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Abstract— Regulation of passive outputs of nonlinear systems
can be easily achieved with an integral control (IC). In many
applications, however, the signal of interest is not a passive
output and ensuring its regulation remains an open problem.
Also, IC of passive systems rejects constant input disturbances,
but no similar property can be ensured if the disturbance is
not matched. In this paper we address the aforementioned
problems and propose a procedure to design robust ICs for
port–Hamiltonian models, that characterize the behavior of
a large class of physical systems. Necessary and sufficient
conditions for the solvability of the problem, in terms of some
rank and controllability properties of the linearized system, are
provided. For a class of fully actuated mechanical systems, a
globally asymptotically stabilizing solution is given.

I. INTRODUCTION

One of the central features of passivity–based control
(PBC), where the first step is passivation of the system
[13], is that the passive output can be easily regulated
using integral control (IC)—with arbitrary positive gains.
The regulation is, moreover, robust with respect to constant
input disturbances. In many applications, however, the signal
to be regulated is not a passive output and the disturbances
may not be matched with the input. Classical examples
are mechanical systems and electrical motors, where the
passive outputs are velocities and currents, respectively, but
the output of interest is often position.

In this paper we propose a procedure to design ICs to
regulate non–passive outputs, which are robust to unmatched
disturbances. We restrict our attention to port–Hamiltonian
(pH) models that, as is widely known, characterize the be-
havior of a large class of physical systems [9], [17]. Another
motivation to consider pH systems is that the popular inter-
connection and damping assignment PBC design technique
[10], [11]—and the closely related canonical transformation
PBC [5]—endow an arbitrary nonlinear system with a pH
structure. The aim of the additional IC is then to ensure
robustness vis–à–vis external disturbances.

The controller design is formulated in the paper as a
feedback equivalence problem, where we look for a dynamic
feedback controller and a change of coordinates such that the
transformed closed–loop system takes a desired pH form.
To avoid the need to solve partial differential equations we
keep the interconnection and damping matrices of the target
system, as well as its energy function, equal to the ones of
the original system, and only add to it an integral action in
the non–passive output. This construction is largely inspired

R.Ortega and J.G. Romero are in Laboratoire des Signaux
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by the one proposed in [4], but here we explicitly take into
account the presence of the disturbances, which significantly
complicates the task. An additional contribution of our paper
is that we give necessary and sufficient conditions for feed-
back equivalence, in terms of some rank and controllability
properties of the linearized system. The method is applied to
linear and mechanical systems for which we obtain, under
some reasonable assumptions.

The remaining of the paper is organized as follows. The
problem is formulated in Section II. The output regulation
and disturbance rejection properties of IC of the passive
output are revisited in Section III. In Section IV the
feedback equivalence problem is presented, and its solution
is given in Section V. Section VI contains the main result of
the paper, namely the robust stabilization of pH systems via
IC of non–passive outputs. In Section VII the application to
mechanical systems is given. Finally, we wrap–up the paper
with some concluding remarks in Section VIII.

Notation All vectors defined in the paper are column vec-
tors and all functions are sufficiently smooth. For a scalar
function H : Rn1 × Rn2 × · · · × Rnp → R, x 7→ H ,
where x := col(x1, x2, . . . , xp), we define the operators

∇iH(x) :=
(

∂H(x)
∂xi

)⊤
. We use the shorthand notation

[∇iH](z) := ∇iH(x)|x=z , that is, the evaluation of the
function ∇iH(x) at z ∈ Rn1 × Rn2 × · · · × Rnp . ∇H(x)
and ∇2H(x) are used for the (transposed) gradient and the
Hessian matrix, respectively. For the distinguished constant
element x⋆ ∈ Rn and a mapping L : Rn → Rs×p,
the abridged notation L(x⋆) =: L⋆ is used. Unless stated
otherwise, it is assumed that the various properties of the
functions—e.g., rank conditions and signs—are satisfied in
a neighborhood of an equilibrium point.
Caveat The proofs of the propositions are omitted because of
space limitations, but are included in a full version submitted
to [18].

II. PERTURBED PORT–HAMILTONIAN SYSTEMS AND
PROBLEM FORMULATION

A. Class of systems and control objectives

The perturbed pH systems considered in the paper are of
the form

ẋ = F (x)∇H(x) + g(x)u+ d

y = g⊤(x)∇H(x) (1)

where x ∈ Rn, u ∈ Rm, g : Rn → Rn×m is the full rank
input matrix, d ∈ Rn is a constant disturbance, H : Rn → R
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is the energy function and

F (x) + F⊤(x) ≤ 0.

As is well–known [9], [17], unperturbed pH systems define
cyclo–passive operators u 7→ y, with storage function H(x).
This property is strengthened to passivity if H(x) is bounded
from below.

We are interested in the scenario where the energy–shaping
and damping injection stages of PBC, for the unperturbed
system, have been accomplished. That is, it is assumed
that an output feedback proportional term has already been
added1 and, consequently,

∇H⊤(x)[F (x) + F⊤(x))]∇H(x) ≤ −α|λ|2 (2)

for some α > 0, where λ = g⊤(x)∇H(x) and |λ| is the
Euclidean norm. Furthermore, it is assumed that a suitable
energy function H(x) has been assigned. The choice of this
function is a delicate point that, as explained below, depends
on whether the disturbances are matched or unmatched.

The control objectives are now, to preserve stability of a
desired equilibrium and to drive a given output towards zero,
in spite of the presence of disturbances. It will be shown
below that, for matched disturbances, i.e., those that enter in
the image of g(x), and the passive output y, an IC around y
achieves the objectives. In this paper we are interested in the
cases where the disturbance is not matched and the signal
to be regulated is not the passive output—but is also zero at
the equilibrium.

B. Notational simplifications

In writing the paper we have decided to sacrifice generality
for clarity of presentation. Consequently, we have made
two assumptions that, without modifying the essence of
our contribution, considerably simplify the notation. First,
since we consider the case where disturbances enter in the
n−m non–actuated coordinates, the internal model principle
indicates that it is necessary to add (n−m) integrators. To
ensure solvability of the problem it is reasonable to assume
that the number of control actions is sufficiently large. This
leads to the following assumption

m ≥ n−m. (3)

If less integrators are added this restriction can
be relaxed—without modifying the essence of the
calculations—but then the notation gets very cumbersome.
See [14] for further details.

The second simplification that we introduce concerns the
matrix g(x). Dragging this matrix through the calculations
significantly complicates the notation, therefore it will be
assumed in the sequel that, after redefinition of the inputs
and the states, the input matrix takes the form

g(x) =

[
Im
0

]
(4)

1This control action is also known in the literature as LgV control [12],
[17].

where Im is the m×m identity matrix.
For notational convenience, we partition the state and

disturbance vectors as

x = col(x1, x2), d = col(d1, d2),

where d1, x1 ∈ Rm and d2, x2 ∈ Rn−m. Similarly, the
matrix F (x) is block partitioned as

F (x) =

[
F11(x) F12(x)
F21(x) F22(x)

]
,

with F11(x) ∈ Rm×m and F22(x) ∈ R(n−m)×(n−m). With
this notation the passive output is

y = ∇1H(x).

For future reference we also define a second output to be
regulated as the (n−m)–dimensional vector

r = ∇2H(x). (5)

C. Some remarks about equilibria

In the absence of disturbances the desired assignable
equilibrium x⋆ ∈ Rn is an isolated minimizer of H(x), that
is,

x⋆ = argminH(x),

ensuring that H(x) is positive definite. In view of (2), when
u = 0 and d = 0, we have that

Ḣ ≤ −α|y|2 ≤ 0,

and x⋆ is a stable equilibrium of the unperturbed open–
loop system with Lyapunov function H(x). Furthermore,
invoking standard LaSalle arguments it is possible to prove
that limt→∞ y(t) = 0 and, if y is a detectable output, that
x⋆ is asymptotically stable. See, for instance, [12], [17].

To simplify the presentation, in the sequel we identify the
set of minimizers of H(x) with

M := {x ∈ Rn |∇H(x) = 0, ∇2H(x) > 0}. (6)

Since the second order (Hessian positivity) condition is
sufficient, but not necessary, for x⋆ to be a minimizer of
H(x), the set M is a subset of the minimizer set, hence the
consideration is taken with a slight loss of generality.

In the perturbed case, the set of assignable equilibria of
(1), (4) is given by

E := {x ∈ Rn | F21(x)∇1H(x) + F22(x)∇2H(x) = −d2}.
(7)

It is clear that, if the disturbances are matched, i.e., d2 = 0,

M ⊆ E .

That is, all energy minimizers are assignable equilibria and
we want to preserve in closed–loop the open–loop equilibria.
On the other hand, in the face of unmatched disturbances,
that is, when d2 ̸= 0,

M∩ E = ∅. (8)
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In other words, it is not possible to assign as equilibrium
a minimizer of the energy function. As will become clear
below, this situation complicates the task of rejection of
unmatched disturbances.

III. ROBUST IC OF THE PASSIVE OUTPUT

In this section the output regulation and disturbance rejec-
tion properties of IC of the passive output of a pH system are
revisited. Although both properties are widely referred in the
literature, to highlight the differences with our main result,
a detailed analysis and some comments and extensions are
given below.

A. Robustness to matched disturbances

Proposition 1 Consider the perturbed pH system

ẋ = F (x)∇H(x) +

[
Im
0

]
(u+ d1)

y = ∇1H(x) (9)

with an equilibrium x⋆ ∈ M, and d1 ∈ Rm a constant
disturbance, in closed–loop with the IC

η̇ = Kiy

u = −η, (10)

where Ki ∈ Rm×m is an arbitrary positive definite matrix.
(i) (Stability of the equilibrium) The equilibrium

(x⋆, d1) is stable.
(ii) (Output regulation) There exists a (closed) ball,

centered in (x⋆, d1) such that for all initial states
(x(0), η(0)) ∈ Rn × Rm inside the ball the trajec-
tories are bounded and

lim
t→∞

y(t) = 0.

(iii) (Asymptotic stability) If, moreover, y is a detectable
output for the closed–loop system (9), (10), the
equilibrium is asymptotically stable.

The properties (i)–(iii) are global if H(x) is globally positive
definite and radially unbounded.

Remark 1. It is clear from (9) that, to ensure x⋆ ∈
E remains an equilibrium of the closed–loop system, the
desired value for u, and consequently for −η, is −d1. The
fact that in IC the disturbances fix the equilibrium value of
their state, will also be exploited in the case of unmatched
disturbances, allowing us to concentrate our attention on the
x components of the equilibrium set.

IV. A FEEDBACK EQUIVALENCE PROBLEM

The key property to prove that IC of the passive output
rejects matched disturbances is the preservation of the pH
structure, moreover, with a separable energy function2. A
key contribution of the paper is that, under some conditions,

2This property is a consequence of the well–known fact that power–
preserving interconnections of pH systems—through power–port variables—
preserve the pH structure with energy the sum of the energies of the pH
systems. See [9] for a detailed study of this property.

it is possible to retain these properties in the unmatched
disturbance case. More precisely, it is proposed to add a new
dynamic extension and a change of coordinates, without
modifying the functional relations in the matrix F (x) nor
the energy function H(x).3 Preserving the energy function
avoids the need to solve a partial differential equation, while
keeping the same interconnection and damping matrix,
simplifies the nonlinear algebraic equations. This motivates
the following definition of feedback equivalence.

Definition 1 The perturbed system

ẋ = F (x)∇H(x) +

[
Im
0

]
u+

[
0
d2

]
(11)

is said to be feedback equivalent to a matched disturbance
integral controlled system—for short, MDICS equivalent—if
there exists two mappings

û, ψ : Rm × Rn−m × Rn−m → Rm,

with
rank{∇1ψ(x1, x2, ζ)} = m, (12)

such that the system in closed–loop with the “integral”
control

ζ̇ = Ki[∇2H(ψ(x1, x2, ζ), x2)]

u = û(x1, x2, ζ), (13)

expressed in the coordinates,

z1 = ψ(x1, x2, ζ)

z2 = x2

z3 = ζ, (14)

takes the pH–form

ż =

 F (z1, z2)

[
0

−Ki

]
[
0 Ki

]
0

∇U(z), (15)

where

U(z) := H(z1, z2) +
1

2
(z3 − d2)

⊤K−1
i (z3 − d2). (16)

It is said to be robustly MDICS equivalent if the mappings
ψ(x1, x2, ζ) and û(x1, x2, ζ) are independent of d2.4

MDICS equivalence guarantees that the transformed
closed–loop system takes the desired form (15). The rank
condition (12) ensures that (14) is a diffeomorphism that
maps the set of equilibria of the (x, ζ)–system into the
equilibria of the z–system. This is, of course, necessary to
be able to infer stability of one system from stability of the
other one. Robust MDICS equivalence guarantees that the
control law (13) can be implemented without the knowledge
of the disturbance d2.

At this point we make the important observation that
choosing the desired value for z3 to be equal to d2 is

3See Remark 3.
4See Remark 5 for a clarification of this point.
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necessary to be able to solve the robust MDICS equivalence
problem. Indeed, since in the change of coordinates (14)
we fixed z2 = x2, and these are unactuated coordinates,
it is necessary that d2, which appears in ẋ2, appears also in
ż2. This fact will become evident in the next section, when
we give the solution to the MDICS equivalence problem.
Remark that, since z3 = ζ, the equilibrium value for ζ is
also d2.

As explained in Subsection II-C the equilibrium sets of
(11), (13) and (15) are not just different, but they are actually
disjoint, see (8). Indeed, while the (x components of the)
former are in the set

Ecl := E ∩ {x ∈ Rgn | [∇2H](ψ(x1, x2, d2), x2) = 0},
(17)

the (z1, z2) components of the latter are in M. In spite of
that, the fact that (14) is a diffeomorphism ensures that the
implication

(x1, x2) ∈ Ecl ⇒ (ψ(x1, x2, d2), x2) ∈ M, (18)

is true, which will be essential for future developments.

Remark 2. The proposed control (13) is, in general, not
an integral action because of the possible dependence of
ψ(x1, x2, ζ) with respect to ζ. We have decided to keep the
name because in the z coordinates it is, indeed, an integral
action of the form

ż3 = Ki∇2H(z1, z2). (19)

Remark 3. It is important to underscore that in the
feedback equivalence problem considered here the matrix
F (z1, z2) and energy function H(z1, z2) are just the eval-
uations of the original functions of the x system in the z
coordinates without applying the (inverse) change of coor-
dinates.5 That is, H(x1, x2) ̸= H(z1, z2) ◦ψ(χ), but simply
H(z1, z2) = H(x1, x2)|x1=z1,x2=z2 . This, rather arbitrary,
choice is done to be able to translate MDICS equivalence
into an algebraic problem.

V. CONDITIONS FOR MDICS EQUIVALENCE

In this section we present two propositions that identify
conditions for MDICS equivalence. The first one is global
and identifies the matching conditions that the mapping
ψ(x1, x2, ζ) has to satisfy. The second one gives necessary
and sufficient conditions for a local result in terms of
controllability and a rank condition of the linearized systems.
To simplify the notation we introduce the 2n−m state vector

χ := col(x1, x2, ζ).

A. Global MDICS equivalence

Proposition 2 The perturbed pH system (11) satisfying
condition (3) is MDICS equivalent if the mapping ψ(χ)
verifies (12) and the following algebraic equation:

5To avoid cluttering the notation the same symbols, H(·) and F (·), have
been used for both functions.

(DyM)(Dynamics matching)

ζ = −F21(x)∇1H(x)− F22(x)∇2H(x)
+F21(ψ(χ), x2)[∇1H(ψ(χ), x2)]
+F22(ψ(χ), x2)[∇2H(ψ(χ), x2)].

(20)
Moreover, the control signal û(χ) is independent of d2 if
ψ(χ) verifies

(DiM) (Disturbance matching)

∇2ψ(χ)d2 = 0. (21)

B. Local MDICS equivalence

To streamline the presentation of the next result define the
linearization of the pH system (11) at the points x⋆ ∈ Mcl

and x̄ ∈ M as

A : = ∇(F (x)∇H(x))|x=x⋆

E : = (F (x)∇2H(x))|x=x̄. (22)

Notice that, since ∇H(x̄) = 0, the linearization at a point
in the minimizer set takes a simpler form. These n × n
matrices are block partitioned as

A =

[
A11 A12

A21 A22

]
,

with A11 ∈ Rm×m and A22 ∈ R(n−m)×(n−m), with a
similar partition for E.

Proposition 3 Consider the perturbed pH system (11)
satisfying condition (3) and two points: x⋆ ∈ Ecl and x̄ ∈ M.

(S1) A necessary condition for MDICS equivalence is
that the linearizations of the pH system at the points
x⋆ and x̄ are controllable. That is, the pairs(

A,

[
Im
0

])
,

(
E,

[
Im
0

])
are controllable pairs.

(S2) A sufficient condition for MDICS equivalence is
that the (2, 1) blocks of the matrices A and E
defined in (22) are full rank. That is,

rank{A21} = rank{E21} = n−m. (23)

Moreover, the system is robustly MDICS equivalent if

A22 = E22 (24)
A21x

⋆
1 = −d2. (25)

Unfortunately, there is a gap between the necessary and the
sufficient conditions of Proposition 3. Indeed, controllability
of the linearized systems is necessary, but not sufficient,
for MDICS equivalence. The gap stems from the fact that,
without further qualifications on E22, does not ensure that
rank{E21} = n −m. On the other hand, it is obvious that
(23) implies controllability.

Proposition 3 establishes that, if (23), (24) and (25) hold,
the system is locally robustly MDICS equivalent—in a
neighborhood of (x⋆1, x

⋆
2, d2). Of course, there might be
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other, possibly nonlinear, admissible mappings valid in a
large region of the state space. It is shown in Section VII,
that this is the case for a practically interesting class of
nonlinear mechanical systems.

Remark 4. Condition (24) imposes restrictions on
the dependence of F (x) and H(x) with respect to the
unactuated coordinate x2. Condition (25), on the other hand,
is related with the form of the assignable equilibrium set
E . Recalling that the matrices A and E are linearizations
of the same vector field at two different points, it is clear
that both sets Ecl and M play a role in these assumptions.
Interestingly, even though these assumptions are now
technical, they are satisfied, as well as in the motor example
of [4].

Remark 5. In Definition 1 the feedback equivalence was
said to be robust—for obvious reasons—if the mappings
ψ(χ) and û(χ) are independent of the disturbance d2. As
seen from the proof of Proposition 2, û(χ) may, indeed,
depend on d2. However, from the dynamics matching equa-
tion (20) that defines ψ(χ), it is not clear why would it
depend on d2. The reason is that, as shown in Proposition
3, when looking for a local solution around the equilibria,
these depend on d2.

VI. ROBUST IC OF A NON–PASSIVE OUTPUT

In this section the main result of the paper is presented.
Namely, the design of an IC, which is robust vis–à–vis
unmatched disturbances. More precisely, the controller
preserves stability of the equilibrium and ensures regulation
(to zero) of the signal (5) that, being of relative degree
larger than one, is not a passive output.

Proposition 4 Consider the perturbed pH system (11)
satisfying condition (3). Assume there exist two points,
x⋆ ∈ Ecl and x̄ ∈ M, that is, an assignable equilibrium
and a minimizer of the energy H(x), such that (23)–(25)
hold, with A and E defined in (22). Under these conditions,
there exist two mappings

û, ψ : Rm × Rn−m × Rn−m → Rm,

such that the “integral” control (13) ensures the following
properties.

(i) (Stability of the equilibrium) The equilibrium
(x⋆1, x

⋆
2, d2) is stable.

(ii) (Regulation of the passive output) There exists a
(closed) ball, centered at the equilibrium, such that
for all initial states (x(0), ζ(0)) ∈ Rn × Rn−m

inside the ball the trajectories are bounded and

lim
t→∞

y(t) = 0.

(iii) (Asymptotic stability) If, moreover, y is a detectable
output for the closed–loop system (11), (13), the
equilibrium is asymptotically stable.

(iv) (Regulation of the non–passive output) Under the
condition of (iii), there exists a (closed) ball, cen-
tered at the equilibrium, such that for all initial
states (x(0), ζ(0)) ∈ Rn×Rn−m inside the ball the
trajectories are bounded and the output (5) satisfies

lim
t→∞

r(t) = 0.

The properties (i)–(iv) hold globally if the function H(x) is
globally positive definite and proper (with respect to x̄) and
the mapping ψ(x1, x2, ζ) satisfies (globally) the conditions
(20) and (21) of Proposition 2.

VII. ROBUST IC OF MECHANICAL SYSTEMS

In this section we prove that the proposed IC ensures
global asymptotic stability for a class of mechanical systems.

Proposition 5 Consider an m–degrees of freedom, fully–
actuated, fully–damped, perturbed mechanical system repre-
sented in pH form (11), with state

x = col(p, q),

where q, p ∈ Rm are the generalized positions and “mo-
menta”,6 respectively, and

F =

[
−Kp −Im
Im 0

]
.

The energy function is given by

H(x) =
1

2
x⊤1 M

−1x1 + P (x2),

with M ∈ Rm×m the positive definite, constant inertia
matrix, and P (x2) the potential energy function. Assume

x̄2 = argminP (x2)

and it is isolated and global.
The IC

ζ̇ = Ki∇P (x2)
u = −Kpζ −MKi∇P (x2), (26)

ensures the equilibrium (−Md2, x̄2, d2) is globally asymp-
totically stable with Lyapunov function

V (x, ζ) :=
1

2
(x1 +Mζ)⊤M−1(x1 +Mζ) +

+ P (x2) +
1

2
(ζ − d2)

⊤K−1
i (ζ − d2).

The result can be extended—under some assumptions—to
the case of nonconstant inertia matrix. Indeed, it is easy to
verify that the mapping

ψ(χ) = x1 +M(x2)ζ,

is a global solution of the dynamics matching equation (20).
However, additional constraints on M(x2) and–or d2 are
needed to satisfy the disturbance matching equation (21).

6Notice the non–standard definition of the state. See also the discussion
below for the physical meaning of the model, which explains the use of
quotation marks for the momenta.
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Namely, that the i–th component of the disturbance vector
is zero if M(x2) depends on the i–th element of x2, that is,

e⊤i d2
∂M(x2)

∂x2i
= 0

where x2i := e⊤i x2, with ei ∈ Rn−m the i–th vector of the
Euclidean basis.

The disturbance considered in the example represents a
bias term in the measurement of velocity that propagates
into the system through the damping injection. This fact is
clear writing the dynamics of the open–loop system in Euler–
Lagrange form

Mq̈ +Kp(q̇ − d2) +∇P (q) = u.

It is interesting to note that, after differentiation, the closed–
loop system is given by

M
...
q +Kpq̈ + (Im +MKi)∇2P (q)q̇ +KpKi∇P (q) = 0.

Hence, the stabilization mechanism is akin to the
introduction of nonlinear gyroscopic forces plus a suitable
waiting of the potential energy term.

Remark 6. Note that

Ecl = {x ∈ Rn|x1 = −Md2, ∇P (x2) = 0}
M = {x ∈ Rn | x1 = 0,∇P (x2) = 0}

thus, as expected, ψ(χ) verifies the implication (18).

VIII. CONCLUDING REMARKS AND FUTURE WORK

Motivated by the developments of [4] a new IC that
ensures regulation (to zero) of the passive output, as well as
the non–passive output ∇2H(x), of the pH system (11)—
in spite of the presence of disturbances in the non–actuated
coordinates—has been proposed. Because of its simplicity
and widespread popularity, we have concentrated here on
basic IC solutions. An alternative approach to reject the
unmatched disturbance is to use the well–known output
regulation techniques as done, for instance, in [1], [3],
[6], which clearly lead to more complicated state–feedback
designs. See also [2].

Robustness with respect to input disturbances of the pro-
posed IC is unclear and is currently been investigated. If the
system is fully damped, it can be shown that it is input–to–
state stable and, consequently, for a constant input it has a
steady state [15]. However, it would be interesting to analyze
the effect of adding to the new IC a standard integral action
in the passive output, as done in the simulation example of
[4].

Another research avenue that we are currently pursuing is
to add a new degree of freedom modifying the matrix F (x)
in the z–dynamics. To avoid the need to solve a partial
differential equation, it is desirable to keep the same energy
function, however there is no particular reason to keep the
same matrix—as long as the symmetric part of new one is
also negative semidefinite. Towards this end, the matching
equation and the control are accordingly modified, but the

new algebraic equations are more complicated because of
the particular way they depend on the new matrix. Finally,
as pointed out in Remark 3, we have a poor understanding
of the meaning of conditions (24) and (25) that, at this
point, are just technically motivated.
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