
Graph Weight Design for Laplacian Eigenvalue Constraints with
Multi-Agent Systems Applications
S. Yusef Shafi, Murat Arcak, Laurent El Ghaoui

Abstract— We adjust the node and edge weightings of graphs
using convex optimization to impose bounds on their Laplacian
spectra. We first derive necessary and sufficient conditions that
characterize the feasibility of spectral bounds given positive
node and edge weightings. Next, we propose algorithms that
exploit convexity to achieve these bounds. The design and
analysis tools are useful for a variety of stability and control
problems in multi-agent systems.

I. INTRODUCTION

A well-studied tool for characterizing the interconnection
topology of a networked multi-agent system is the graph
Laplacian matrix [1]. In particular, the spectrum of the
Laplacian contains useful information about the dynamics of
the network. For example, the smallest positive eigenvalue
of a Laplacian, known as the algebraic connectivity, or
Fiedler eigenvalue [2], is a common measure of how well
connected a network is [3][4][5][6]. On the other hand,
the largest eigenvalue must be sufficiently small for sta-
bility of discrete-time consensus algorithms [4][7], and for
continuous-time formation control algorithms when agent
dynamics can be destabilized by high gain feedback [8].

We present a scheme to enforce constraints on the Lapla-
cian spectrum by treating both node and edge weights as
decision variables. Let λi be the ith-smallest eigenvalue of
the Laplacian, whose eigenvalues are ordered from least
to greatest. Given m ∈ {2, . . . , n} and λm > 0, the
lower eigenvalue bound assignment problem is to guarantee
λm ≥ λm. Likewise, given p ∈ {2, . . . , n} and λp >
0, the upper eigenvalue bound assignment problem is to
guarantee λp ≤ λp. Our goal is to achieve individual
upper and lower bounds for several Laplacian eigenvalues
simultaneously. We show how these bounds can be recast as
linear matrix inequality constraints [9] that can be applied
using semidefinite programming.

Convex optimization solutions to several graph problems
are well-documented in the literature, including fastest dis-
tributed linear averaging (FDLA) [10], minimization of total
effective resistance on a graph [11], fastest mixing Markov
chains [12] and processes [13], and Fiedler eigenvalue
maximization through vertex positioning [14]. In FDLA
[10], a particular interconnection structure for a discrete
system with symmetric interconnections is specified. The

The authors are with the department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, USA. Email:
{yusef,arcak,elghaoui@eecs.berkeley.edu}. Research supported in part
by NSF grants ECCS-0852750 and ECCS-1101876 and AFOSR grant
FA9550-11-1-0244.

number of iterations required for linear averaging is mini-
mized by finding a particular weight distribution that assigns
iterative update laws for each node’s state. The goal in
many resistor network problems [11] is to minimize the
total effective resistance on a graph by assigning different
weights representing resistances to the links connecting
the nodes of an electrical network. The aim for fastest
mixing Markov chains [12] and processes [13] is to find
the optimal transition probabilities between states to reach
a stationary distribution as quickly as possible. Finally,
vertex positioning [14] aims to find the optimal locations
of vertices, corresponding to edge weights, in order to
maximize the Fiedler eigenvalue.

Our approach is unique when compared to previous
literature on optimization of the Laplacian spectrum because
it is applicable to any selection of Laplacian eigenvalues and
assigns weights independently to both nodes and edges. In
[15], we showed how to adjust node and edge weights to
reduce the gap between the largest and smallest positive
eigenvalues. In the present paper, we develop a general
framework for adjusting several Laplacian eigenvalues and
reduce [15] to a special case. We also give a detailed account
of applications to formation control problems for multi-
agent systems.

The remainder of the paper is organized as follows.
Section II introduces mathematical preliminaries that are
necessary for our analysis. Section III outlines a general op-
timization framework that enables upper and lower bounds
on several Laplacian eigenvalues simultaneously using node
and edge weighting. Section IV presents sample problems
that can be formulated and solved using the methods of
Section III. Section V explores applications to multi-agent
systems.

II. PRELIMINARIES

We review the following results from linear algebra,
which we will use in Section III. The first result concerns
the eigenvalues of a product of two matrices ([16], Theorem
1.3.20):

Lemma 2.1: Let A ∈ Rn×m, B ∈ Rm×n, and n ≥ m.
Then AB and BA have m identical eigenvalues with AB
having n−m additional eigenvalues at zero.

The next lemma follows from the Courant-Fischer the-
orem, which characterizes the eigenvalues of a symmetric
matrix ([16], Corollary 4.3.23):

Lemma 2.2: If A ∈ Rn×n is symmetric and if xTAx ≥ 0

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 5541

for all vectors x ∈ Rn in a k-dimensional subspace, then A
has at least k nonnegative eigenvalues.

Definition 2.3: The square matrices A and B are
congruent if B = SAST for some square, nonsingular
S.

The following lemma is known as Sylvester’s Law of
Inertia ([16], Theorem 4.5.8):

Lemma 2.4: Let A ∈ Rn×n and B ∈ Rn×n be symmet-
ric matrices. A and B are congruent if and only if A and
B have the same inertia, i.e., the same number of positive,
negative, and zero eigenvalues.
An inequality due to Sylvester characterizes the relationship
between the eigenvalues of two matrices and their products
([17], Section 3.5):

Lemma 2.5: Given two matrices A ∈ Rr×n and B ∈
Rn×q , the following inequality holds:

rank(A) + rank(B)− n ≤ rank(AB) (1)
≤ min {rank(A), rank(B)}.

We next review notions from spectral graph theory that
are essential to this paper.

A graph G = G(V,E) is a collection of nodes V and
a corresponding set of edges E. In this paper, we consider
undirected graphs, where two nodes are connected when
there exists an edge incident to both. A graph itself is
connected if there exists a sequence of edges connecting
any pair of nodes in the graph.

Given an undirected graph G(V,E) with n nodes and h
edges, an incidence matrix A ∈ Rn×h is an n × h matrix,
each of whose columns, indexed by k = 1, . . . , h, represents
an edge in E linking nodes vi and vj in V , with [A]ik = 1,
[A]jk = −1, and [A]lk = 0 for all l 6= i, j. We note that
the incidence matrix is not unique for an undirected graph,
and choice of orientation does not change our results. We
denote by:

L = AAT (2)

the n× n nominal Laplacian, and by:

Le = AKAT (3)

the edge-weighted Laplacian, where K � 0 is the diagonal
edge weighting matrix. We denote by:

Lg =M−1AKAT (4)

the node- and edge- weighted graph Laplacian (henceforth
weighted Laplacian), where M � 0 is the diagonal node
weighting matrix.

We first recall key facts about Laplacian matrices [1]. L
and Le are symmetric positive semidefinite, with at least
one eigenvalue at zero corresponding to an eigenvector
1n = 1√

n
[1 . . . 1]T . If the graph represented by L or Le

is connected, then L or Le, respectively, has exactly one
eigenvalue at zero. Although Lg is not symmetric in general,
its eigenvalues possess properties similar to those of L and
Le, as shown in the following lemma proven in [15]:

Lemma 2.6: Every eigenvalue of Lg is real and nonnega-
tive. If Lg represents a connected graph, then all eigenvalues
of Lg , excepting one at zero, are positive.

III. CONVEX CHARACTERIZATIONS OF UPPER AND
LOWER EIGENVALUE CONSTRAINTS

Our goal is to find node and edge weighting matrices M
and K to assign lower and upper bounds on the spectrum
of Lg . We wish to achieve individual bounds for several
Laplacian eigenvalues simultaneously. We now formulate
this problem as a convex optimization task.

A. Bounding Eigenvalues from Below

Given m < n and λm > 0, we wish to design node and
edge weights M and K, respectively, such that λm(Lg) ≥
λm, where λm(Lg) denotes the m-th smallest eigenvalue
of Lg . To construct a linear matrix inequality enforcing the
eigenvalue constraint, we make use of the following lemma:

Lemma 3.1: Suppose that m < n, Qm ∈ Rn×(n−m+1)

is a full column rank matrix whose columns are orthogonal,
and S is a symmetric matrix. If QTmSQm � 0, then
λm(S) ≥ 0.

Proof: The result follows immediately from Lemma
2.2: the subspace spanned by the columns of Qm is n−m+1
dimensional, so λm(S) ≥ 0.

The next theorem provides a sufficient condition in the
form of a linear matrix inequality constraint to enforce lower
eigenvalue bounds:

Theorem 3.2: Let Qm be as in Lemma 3.1. The con-
straint

QTm(Le − λmM)Qm � 0 (5)

implies that λm(Lg) ≥ λm.
Proof: First, we note by Lemma 3.1 that if (5) holds,

then the matrix Le − λmM has at most m − 1 negative
eigenvalues. By congruence, M−1/2LeM−1/2 − λmI has
at most m − 1 negative eigenvalues, which means that the
symmetric positive semidefinite matrix

Ls ,M−1/2LeM
−1/2 (6)

has at most m− 1 eigenvalues less than λm. Similarity of
Lg to Ls implies that Lg has at most m − 1 eigenvalues
less than λm, implying that λm(Lg) ≥ λm.

We now present a convex feasibility program that en-
forces the lower eigenvalue bound sufficient linear matrix
inequality condition of Theorem 3.2:

Find M, K (7)
subject to QTm(AKAT − λmM)Qm � 0

M � 0

K � 0

M, K diagonal.

We note that the lower eigenvalue bound can also be
enforced by scaling M by λm(L)

λm
or K by λm

λm(L) . However,

5542

when the graph optimization problem imposes upper eigen-
value constraints or objective functions, this approach would
be highly conservative. In contrast, (7) can be combined
with other constraints and objectives without this conser-
vatism.

Theorem 3.2 provides only a sufficient condition to imply
λm(Lg) ≥ λm, because the choice of Qm is arbitrary. We
now present a necessary and sufficient condition enabled by
a specific choice of Qm:

Theorem 3.3: λm(Lg) ≥ λm if and only if QTm(Le −
λmM)Qm � 0, where Qm ∈ Rn×(n−m+1) is the matrix
whose columns are the eigenvectors corresponding to the
n−m+ 1 largest eigenvalues of Le − λmM .

Proof: Necessity follows from Theorem 3.2. To prove
sufficiency, suppose that λm(Lg) ≥ λm. By similarity,
Ls =M−1/2LeM−1/2 has the same spectrum as Lg . Then
Ls − λmI has at most m − 1 negative eigenvalues. By
congruence, so does Le−λmM . Considering the projection
matrix QmQTm, it follows that (Le − λmM)QmQTm must
have exclusively nonnegative eigenvalues. By Lemma 2.1,

QTm(Le − λmM)Qm � 0. (8)

Theorem 3.3 is the basis for an iterative procedure pre-
sented in Section IV that allows for improved performance
when the constraints of (7) are paired with an objective.

B. Bounding Eigenvalues from Above

Given p ≤ n and λp ≥ 0, we wish to design node and
edge weights M and K, respectively, such that λp(Lg) ≤
λp. We construct a linear matrix inequality enforcing this
eigenvalue constraint. The analysis is similar to that of the
previous section, and so the proofs are omitted.

Theorem 3.4: Let Up ∈ Rn×p be a full column rank
matrix whose columns are orthogonal. The constraint

UTp (λpM − Le)Up � 0 (9)

implies that λp(LG) ≤ λp.
We now present a convex feasibility program that en-

forces the upper eigenvalue bound sufficient linear matrix
inequality condition of Theorem 3.4:

Find M, K (10)
subject to UTp (λpM −AKAT)Up � 0

M � 0

K � 0

M, K diagonal

As in the case of bounding eigenvalues from below,
Theorem 3.4 provides only a sufficient condition to imply
λp(Lg) ≤ λp. The following theorem gives a necessary and
sufficient condition enabled by a specific choice of Up:

Theorem 3.5: λp(Lg) ≤ λp if and only if UTp (λpM −
Le)Up � 0, where Up ∈ Rn×p is the matrix whose
columns are the eigenvectors corresponding to the p smallest
eigenvalues of λpM − Le.

An iterative procedure presented in Section IV employs
Theorem 3.5 and allows for improved performance when
the constraints of (7) and (10) are paired with an objective.

A special case of Theorem 3.5 is when p = n. Since,
in this case, the Up that satisfies Theorem 3.5 is a square,
orthogonal matrix, Theorem 3.5 simplifies to the following
corollary:

Corollary 3.6: λn(Lg) ≤ λn if and only if λnM −Le �
0.

IV. EXAMPLES OF GRAPH DESIGN PROBLEMS

We provide two sample problems that can be addressed
by combining (7) and (10). In our numerical examples,
we require that all node and edge weights be contained
in [ε, ε−1], where ε < 1 is a small positive parameter
that guarantees that the largest and smallest weights do
not have too great a relative difference. We perform our
numerical examples using CVX, a package for disciplined
convex programming [18] [19], and the SDPT3 interior point
solver [20].

A. Minimizing the Largest Eigenvalue Given a Minimum
Connectivity Constraint

In formation control problems (see, e.g., Section V), it is
desirable to have a lower bound on λ2 to ensure adequate
convergence time while at the same time imposing an
upper bound on λn for stability. We present the problem of
minimizing the largest eigenvalue λn(Lg) of a graph given
the requirement λ2(Lg) ≥ λ2, making use of (7) and (10)
as well as including upper and lower bounds on the entries
of M and K:

minimize
κ,M,K

κ

subject to κλ2M −AKAT � 0

QT2 (AKA
T − λ2M)Q2 � 0

ε−1I �M � εI, ε−1I � K � εI
M, K diagonal.

(11)

The problem is quasiconvex for any Q2 ∈ Rn×(n−1). To
find the optimal κ for the problem, we perform a bisection
on the interval [λ2, λn(L)], where in each iteration, a convex
feasibility problem is solved for the value of κ given by the
bisection. As discussed in Section III-A, an arbitrary choice
of Q2 may lead to conservatism in the optimal κ achieved.
To improve the value of κ, we propose an iterative method
that makes use of Theorem 3.3 and updates Q2:

We note that when M and K are identity and Q2 is
initialized as above, the columns of Q2 are orthogonal both
to each other and to 1n.

Numerical Example: For a twenty node unweighted chain
graph obeying the structure of Figure 1, we have:

λ2(L) = 0.0246 and κ =
λ20(L)

λ2(L)
= 161.6016.

We set ε = 10−2, and apply our method to reduce κ. For
the first three experiments, (11) was solved with Q2 set to

5543

Algorithm 1 Iterative Updates for Q2

1: M ⇐ I , K ⇐ I , µ > 0.
2: repeat
3: Set Q2 to be the matrix whose columns are the eigen-

vectors corresponding to the n−1 largest eigenvalues
of AKAT − λ2M .

4: Solve (11) and update M , K.
5: until |κi − κi−1| ≤ µ

OR max(M) = 1
ε AND min(M) = ε

OR max(K) = 1
ε AND min(K) = ε.

be a matrix whose n−1 columns are orthogonal to 1n. The
lower eigenvalue bound was set to be λ2 = λ2(L). Solving
for edges only, with nodes weighted to identity, produced no
re-weighting of edges, and so κ was unchanged. In contrast,
solving for nodes only, with edges weighted to identity,
resulted in κ = 123.5286. Simultaneous optimization with
both the nodes and edges as decision variables produced
a marked improvement to κ = 52.8616. Allowing Q2

to vary in accordance with Algorithm 1 described above
resulted in κ = 13.0499. By setting ε = 10−3, we achieved
κ = 6.3021.

M1 M2 M3

K1 K2

Mn−1 Mn

Kn−1

Fig. 1. A chain graph with n nodes.

B. Minimizing the Gap between λp and λp+1

We consider graphs with clusters, that is, groupings of
densely connected nodes with sparse external links. The
Laplacian of a graph with p clusters exhibits, in addition
to the first eigenvalue at zero, p− 1 additional eigenvalues
close to zero. Such graphs exhibit a gap between the
first p eigenvalues and the rest. Examples of systems with
clustered structures have been observed in building sensor
networks [21] and power systems [22], where distributed
estimation algorithms are increasingly prevalent. The gap
in the eigenvalues may be undesirable because it leads
to a two-time-scale behavior in the convergence of these
algorithms [23].

To obtain uniform convergence rates for nodes in different
clusters, we maximize λ2 while requiring λp+1 ≤ λp+1,
and in so doing, minimize the gap between λp(Lg) and
λp+1(Lg). Additionally, we fix λn(Lg) ≤ λn, so that
the rest of the spectrum of the weighted Laplacian does
not deviate far from its original location. The problem
is solved with a bisection to maximize κ on the interval
[λ2(L), λp+1]. We impose upper and lower bounds on the
entries of M and K, and introduce Q2 ∈ Rn×(n−1) and
Up+1 ∈ Rn×(p+1) defined according to Theorems 3.2 and

3.4, respectively. We now write the quasiconvex problem:

maximize
κ,M,K

κ (12)

subject to λnM −AKAT � 0

QT2 (AKA
T − κM)Q2 � 0

UTp+1(λp+1M −AKAT)Up+1 � 0

ε−1I �M � εI, ε−1I � K � εI
M, K diagonal.

We can realize significant improvements in reducing
the gap between λp(Lg) and λp+1(Lg) by employing an
iterative procedure that makes use of Theorems 3.3 and 3.5
as shown in Algorithm 2.

Algorithm 2 Iterative Updates for Q2, Up+1

1: M ⇐ I , K ⇐ I , µ > 0.
2: repeat
3: Set Q2 to be the matrix whose columns are the eigen-

vectors corresponding to the n−1 largest eigenvalues
of AKAT − λ2M .

4: Set Up+1 to be the matrix whose columns are the
eigenvectors corresponding to the p + 1 smallest
eigenvalues of λp+1M −AKAT .

5: Solve (12) and update M , K.
6: until |κi − κi−1| ≤ µ

OR max(M) = 1
ε AND min(M) = ε

OR max(K) = 1
ε AND min(K) = ε.

Numerical Example: Consider the eight node graph with
two clusters in Figure 2. Such a graph, with identical
weights, exhibits a significant gap between λ2 and λ3. The
eigenvalues of the unweighted graph are:

{0.0000, 0.3542, 4.0000, 4.0000,
4.0000, 4.0000, 4.0000, 5.6458},

with:
λ3(L)

λ2(L)
= 11.2931.

Our goal is to reduce this gap by increasing the second
eigenvalue while bounding the third and eighth eigenvalues
from above.

M1

M2

M3

M4

K1 K2

K3K4

K5

K6 M5

M6

M7

M8

K8 K9

K10K11

K12

K13

K7

Fig. 2. Eight node graph with two clusters.

We employ Algorithm 2, iteratively updating both Q2 and
U3 while requiring λ3(Lg) ≤ 4.0000 and λn(Lg) ≤ 5.6458

5544

P1 0 0 0
0 P2 0 0

0 0
. . . 0

0 0 0 Pn

Lg ⊗ Ino

yu

Fig. 3. Block diagram of the multi-agent system (13-14).

and setting ε = 10−2. We find the optimal value λ2(Lg) =
4.0000, with λ3(Lg)

λ2(Lg)
= 1.

V. APPLICATION TO MULTI-AGENT SYSTEMS

We now apply the results of Section IV-A to multi-agent
systems whose feedback structure is described by a graph
Laplacian. Each of the n subsystems possesses identical
dynamics:

Pi :

{
ẋi = Fxi +Gui
yi = Hxi

(13)

and is controlled according to the feedback law:

ui = −M−1i
∑
j∈Ni

Kj(yi − yj), (14)

where F ∈ Rns×ns , G ∈ Rns×no , and H ∈ Rno×ns , with
ns and no the dimension of the state space and input and
output, respectively. Ni denotes the neighbors of agent i,
that is, the other agents whom agent i senses. We assume
that the individual plants are stable or can be stabilized
by local state feedback (see the numerical example below).
Therefore, we assume that F is Hurwitz. Mi and Kj denote
entries i and j of the diagonal node and edge weighting
matrices M and K, respectively. The block diagram of the
system is shown in Figure 3, with each subsystem Pi having
input given by (14). We let x = [xT1 , . . . , x

T
n]
T , and rewrite

(13) and (14) as:

ẋ = [In ⊗ F − Lg ⊗ (GH)]x. (15)

As a consequence of the identical dynamics of each sub-
system, the system can be decoupled into n identical
subsystems by a change of coordinates using the basis of
eigenvectors of Lg [3]. Let U be the orthogonal change-of-
coordinates matrix that diagonalizes Lg and let D be the
diagonal matrix of eigenvalues of Lg . Then D = U−1LgU .
Now let V = U ⊗ I , and let x̃ = V −1x. In the new
coordinates, the dynamics are given by:

˙̃x = [In ⊗ F −D ⊗ (GH)]x̃, (16)

and, thus, the eigenvalues are determined from the charac-
teristic polynomials of:

F − λi(Lg)GH, i = 1, . . . , n. (17)

This means that the multi-agent system can be analyzed as
n decoupled feedback systems with constant gain λi(Lg),

i = 1, . . . , n. In particular, larger Laplacian eigenvalues
imply higher gains for these decoupled systems, which
is often undesirable. For example, if the transfer function
H(sI − F)−1G has non-minimum phase zeros or relative
degree higher than two, high gain will result in right half
plane poles, rendering the multi-agent system unstable. The
largest eigenvalue minimization method of Section IV-A
can mitigate this instability by finding a node and edge
weighting such that the spectrum of Lg spectrum falls within
a range specified by design requirements.

Numerical Example: We consider formation control for
four planar vertical takeoff and landing, or PVTOL, aircraft,
as described in [24]. We model the state of the aircraft by
its lateral position, x, vertical position y, and its roll, θ.
The equations of motion, in input-output linearized form,
are given by the following:

ẍ = u1

ÿ = u2 (18)

θ̈ =
1

ε
(sin θ + cos θu1 + sin θu2).

The zero dynamics of the system are unstable:

θ̈ =
1

ε
sin θ, (19)

and the system is non-minimum phase.
We assume that the aircraft are in hover operation and

are stabilized vertically, so we discard y and v2, the vertical
thrust input. We set ε = 0.1 and see that the linearized
dynamics around x = 0, θ = 0 are:

F̃ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 10 0

 G =


0
1
0
10

 H =


−1
0
0
0


T

.

The input to each aircraft is dictated by the input term
of (13), with the graph structure of a four node chain. We
choose a state feedback:

J = [0 −90.6157 42.1472 13.2155],

which renders F = F̃ − GJ Hurwitz. To achieve a
reasonable response time and to maintain stability, we
wish to contain the eigenvalues of the Laplacian in the
interval [50, 125]. In particular, the upper bound of this
interval guarantees a damping ratio greater than 0.6. For
the unweighted Laplacian, we have:

κ =
λn(L)

λ2(L)
≤ 5,

which means that scaling the Laplacian by a constant α =
50

λ2(L)
to meet the lower eigenvalue constraint λ2(αL) ≥ 50

will violate the upper eigenvalue constraint λn(αL) ≤ 125
and lead to instability as illustrated in Figure 4. In contrast,
applying the node and edge weights found by applying
Algorithm 1 results in an improvement to κ = 1.0202. We
show simulation results with the new weights in Figure 5.

5545

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Horizontal position

T
im

e
 s

lic
e

s
 (

d
t

=
 0

.8
)

t

Fig. 4. PVTOL formation of four aircraft with unweighted, scaled graph.
Each row represents a snapshot in time, indicating unstable behavior. Both
the maximum roll angle and the amplitude of deviation from the desired
relative position of the aircraft increase in time.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Horizontal position

T
im

e
 s

lic
e

s
 (

d
t

=
 0

.8
)

t

Fig. 5. PVTOL formation of four aircraft with weighted graph. Each row
represents a snapshot in time, indicating convergence to formation. Both
the maximum roll angle and the amplitude of deviation from the desired
relative position of the aircraft decrease in time.

VI. CONCLUSION

The graph Laplacian is an indispensable tool for assessing
the dynamics of a multi-agent system. In this paper, we
have presented a novel approach to impose bounds on
the Laplacian spectrum. We have shown how node and
edge weights can be adjusted using convex optimization
to impose individual constraints on several eigenvalues
simultaneously. In future work, we will quantitatively char-
acterize any optimality gaps and convergence properties for
Algorithm 2. We are also examining first order methods
[25][26] that will allow our framework to accommodate
systems with thousands of agents.

REFERENCES

[1] F. Chung, “Spectral graph theory,” American Mathematical Society,
1997.

[2] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Math-
ematical Journal, vol. 23, no. 2, pp. 298–305, 1973.

[3] J. Fax and R. Murray, “Information flow and cooperative control
of vehicle formations,” IEEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1465–1476, 2004.

[4] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001,
2003.

[5] R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Transactions
on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[6] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 8, pp. 888–905, 2000.

[7] M. Arcak, “Passivity as a design tool for group coordination,” IEEE
Transactions on Automatic Control, vol. 52, no. 8, pp. 1380–1390,
2007.

[8] H. Bai and M. Arcak, “Instability mechanisms in cooperative con-
trol,” IEEE Transactions on Automatic Control, vol. 55, no. 1, pp.
258–263, 2010.

[9] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix
inequalities in system and control theory. Society for Industrial
Mathematics, 1994.

[10] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[11] A. Ghosh, S. Boyd, and A. Saberi, “Minimizing effective resistance
of a graph,” SIAM Review, vol. 50, no. 1, p. 37, 2008.

[12] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on
a graph,” SIAM Review, vol. 46, no. 4, pp. 667–689, 2004.

[13] J. Sun, S. Boyd, L. Xiao, and P. Diaconis, “The fastest mixing
Markov process on a graph and a connection to a maximum variance
unfolding problem,” SIAM Review, vol. 48, no. 4, p. 681, 2006.

[14] Y. Kim and M. Mesbahi, “On maximizing the second smallest
eigenvalue of a state-dependent graph Laplacian,” IEEE Transactions
on Automatic Control, vol. 51, no. 1, p. 117, 2006.

[15] Y. Shafi, M. Arcak, and L. El Ghaoui, “Designing node and edge
weights of a graph to meet Laplacian eigenvalue constraints,” in Prof.
Allerton Conference, 2010.

[16] R. Horn and C. Johnson, Matrix analysis. Cambridge Univ Pr, 1990.
[17] F. Gantmacher, The theory of matrices. Chelsea Pub Co, 2000.
[18] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex

programming, version 1.21,” http://cvxr.com/cvx, Oct. 2010.
[19] ——, “Graph implementations for nonsmooth convex programs,”

Recent advances in learning and control, pp. 95–110, 2008.
[20] K. Toh, M. Todd, and R. Tutuncu, “SDPT3a Matlab software package

for semidefinite programming,” Optimization Methods and Software,
vol. 11, no. 12, pp. 545–581, 1999.

[21] J. Kim, M. West, E. Scholte, and S. Narayanan, “Multiscale con-
sensus for decentralized estimation and its application to building
systems,” in American Control Conference, 2008. IEEE, 2008, pp.
888–893.

[22] J. Chow, Ed., Time-Scale Modeling of Dynamic Networks with
Applications to Power Systems. Berlin Heidelberg: Springer-Verlag,
1982.

[23] E. Biyik and M. Arcak, “Area aggregation and time-scale modeling
for sparse nonlinear networks,” Systems & Control Letters, vol. 57,
no. 2, pp. 142–149, 2008.

[24] S. Sastry, Nonlinear systems: analysis, stability, and control.
Springer Verlag, 1999.

[25] Z. Wen, D. Goldfarb, and W. Yin, “Alternating direction augmented
Lagrangian methods for semidefinite programming,” Mathematical
Programming Computation, pp. 1–28, 2010.

[26] Z. Wen, D. Goldfarb, S. Ma, and K. Scheinberg, “Row by row meth-
ods for semidefinite programming,” Technical Report, Department of
IEOR, Columbia University, 2009.

5546

