the design of robust MPC laws for
LTI systems subject to both model uncertainty and additive
disturbances, and we propose a new approach, named Ran-
dom MPC (RMPC), that represents a shift of perspective,
from a deterministic MPC algorithm to a randomized one,
i.e. an algorithm that relies on some random choices. It has
to be noted that a randomized approach for MPC has been
studied also in [15], where the performance to be optimized
is the expectation of the cost function, which is computed
by using a Monte Carlo technique. However, the approach of
[15] may result to be very computationally demanding and it
can not handle in a straightforward way the presence of state
constraints. On the contrary, the RMPC approach proposed
here exploits results in Random Convex Programming (RCP)
[16], [17], [18], [19] to design a control law that guarantees
robust closed loop stability and constraint satisfaction to a
given guaranteed level p of probability. Thus, the robust
MPC problem is solved with the RMPC technique not in
expectation, but in a probabilistically robust way. We prove
here the stability and constraint satisfaction properties of
RMPC, and we apply this new technique to a case-study
of an electro-mechanical positioning system.

II. PROBLEM SETTINGS

Consider the following uncertain LTI system model:

xt+1 = A(θ)xt +B(θ)ut +Bγ(θ)γt (1)

where t ∈ Z is the discrete time variable, xt ∈ Rn is the
system state, ut ∈ Rm is the control input, γt ∈ Γ ⊂ Rmγ
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is an unmeasured disturbance vector, θ ∈ Θ ⊆ Rg is the
vector of uncertain parameters, and A(θ), B(θ), Bγ(θ) are
matrices of suitable dimensions. Let us make the following
assumptions:

Assumption 1: The set Γ is bounded and contains the
origin. Moreover, the set Σ .

= {A(θ), B(θ), Bγ(θ) : θ ∈ Θ}
is bounded. We assume γ and θ to have stochastic nature,
and let Pθ denote the probability measure on Θ, and Pγ the
probability measure on Γ. Variables θ and γ are independent.
�

Assumption 2: The pair A(θ), B(θ) is stabilizable for any
θ ∈ Θ. �
The control problem is to design a control law κ(x) that is
able to regulate the system state to the origin, subject to the
following (possibly uncertain) input and output constraints:

xt ∈ X(θ), ut ∈ U(θ), ∀t (2)

The next assumption characterizes the constraint sets:
Assumption 3: X(θ) ⊂ Rn and U(θ) ⊂ Rm are convex

sets with respect to x and u, respectively, they contain the
origin in their interiors and they are represented by:

X(θ) = {x ∈ Rn : fX(x, θ) ≼ 0}
U(θ) = {u ∈ Rm : fU (u, θ) ≼ 0} , (3)

where ≼ denotes element-wise inequalities, fX : Rn ×Θ →
Rr, fU : Rm × Θ → Rq are convex functions with respect
to x and u, respectively, and r, q are suitable integers. �
Due to the presence of the generally non-zero unmeasured
disturbance γt, regulation of the system state to the equi-
librium x = 0, u = 0 can not be attained. Rather, we can
require regulation to a neighborhood of the origin, described
by a terminal set. The latter is formally characterized by the
next definition.

Definition 2.1: (Robust positively invariant terminal set
and terminal control law) A convex compact set Xf is said
to be a robust positively invariant terminal set for system (1),
or simply terminal set, if it contains the origin and

∃κf (x) : A(θ)x+B(θ)κf (x) +Bγ(θ)γ ∈ Xf ,
∀θ ∈ Θ, ∀γ ∈ Γ, ∀x ∈ Xf

A control law κf (x) such that a set Xf is robustly positively
invariant is called a terminal control law. We assume that

Xf = {x : fXf
(x) ≼ 0},

for some convex function fXf
: Rn → Rl, where l is a

suitable integer. �
The set Xf represents a limit to the regulation precision

(i.e. distance from the origin) achievable by the control law.
Thus, in order to obtain good regulation precision, the set
Xf should be as small as possible. To this regard, there is
a number of contributions in the literature, concerned with
the computation of approximations of the (minimal) robust
positively invariant terminal set Xf , see e.g. [20] and the
references therein. We consider the following assumption
on the terminal set Xf and the related terminal control law
κf (x).

Assumption 4: A robust positively invariant terminal set
Xf and an associated static linear terminal control law
κf (x) = Kf x, Kf ∈ Rm×n, exist for system (1) and are

known, moreover Xf ⊆ X(θ) and κf (x) ∈ U(θ), ∀x ∈
Xf , ∀θ ∈ Θ. �

Assumptions 1 and 2 are indeed necessary for Assumption
4 to hold.

A. Finite-horizon control problem and deterministic robust
MPC

Let N ∈ N be a finite control horizon, chosen by the
control designer, let t ≥ 0 be the current time instant and
let xt be the system state observed at time t. We consider
the predicted evolution of (1) for N steps forward, under a
control law entirely determined at the current time t:

ut+j|t
.
= Kfxt+j|t + vj|t, j = 0, . . . , N − 1, (4)

where xt|t = xt and, for j = 1, . . . , N ,

xt+j|t = Acl(θ)xt+j−1|t +B(θ)vj−1|t +Bγ(θ)γj−1,

Acl(θ) = A(θ) + B(θ)Kf , and γj , vj|t, j = 0, . . . , N − 1,
are, respectively, a sequence of independent random variables
identically distributed according to Pγ , and the corrective
control sequence computed at t. Prediction of the state trajec-
tories in a closed-loop fashion is quite common in the context
of robust MPC, since it allows significant improvements in
feasibility, see e.g. [7], [21]. The previous recursion implies
that

xt+j|t = Aj
cl(θ)xt +Φj(θ)Vt +Υj(θ)g, (5)

where

Φj(θ) = [Aj−1
cl (θ)B(θ) · · · Acl(θ)B(θ) B(θ) 0 · · · 0],

Υj(θ) = [Aj−1
cl (θ)Bγ(θ) · · · Acl(θ)Bγ(θ) Bγ(θ) 0 · · · 0],

Vt = [v⊤0|t · · · v⊤N−1|t]
⊤ ∈ RNm,

g = [γ⊤
0 · · · γ⊤

N−1]
⊤ ∈ ΓN ⊂ RNmγ .

The uncertainty in the problem is due to θ (the plant
parametric uncertainty) and g (the disturbance sequence),
which we collect in the vector δ:

δ
.
= (θ, g) ∈ ∆, ∆

.
= Θ× ΓN .

The following (stochastic) cost function can now be defined:

J(xt,Vt, δ)
.
=

N−1∑
j=0

d(xt+j|t,Xf ) +
N−1∑
j=0

vTj|tRvj|t, (6)

where d(x,Xf ) is the distance between x and the terminal
set Xf , computed in some norm ∥ · ∥:

d(x,Xf )
.
= min

y∈Xf

∥x− y∥,

and R is a symmetric positive definite matrix chosen by the
control designer.

As a consequence of Assumption 1 and of the fact that
γ0, . . . , γN−1 is an i.i.d. sequence, we have that the random
quantity δ has a probability measure that we denote by P,
which is the product measure of Pθ and the product measure
PN
γ (the measure over ΓN ):

P = Pθ × PN
γ .

The support of P is the set Θ×ΓN . Since A(θ), B(θ), Bγ(θ)
and g belong to bounded sets, one may at first disregard
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probabilistic information, and consider a deterministic design
problem where the worst-case cost is minimized under robust
constraints.

Definition 2.2: (Deterministic robust FHOCP) The deter-
ministic robust FHOCP is:

P(xt) : min
Vt

max
δ∈∆

J(xt,Vt, δ) (7)

subject to
xt+j|t ∈ X(δ), j = 1, . . . , N − 1, ∀δ ∈ ∆ (8)
ut+j|t ∈ U(δ), j = 0, . . . , N − 1, ∀δ ∈ ∆ (9)

xt+N |t ∈ Xf , ∀δ ∈ ∆ (10)
In the deterministic robust MPC approach, problem P(xt)
is solved in a receding horizon fashion:

Algorithm 2.1: Deterministic robust MPC algorithm
1) At time t, observe xt.
2) Solve the problem P(xt). Let (V∗

t , z
∗
t ) be a solution.

3) Apply the control input u∗
t = Kf xt+v∗0|t, set t = t+1

and go to 1).

From a theoretical point of view, the application of Al-
gorithm 2.1 yields a feedback control law with quite strong
stabilizing properties, however in most practical cases the
described deterministic robust MPC scheme can not be used.
In fact, finding a solution to problem P(xt) is not an easy
task in general, because the constraints are typically semi-
infinite and the dependence of the constraints on δ is generic
and nonlinear.

We next write the optimization problem P(xt) in a com-
pact standard form. To this end, notice that, by introducing
a slack variable zt, we can use a linear objective zt in the
problem and add a constraint

J(xt,Vt, δ)− zt ≤ 0, ∀δ ∈ ∆. (11)

By collecting the optimization variables (Vt, zt) in vector
st ∈ RmN+1, the cost zt can be expressed as zt = c⊤ st,
where c = [0, . . . , 0, 1]⊤. Moreover, it can be noted that, for
any fixed value of δ ∈ ∆, due to linearity of (4) and (5),
the constraints (8)-(11) are convex in the decision variable
st. Moreover, these constraints can be formally expressed
compactly as h(st, xt, δ) ≤ 0, ∀δ ∈ ∆, where h : RmN+1 ×
Rn ×∆ → R is a convex function in st, defined as follows

h(st, xt, δ) = max
j=0,...,N−1

max
{
fX(xt+j|t, δ), fU (ut+j|t, δ),

fXf
(xt+N |t), J(xt,Vt, δ)− zt

}
.

The deterministic robust FHOCP can hence be rewritten as

P(xt) : min
Vt,zt

c⊤st (12)

subject to h(st, xt, δ) ≤ 0, ∀δ ∈ ∆. (13)

B. The scenario optimization problem
Suppose now we extract M i.i.d. random samples of the

uncertainty δ ∈ ∆ according to P, and collect the samples
in the multi-sample ω = {δ(1), . . . , δ(M)}. We consider the
following scenario counterpart of the deterministic FHOCP,
where instead of the possibly infinite set of constraints
parameterized by δ ∈ ∆, we use a finite number M of
randomly extracted scenarios.

Definition 2.3: (Scenario FHOCP) The convex optimiza-
tion problem:

PM (xt, ω) : min
st

c⊤st (14)

subject to h(st, xt, δ
(i)) ≤ 0, i = 1, . . . ,M (15)

is named the scenario FHOCP. We adopt the standard con-
vention that the optimal objective value is +∞ when the
problem in unfeasible. �
The solution s∗t (xt, ω) of PM (xt, ω) contains the sequence
of optimal control actions

V∗
t (xt, ω) = {v∗0|t, . . . , v

∗
N−1|t},

and the optimal cost z∗t = c⊤s∗t (xt, ω). The following
assumption is made on the scenario problem.

Assumption 5: There exists a feasibility set F ⊆ Rn such
that, for any M > Nm+1 and for any x ∈ F , the scenario
problem PM (x, ω) admits a unique optimal solution with
probability one. �

Remark 2.1: Note that, according to Assumptions 4 and
5, it holds that Xf ⊆ F and that the optimal solution of
PM (xt, ω), for xt ∈ Xf is

V∗
t = 0, z∗(xt) = 0,

independently of ω. Moreover, the set F coincides with the
set of state values for which the deterministic robust FHOCP
(7)-(10) is feasible.

III. ROBUST MPC: THE RANDOM CONVEX
PROGRAMMING APPROACH

The RMPC algorithm is now introduced, and its main
properties are derived. The main idea underlying RMPC is
that a target guaranteed probability p of achieving closed
loop stability is chosen by the designer, and the problem
PM (xt, ω) is then solved with a sufficiently high number
M of randomly extracted scenarios (precisely how large M
should be is specified next), so that the optimal solution
has indeed at least a probability p of driving the state to
the terminal set. Moreover, we solve problem PM (xt, ω)
according to a receding horizon scheme, in order to take
advantage of the observation of the actual system state at
each time step.

Note first that events related to ω are measured by the
product probability PM over ∆M , hence also events related
to s∗t (xt, ω) are measured by PM . Then, since δ ∈ ∆
has distribution P and it is independent of ω, events re-
lated to h(s∗t , xt, δ) are measured by PM+1. Now, problem
PM (xt, ω) belongs to the class of so-called Random Convex
Programs (RCP) (see e.g. [16], [17], [18], [19], [22]) and,
in particular, the results of [22] apply to this problem. We
now restate these results in our context. Define the so-called
expected constraint violation probability:

V
.
= PM+1{(ω, δ) ∈ ∆M+1 : h(s∗t (ω), xt, δ) > 0}. (16)

V is the probability with which the optimal solution s∗t ,
computed on the basis of M sampled scenarios in ω, actually
violates a constraint on a generic random δ ∈ ∆. The
following key result holds, see Theorem 2.1 in [22].
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Theorem 3.1: Under Assumption 5, if xt ∈ F , then it
holds that

V ≤ mN + 1

M + 1
.

An obvious consequence of this theorem is that, for given
p ∈ (0, 1), the condition

M ≥ mN + 1

1− p
− 1 (17)

implies that V ≤ 1− p. Equivalently, condition (17) implies
that 1− V ≥ p, that is

PM+1{(ω, δ) ∈ ∆M+1 : h(s∗t (ω), xt, δ) ≤ 0} ≥ p. (18)

We can now state the following theorem.
Theorem 3.2: (Finite horizon robustness) Let Assumption

5 be satisfied, and let xt ∈ F . Given p ∈ (0, 1), let M be an
integer satisfying (17), and let s∗t = (V∗

t , z
∗
t ) be the optimal

solution of problem PM (xt, ω). Then, with probability no
smaller than p, the corresponding optimal control sequence
u∗
t+j = Kf xt+j + v∗j|t, j = 0, . . . , N − 1:
a) steers the state of system (1) to the terminal set Xf in

N steps; and
b) satisfies the state constraints fX(xt+j , θ) ≼ 0, ∀j ∈

[1, N ] and fU (u
∗
t+j , θ) ≼ 0, ∀j ∈ [0, N − 1]

The proof of this theorem follows immediately from The-
orem 3.1: eq. (17) implies that, with probability at least
p, the optimal solution s∗t of the scenario problem satisfies
h(s∗t (ω), xt, δ) ≤ 0, which indeed implies that points (a) and
(b) in the theorem hold with probability at least p.

A. Random MPC algorithm
We next describe a receding-horizon implementation of

the scenario FHOCP.

Algorithm 3.1: RMPC algorithm
(Initialization) Given an initial state x0 ∈ F of the system

at time t = 0, extract a random multisample ω, solve problem
PM (x0, ω) and obtain the optimal control sequence

V∗
0 = {v∗0|0, v

∗
1|0 . . . , v

∗
N−1|0},

and the optimal objective z∗0 . Apply control action u∗
0 =

Kfx0 + v∗0|0.
1) Let t = t+ 1, observe xt, and set

Ṽt = {v∗1|t−1, . . . , v
∗
N−1|t−1, 0}

z̃t = max
(
0, z∗t−1 − d(xt−1,Xf )

)
;

2) Consider problem PM (xt, ω). If this problem is fea-
sible, let (V∗

t , z
∗
t ) be its optimal solution, else let

z∗t = +∞;
3) If z∗t > z̃t, then set

V∗
t = Ṽt; z∗t = z̃t.

4) Apply the control input u∗
t = Kf xt + v∗0|t, go to 1).

The RMPC algorithm gives rise to a random feedback control
law u∗

t = κ(xt, ω)
.
= Kfxt+v∗0|t(xt, ω), which is in general

nonlinear w.r.t. to both xt and ω (for example, for a fixed
value of ω, linear constraints (8)-(10) and quadratic cost (6),
it can be shown that κ(x, ω) is a piecewise affine function

of x, see e.g. [23]). Thus, the state equation of system (1)
with the feedback law κ(xt, ω) is:

xt+1 = A(θ)xt +B(θ)κ(xt, ω) + γt, (19)

i.e. the closed-loop system is an uncertain nonlinear system
subject to the unknown additive disturbance γt and to the
random parameter ω. Our interest is now focused on the
properties of system (19) in terms of convergence of its
trajectories to the terminal set Xf and of recursive state and
input constraint satisfaction. These aspect are dealt with by
the following result.

Theorem 3.3: (Random MPC) Let Assumptions 1-5 be
satisfied, let u∗

t be the sequence of control inputs generated
by Algorithm 3.1 for t = 0, 1, . . . , and applied to system (1),
and let x(t) be the corresponding sequence of states. Then,
for all x0 ∈ F :

(a) with probability no smaller than p it holds that

lim
t→∞

d(xt,Xf ) = 0;

(b) at each time step t > 0, the state and input constraints
{fX(xt, θ) ≼ 0, fU (u

∗
t , θ) ≼ 0} are satisfied with

probability no smaller than p.
Proof: See [24].

IV. APPLICATION OF RMPC TO AN
ELECTRO-MECHANICAL POSITIONING SYSTEM

Consider an electro-mechanical positioning system, in
which an electric motor is linked to an input shaft. The
latter is linked through a set of gears with an output shaft. τ
is the continuous time variable, Vm(τ) is the input voltage
for the electric motor, θi(τ) and θo(τ) are the angular
positions of the input and output shafts respectively, To(τ) is
the torsional momentum applied to the output shaft, whose
torsional stiffness is indicated with Kθ. Finally, Te(τ) is
an external unknown torque applied to the output shaft.
Rm is the motor electrical resistance, Km is the motor
torque/current constant, Ji and Jo are the moments of inertia
of the input and output shafts, respectively, and βi, βo are
the viscous friction coefficients of the shafts, finally ζ is
the transmission ratio of the gears that connect the two
shafts. All of the parameters, except for the transmission
ratio, are uncertain and they are distributed according to a
Beta probability density function B(α, β), with parameters
α = β = 1.2 and maximum, minimum and mean values
shown in Table I. The external torque Te(τ) is uniformly
distributed between ±1Nm. The input variable is the voltage
Vm(τ), the measured outputs are the input and output angular
positions and speeds, θi(τ), θo(τ), θ̇i(τ), θ̇o(τ). The control
problem is to track a constant reference position θo,ref issued
by the user, in the presence of the disturbance Te(τ), subject
to a ±220 V limit on the input voltage and a ±80 Nm limit
on the torsional momentum To(τ). First-principle laws of
electric circuits and mechanics yield the following system
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TABLE I
CASE STUDY. SYSTEM PARAMETERS FOR THE ELECTRO-MECHANICAL

POSITIONING SYSTEM.

Symbol Description Mean Max. and min.
value values

Rm Motor electrical resistance (Ω) 20 20±2
Km Motor constant (Nm/A) 10 10±1
Kθ Output shaft torsional 1280 1280±128

stiffness (Nm/rad)
Ji Input shaft moment 0.5 0.5±0.1

of inertia (kg·m2)
J0 Output shaft moment 25 25±2.5

of inertia (kg·m2)
βi Input shaft friction 0.1 0.1±0.01

coefficient (Nm·s/rad)
βo Output shaft friction 25 25±2.5

coefficient (Nm·s/rad)
ζ Gear ratio (input/output) 20 -

model:

Jiθ̈i(τ) + βiθ̇i(τ) =
KmVm(τ)−K2

mθ̇i(τ)

Rm
+

To(τ)

ζ
Joθ̈o(τ) + βoθ̇o(τ) = To(τ)− Te(τ)

To(τ) = Kθ

(
θi(τ)

ζ
− θo(τ)

)
.

(20)
In order to re-formulate the control aim as regulation of
the system state to zero, we consider as state variables the
tracking errors x1(τ) = θi(τ)−ζ θo,ref, x2(τ) = θo(τ)−θo,ref
and their derivatives, as input u(τ) = Vm(τ) and as distur-
bance γ(τ) = Te(τ). The uncertain parameter θ is chosen as
θ = [θ1, . . . , θ7]

⊤ = [Rm,Km,Kθ, Ji, Jo, βi, βo]
⊤. By dis-

cretizing the equation (20) with forward Euler approximation
and sampling time Ts = 0.1 s, a model of the form (1) is
obtained, where:

A(θ) =

1 0 Ts 0
0 1 0 Ts

Ts
θ3
θ4ζ2

−Ts
θ3
θ4ζ

1− Ts

θ6 +
θ22
θ1

θ4

 0

Ts
θ3
θ4ζ

−Ts
θ3
θ4

0 1− Ts
θ7
θ5


,

B(θ) =


0
0

Ts
θ2
θ4θ1
0

 , Bγ =

 0
0
0

−Ts

 .

(21)
The dependance of the system’s matrices on θ is clearly non-
linear, yet this problem can be straightforwardly approached
with the RMPC technique. The constraint on the input
voltage Vm(τ) and on the output shaft torsional momentum
To(τ) can be expressed, on the basis of (20) as:

|ut| − V m ≤ 0∣∣∣∣θ3 (xt,1

ζ
− xt,2

)∣∣∣∣− T o ≤ 0,

where V m = 220V and T o = 80Nm. It can be noted that the
constraint on the torsional momentum is a function of θ3. The
following terminal control law and terminal set satisfying
Assumption 4 are employed:

κ(x) = K x, K = [1.8 − 67.6410 − 0.8 174.609]
Xf =

{
x ∈ R4 : xTQfx ≤ 1

}
,

Qf =

 0 0 0 0
0 5.2559 −0.0293 0.7262
0 −0.0293 0.0434 −0.6798
0 0.7262 −0.6798 13.0878

 .

(22)
The RMPC law is designed with N = 75 and R = 0.01.
In order to reduce the computational complexity, a blocking
strategy on the sequence Vt is employed, by keeping each
five subsequent values of vk|t, starting from v0|t, . . . , v4|t,
constant. This way, the number of free control variables
scales down from 75 to 15. By setting a desired guaranteed
probability p = 0.95 for the robust design, a value M = 320
is obtained from (17). It has to be noted that the value of
M does not depend on the dimension of the state variable
or of the uncertainty/disturbance variables; it only depends
on p and on the number of decision variables in the scenario
FHOCP, i.e. the number m of inputs multiplied by the control
horizon N , eventually reduced by a blocking strategy like in
this case, plus the slack variable z. However, the number
of constraints embedded in h(s, x, δ) depends linearly on
n, m and N , so that the growth of the overall number of
constraints in the scenario problem is ∼ (n·m2 ·N2/(1−p)).
1,000 Monte Carlo simulations have been carried out by
starting from initial conditions θi = θo = θ̇i = θ̇o = 0 and
setting different values of reference position θo,ref ∈ [−4, 4].
In all cases, the RMPC algorithm was able to drive the state
to the set Xf , thus suggesting that the actual probability of
achieving robust stability may be higher than the prescribed
bound.
As an example, Fig. 1 shows the time course of the out-
put angular position θCL

o , obtained by applying the RMPC
algorithm and setting a reference θo,ref = 4 rad. The same
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Fig. 1. Case study. Courses of θCL
o,t (solid line with ‘∗’), of θOL

o,t (dashed
line with ‘◦’) starting from θi = θo = θ̇i = θ̇o = 0 and setting a reference
θo,ref = 4 rad, and courses of the output position θo,k|0, k = 0, . . . , 75
predicted at t = 0 according to the M random extractions of δ (gray lines).

Fig. also shows the course of θOL
o , obtained by applying in

“open loop” the optimal sequence V∗
0 computed at t = 0, as
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well as the trajectories predicted at t = 0 according to the
M randomly-extracted scenarios. It can be noted that the
system controlled by the RMPC law shows a faster transient
towards a neighborhood of the reference position. The course
of the input variable Vm,t = ut and of the torsional moment
To,t, obtained either with the RMPC algorithm or with the
open loop sequence V∗

0 , are shown in Figs. 2-3. Both these
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Fig. 2. Case study. Courses of input voltage Vm obtained with the RMPC
law (solid line with ‘∗’) and with the open loop sequence V∗

0 (dashed line
with ‘◦’) starting from θi = θo = θ̇i = θ̇o = 0 and setting a reference
θo,ref = 4 rad, and courses of inputs Vm,k|0, k = 0, . . . , 74 predicted at
t = 0 according to the M random extractions of δ (gray lines). The input
constraint of 220 V is also shown with thick dashed line.
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Fig. 3. Case study. Courses of output torsional moment To obtained with
the RMPC law (solid line with ‘∗’) and with the open loop sequence V∗

0
(dashed line with ‘◦’) starting from θi = θo = θ̇i = θ̇o = 0 and setting a
reference θo,ref = 4 rad, and courses of the moment To,k|0, k = 0, . . . , 74
predicted at t = 0 according to the M random extractions of δ (gray lines).
The moment constraint of 80 Nm is also shown with thick dashed line.

variables satisfy the constraints, and it can be noted that
several of the input trajectories predicted at t = 0 actually
hit the constraints (see Fig. 2 between 10 and 50 time steps
and Fig. 3 at t = 5− 10). Moreover, it can be noted that the
RMPC law, by re-optimizing the control sequence at each
time step, is able to adopt a more aggressive control input,
closer to the constraints (see Fig. 2 in the first 35 time steps).
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