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Abstract— We develop a market-based mechanism that en-
ables a building Smart Microgrid Operator (SMO) to offer
regulation service reserves and meet the associated obligation
of fast response to commands issued by the wholesale market
Independent System Operator (ISO) who provides energy and
purchases reserves. The proposed market-based mechanism
allows the SMO to control the behavior of internal loads
through price signals and to provide feedback to the ISO.
A regulation service reserves quantity is transacted between
the SMO and the ISO for a relatively long period of time
(e.g., a one hour long time-scale). During this period the ISO
repeatedly requests from the SMO to decrease or increase its
consumption. We model the operational task of selecting an
optimal short time-scale dynamic pricing policy as a stochastic
dynamic program that maximizes average SMO and ISO utility.
We then formulate an associated non-linear programming static
problem that provides an upper bound on the optimal utility.
We study an asymptotic regime in which this upper bound is
tight and the static policy provides an efficient approximation
of the dynamic pricing policy. We demonstrate, verify and
validate the proposed approach through a series of Monte Carlo
simulations of the controlled system time trajectories.

Index Terms— Electricity demand response, electricity regu-
lation service, smart-grid, pricing, electricity markets, welfare
maximization, dynamic programming.

I. INTRODUCTION

We address advanced demand control in next generation

intelligent buildings or neighborhoods that are (i) equipped

with a sub-metering and actuation capable smart-microgrid

accessible by occupants as well as by a Smart Microgrid

Operator (SMO), and (ii) connected to a cyber infrastructure

enhanced smart grid that can support close-to-real-time

power market transactions including participants connected

at the distribution level. In particular, we consider demand

control for offering capacity reserve ancillary services to the

Independent System Operator (ISO) who clears short-term

power markets. In this respect we note that five minute up

and down capacity reserves, known as Regulation Service

(RS) reserves, are important to meeting the required energy

balance and preserving power system stability. As clean,

but alas intermittent and volatile, renewable generation is

increasingly integrated into the grid, RS reserve requirements
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increase as well [1]. Considering that today’s RS reserves are

procured simultaneously with energy, correspond to 1% of

load, and command market clearing prices comparable to

the price of energy, an increase in RS requirements without

a commensurate increase in the supply of RS reserves may

well be a show stopper for wind generation expansion. Since

centralized generating units are today the only contributor

of RS, enabling buildings to offer RS and compete in the

power markets promises a major contribution in terms of

affordable RS reserve cost and lower CO2 emissions due to

the associated adoption of clean generation.

Wholesale power markets were introduced in the US in the

mid 1990’s [2]. These markets clear simultaneously energy

and several types of reserve requirements. For simplicity in

exposition we consider here only RS reserves. Most markets

have not yet allowed the demand side to participate in

RS reserves. One of the ISO’s, PJM, has allowed loads to

participate in energy and reserve transactions since 2006 [3],

while other ISO’s are contemplating to follow suit. Of the

existing short-term markets we point out briefly ([4], [5],

[6], [7]) the: (i) day ahead markets that close at noon of

the previous day and clear energy and reserve bids for each

of the 24 hours of the next day, (ii) hour ahead adjustment

markets that close an hour in advance and reveal energy and

reserve prices, and (iii) 5-minute real-time economic dispatch

markets that determine actual ex post variable marginal cost

of energy at each bus or node of the transmission system.

We assume that with the advent of the smart grid ([8],

[9]) a Load Aggregator (LA) will be able to participate in

power markets on a par basis with centralized generators. In

particular we assume that a LA will be able to buy energy

on an hourly basis at the corresponding clearing price and

sell RS reserves for which it will be credited at the system

RS clearing price. An ISO who procures Rh KW of RS is

entitled to consider it as a stand by increment or decrement

of consumption that it can utilize at will in total or in part.

The ISO may send commands to the RS provider to request

that it modulates its consumption either up or down by an

amount that does not exceed Rh. These requests may arrive

at inter-arrival times of 5 seconds or longer. To observe

RS reserve contractual obligations, the RS provider must

deliver the requested increase or decrease in its load with

a ramp rate of Rh/5 KW per minute. The ISO typically re-

dispatches the power system in 5 minute intervals. At each 5

minute system dispatch, the ISO schedules slower response

tertiary reserves so as to reset the utilized RS reserves to

their set points. As a result, although not guaranteed, the

RS reserve provider’s tracking of ISO commands is for all
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practical purposes energy neutral over the long time-scale of

an hour and beyond. To meet the aforementioned contractual

requirements, an SMO must be capable of controlling loads

through the smart microgrid and a higher decision support

and communication layer that interacts with users of energy

in order to adapt their demand behaviors to ISO’s requests.

The lower SMO layer consists of sensing and actuation com-

ponents that collect building state information and actuate so

as to safely implement goals determined at the higher level

and authorized by building occupants.

This paper focuses expressly on providing the higher

decision support layer with a virtual market that operates

on the building side of the meter for the purpose of eliciting

a collaborative response of building occupants. Our objective

is to derive an optimal SMO pricing or incentive policy

towards building occupants so that they consent to the sale

of RS reserves to the ISO and collaborate in meeting ISO’s

RS utilization requirements. To the best of our knowledge,

little relevant work has been published, and we are the first

to propose such a market based policy for demand control

aiming at the provision of RS reserves. Methodologically,

related techniques have been used in pricing Internet ser-

vices [10], [11]. In Sec. II, we detail our internal market

based model and formulate a related welfare maximization

problem. In Sec. III we cast the problem into a Dynamic

Programming (DP) framework to obtain the optimal dynamic

policy. We then proceed to develop performance bounds and

approximations. In Sec. IV we develop a static policy and

in Sec. V we derive an easily computable upper bound on

the optimal performance. Based on this bound, we establish

in Sec. VI the asymptotic optimality of the static policy as

the load class specific consumption level becomes smaller

with a commensurate increase in the number of active

loads. Further, we extend the asymptotic optimality results

to account for constraints that model energy neutrality over

the long time-scale and the upper limit in the RS delivery

requested by the ISO . We present numerical results in

Sec. VII, and conclude in Sec. VIII.

II. PROBLEM FORMULATION

This section models the short time-scale interaction of

the SMO with microgrid occupants/loads and the ISO in

conjunction with RS reserves.

The SMO can sell Rh KW of regulation service for the

duration of the long time-scale (e.g., one hour), provided

that its microgrid’s average consumption, R, exceeds Rh and

its consumption capacity is at least R + Rh. We envision

microgrid load classes that can be potentially active during

the relevant long time period to include, among others, lights,

HVAC zones, computers, electrical appliances and the like.

We denote the event of a load unit becoming active as an

internal arrival (i.e., internal to the building) and associate a

class-specific electricity demand increment with each arrival.

We similarly denote the event of a load unit becoming

inactive as an internal departure. An actively consuming load

unit derives a positive utility. With the sale of Rh KW of

RS the SMO agrees to be on standby and respond to short

time-scale (e.g., seconds to minutes) ISO requests for an

increment or decrement of the building’s consumption. We

denote the event of an ISO request as an external arrival (i.e.,

external to the building). The termination of an ISO request

is modeled as an external departure. Note that the cumulative

ISO increment or decrement requests can not exceed Rh or

−Rh respectively. As mentioned, the SMO’s response does

not have to be instantaneous. It must adhere, however, to a

response rate of roughly Rh/5 KW per minute. ISO requests

that are met by the SMO result in positive utility. In addition,

in its periodic 5 minute system re-dispatch, the ISO typically

attempts to reset its cumulative increment or decrement

requests to zero in order to enable RS providers to respond to

new requests during future inter-dispatch 5 minute periods.

This suggests that the long time-scale average deviation of

building consumption from its R level equals zero. Hence,

the sale of RS reserves has an energy neutral impact on long

time-scale building consumption.

The primary objective is to maximize the sum of SMO and

ISO welfare associated with internal and external arrivals.

Hard and soft constraints are added to model adherence

to the contractual requirements and long time-scale energy

neutrality described above. To achieve these goals, the SMO

controls the active internal loads and external requests by

communicating external and internal-class-specific prices

that may be interpreted as dynamic demand control and RS

activation feedback signals as much as a monetary exchange.

We assume M classes of internal loads i = 1, . . . ,M ,

that arrive according to a Poisson process and require ri

KW for an exponentially distributed period with rate µi. Let

µ = (µ1, . . . , µM ). Each internal arrival of class i pays an

SMO determined price ui; we define u = (u1, . . . , uM ).
We assume that the arrival rate of class i loads is a known

demand function λi(ui) which depends on ui and satisfies

Assumption A below. We denote the number of active class

i internal loads at time t by ni(t), i = 1, . . . ,M , and define

N(t) =
(

n1(t), . . . , nM (t)
)

.

Assumption A

For every i, there exists a price ui,max beyond which the

demand λi(ui) becomes zero. Furthermore, the function

λi(ui) is continuous and strictly decreasing in the range

ui ∈ [0, ui,max].

ISO requests for the dynamic activation of RS reserves are

modeled as a special external class. External RS activation

requests occur at a rate a(y) where y is an SMO set price and

a(y) satisfies Assumption B below. While they are active,

external arrivals require re KW each. They become inactive

upon their departure which follows an exponential distribu-

tion with rate d. Denoting the number of active external

class loads at time t by m(t), we can express the request

for increased or decreased building energy consumption as

R+Rh −m(t)re. We impose the following two constraints:

N(t)
′

r + m(t)re =

M
∑

i=1

ni(t)ri + m(t)re ≤ R + Rh, (1)

m(t)re ≤ 2Rh, (2)
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where prime denotes transpose. Inequality (1) ensures that

at any time t the total capacity usage of all active loads

does not exceed the maximal building consumption capacity.

Inequality (2) ensures that the ISO can not request that the

average building consumption R be increased beyond R+Rh

or decreased below R − Rh.

Assumption B

There exists a price ymax beyond which the demand a(y)
becomes zero. Furthermore, the function a(y) is continuous

and strictly decreasing in the range y ∈ [0, ymax].

To render the proposed constrained welfare maximization

problem more meaningful, we first detail the arrival models

and the underlying demand functions. An arrival of an

internal load of class i generates utility Ui, where Ui is

a non-negative random variable taking values in the range

[0, ui,max] with a continuous probability density function

fi(ui). Arrivals of internal class i loads are a fraction of po-

tential class i arrivals generated according to a Poisson pro-

cess with constant rate λi,max. A potential arrival becomes

a real arrival if and only if the random utility realization,

Ui, exceeds the SMO set price ui. This implies that internal

class i arrivals occur according to a randomly modulated

Poisson process with rate λi(ui(t)) = λi,maxP[Ui ≥ ui(t)].
Furthermore, the expected utility conditioned on the fact that

a potential arrival has been accepted under a current price of

ui, is equal to E[Ui|Ui ≥ ui]. We therefore conclude that the

expected long-term average rate at which utility is generated

by the arrival of internal loads is given by:

lim
T→∞

1

T

M
∑

i=1

E

[
∫ T

0

λi(ui(t))E[Ui|Ui ≥ ui(t)]dt

]

.

Following a similar argument, the welfare generated from

external RS class arrivals can be expressed as:

lim
T→∞

1

T
E

[
∫ T

0

a(y(t))E[Y |Y ≥ y(t)]dt

]

,

where Y stands for the welfare from the admission of a

potential external RS arrival, and a(y(t)) = amaxP[Y ≥
y(t)] where amax is the maximal arrival rate of the external

RS class. An interesting interpretation of the long-term

average utility generated by external RS class arrivals is that

it represents the reservation reward level that the ISO might

be willing to pay the SMO for standby RS reserves.

Finally, recall that building response to active ISO RS

requests implies that the modified building load must equal

R + Rh − m(t)re. This is to avoid compliance by energy

dumping, and we impose the following penalty:

lim
T→∞

1

T
E

[

∫ T

0

P

(

(

R + Rh

)

−
(

M
∑

i=1

ni(t)ri+m(t)re

)

)

dt

]

,

where P (·) denotes the penalty function. We make specific

assumptions on P (x) later.

The optimal pricing policy can now be described as the

arg max of:

lim
T→∞

1

T
E

[ M
∑

i=1

∫ T

0

λi(ui(t))E[Ui|Ui ≥ ui(t)]dt

+

∫ T

0

a(y(t))E[Y |Y ≥ y(t)]dt

−

∫ T

0

P

(

(

R + Rh

)

−
(

M
∑

i=1

ni(t)ri + m(t)re

)

)

dt

]

. (3)

Due to Assumption A and B, functions λi(ui) and a(y)
have inverse functions which we denote by ui(λi) and y(a),
respectively. The inverse functions are defined on [0, λi,max]
and [0, a0], respectively, and are continuous and strictly

decreasing. This allows us to use the arrival rates λi and a
as the SMO’s decision variables and write the instantaneous

reward rates as λiE[Ui|Ui ≥ ui(λi)] and aE[Y |Y ≥ y(a)].

III. DYNAMIC PROGRAMMING FORMULATION

The problem introduced in Sec. II is in fact a finite-state,

continuous-time, average reward DP problem. Note that the

set {U ,Y } = {(u, y)|0 ≤ ui ≤ ui,max,∀i; y ≤ ymax}
is compact and that all states communicate assuring that

there exists a (proper) policy that is associated with finite

first passage time from any state (N,m) to any other state

(N′,m′). Standard DP theory results assert that an optimal

stationary policy exists [12].

Since the process (N(t),m(t)) is a continuous-time

Markov chain and the total transition rate out of any state is

bounded by ν =
∑M

i=1(λi,max+µi⌈(R+Rh)/ri⌉)+(amax+
d⌈(R+2Rh)/re⌉), we can uniformize this Markov chain and

derive the following Bellman equation [12]:

J∗ + h(N,m) = max
u∈U

[

∑

i∈C(N,m)

λi(ui)E[Ui|Ui ≥ ui]

+1D(N,m)a(y)E[Y |Y ≥ y]−P
(

(

R + Rh

)

−
(

N
′

r + mre

)

)

+
∑

i∈C(N,M)

λi(ui)

ν
h(N + ei,m) +

M
∑

i=1

niµi

ν
h(N − ei,m)

+ 1D(N,m)
a(y)

ν
h(N,m + 1) +

md

ν
h(N,m − 1)

+
(

1 −
∑

i∈C(N,M)

λi(ui)

ν
−

M
∑

i=1

niµi

ν

− 1D(N,m)
a(y)

ν
−

md

ν

)

h(N,m)
]

. (4)

Here, C(N,m) = {i|(N + ei)
′

r + mre ≤ R + Rh} is the

set of internal class arrivals that can be admitted in state

(N,m), D(N,m) = {(N,m) | N
′

r + (m + 1)re ≤ R +
Rh, (m+1)re ≤ 2Rh} describe the conditions under which

external RS class arrivals can be admitted to the system, and

1A denotes the indicator of some set A . The above Bellman

equation has a unique solution J∗ and h(·) for an arbitrarily

selected special state, say 0 at which we specify the value

of the differential cost function, for example h(0) = 0 [12].

The scalar J∗ stands for the optimal expected social welfare

per unit and h(N,m) denotes the relative reward in state

(N,m). Solution of Bellman’s equation yields an optimal

policy that maps any state (N,m) to the optimal price vector

(u, y) that maximizes the right-hand side of Equation (4).

Unfortunately, the curse of dimensionality stipulates that

Bellman’s equation is only solvable for a small state space.

We therefore seek a near optimal solution that is applicable to
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SMO’s managing relatively large buildings or neighborhoods

with a large population of internal loads.

IV. STATIC PRICING POLICY

We consider a static pricing policy, namely a fixed price

vector (u, y) independent of the system state, for two

reasons: (1) the computation effort of solving for optimal

dynamic prices increases exponentially in the number of

classes and active loads, and (2) good static prices can be

constructed tractably and under reasonable conditions lead to

reasonable behaved provision of RS. Indeed, under a static

pricing policy (u, y), the system evolves as a continuous-

time Markov chain with corresponding average welfare:

J
(

(u, y)
)

=

M
∑

i=1

λi(ui)E[Ui|Ui ≥ ui]
(

1 − Pi
loss[(u, y)]

)

+ a(y)E[Y |Y ≥ y]
(

1 − Qloss[(u, y)]
)

− E

[

P
(

(R + Rh) −
(

∑

i

niri + mre

)

)

]

, (5)

where Pi
loss[(u, y)] denotes the steady-state probability

P[N′
r+ri+mre > R+Rh] that an internal class i arrival is

rejected, and Qi
loss[(u, y)] denotes the steady-state probability

P[N′
r + (m + 1)re > R + Rh or (m + 1)re > 2Rh] that an

external RS class arrival is rejected. Moreover, the expected

penalty cost is also given by the steady-state probability

associated with the same static policy (u, y).
The optimal static welfare is defined by

Js = max
(u,y)∈{U ,Y }

J
(

(u, y)
)

, (6)

and the following proposition holds.

Proposition IV.1 Js ≤ J∗.

V. OPTIMAL PERFORMANCE UPPER BOUND

In this section we develop an upper bound on J∗ and use

it to quantify the suboptimality of the static policy.

Using the inverse demand functions ui(λi), and inter-

nal class i arrival rate λi, the instantaneous reward rate

is Fi(λi) = λiE[Ui|Ui ≥ ui(λi)]. Similarly, G(y) =
aE[Y |Y ≥ y(a)]. Assume that the functions Fi and G are

concave. Let Jub be the optimal value of the following Non-

Linear Programming (NLP) problem:

max
∑

i

Fi(λi) + G(a) (7)

− P
(

(R + Rh) −
(

∑

i

niri + mre

)

)

s.t. λi = µini, ∀i

a = dm
∑

i

niri + mre ≤ R + Rh

mre ≤ 2Rh.

Remark: The non-negativity constraints ni ≥ 0 and m ≥ 0
are ignored here. Notice that the departure rates µi and d are

positive, and the arrival rates λi and a are also non negative

by definition. Thus ni and m are also non-negative under

well-defined demand functions.

Proposition V.1 If the functions Fi(λi) and G(a) are con-

cave and P (·) is convex, then J∗ ≤ Jub.

Proof: The proof is similar to a result in [10] and is

omitted.

The optimal solution of NLP (7) provides an upper bound

for the optimal social welfare. Moreover, if the objective

function of (7) is concave, the NLP is very easy to solve.

VI. ASYMPTOTIC BEHAVIOR

In this section, we consider an asymptotic regime and

discuss how to derive the optimal policy while satisfying

additional system behavior requirements.

A. Many Small Loads

If R and Rh are large relative to the required power of

a typical arrival, we expect that the laws of large numbers

will dominate, attenuate statistical fluctuations, and allow us

to carry out an essential deterministic analysis. To capture a

situation of this nature, we start with a base system character-

ized by finite capacity R and Rh and finite demand functions

λi(ui). We then scale the system through a proportional

increase of capacity and demand.

More specifically, let c ≥ 1 be a scaling factor. The scaled

system has resources Rc+Rc
h, with Rc+Rc

h = cR+cRh, and

demand functions λc
i (ui), ac

j(yj) given by λc
i (ui) = cλi(ui)

and ac(y) = ca(y). Note that the other parameters ri, µi, and

re, d are held fixed. We will use a superscript c to denote

various quantities of interest in the scaled system.

In this case, consider the NLP problem (7). The upper

bound Jc
ub is obtained by maximizing

∑

i

cλi(ui)E[Ui|Ui ≥ ui] + ca(y)E[Y |Y ≥ y]

− P
(

(

cR + cRh

)

−
(

∑

i

cλi(ui)

µi

ri +
ca

d
re

)

)

,

subject to the constraints
∑

i
cλi(ui)

µi
ri +

ca(y)
d

re ≤ cR+cRh

and
ca(y)

d
re ≤ 2cRh.

It can seen that, if the penalty function P (·) is lin-

ear, then the optimal solution for (7), denoted by u
∗
ub =

(u∗
ub,1, . . . , u

∗
ub,M ) and y∗

ub, is independent of c, and Jc
ub =

cJ1
ub.

We summarize in the following assumption the property

of the penalty function.

Assumption C

P (Kx) = Kx for some K > 0.

We summarize the above result as follows:

Proposition VI.1 Under Assumption C, the optimal objective

value of (7) in the scaled system increases linearly with c,

i.e., Jc
ub = cJ1

ub.

We are interested in determining the gap between the two

bounds derived in Sec. IV and Sec. V. We show that in the

regime of many small users, the following result holds:
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Theorem VI.2 Assume that functions Fi(λi) and G(a) are

concave, and Assumptions A, B, and C hold. Then,

lim
c→∞

1

c
Jc

s = lim
c→∞

1

c
J∗,c = lim

c→c

1

c
Jc

ub. (8)

Proof: The proof is omitted due to space limitations.

In the next two subsections, while staying in the regime

of many small loads, we extend the asymptotic optimality

results to accommodate additional system behavior require-

ments.

B. Energy Neutrality

We impose energy neutrality, i.e., require the long-term

average cumulative active requests of the external RS class

to equal Rh. We show that energy neutrality can be achieved

if the SMO can appropriately influence the demand function

of the RS class.

We assume linear demand λi(ui) = λi,max(1 − ui

ui,max

)

and a(y) = amax(1 − y
ymax

). Suppose that the welfare Ui

is uniformly distributed on [0, ui,max] and Y is uniformly

distributed on [0, ymax].Then, Fi(λi) = ui,max(λi −
λ2

i

2λi,max

)

and G(a) = ymax(a − a2

2amax

) are concave in λi and a,

respectively.

The NLP (7) can now be written as:

min −
∑

i

ui,max(λi −
λ2

i

2λi,max
) − ymax(a −

a2

2amax
)

+ K
(

(R + Rh) −
(

∑

i

λi

µi

ri +
a

d
re

)

)

s.t.
∑

i

λi

µi

ri +
a

d
re ≤ R + Rh,

a

d
re ≤ 2Rh. (9)

For ease of exposition but without loss of generality, we

consider next a system involving 2 internal and 1 external

RS class.

Note that the NLP problem (9) can be re-formulated into

the following Quadratic Programming (QP) problem:

min
1

2
[λ1 λ2 a]







u1,max

λ1,max

u2,max

λ2,max

ymax

amax











λ1

λ2

a





+





−K r1

u1

− u1,max

−K r2

u2

− u2,max

−K re

d
− amax





T 



λ1

λ2

a





s.t.

[

r1

µ1

r2

µ2

re

d
re

d

]





λ1

λ2

a



 ≤

[

R + Rh

2Rh

]

. (10)

The dual of (10) is also a QP problem. We denote the

optimal solution of the primal QP (10) by (λ∗
1, λ

∗
2, a

∗), and

the optimal solution of the dual QP by (q∗1 , q∗2).
Under energy neutrality, the long-term average of active

external RS class requests is Rh, i.e., rea
∗/d = Rh. By

complementary slackness, we have the following optimality

conditions:

ymax(1 −
1

amax
·
dRh

re

) =
λ1,max

r1

µ1

+ λ2,max
r2

µ2

− R

λ1,max

u1,max

·
r2

1

µ2

1

+
λ2,max

u2,max

·
r2

2

µ2

2

·
re

d
,

R + Rh ≤ λ1,max
r1

µ1
+ λ2,max

r2

µ2
+ amax

re

d
,

R ≤ λ1,max
r1

µ1
+ λ2,max

r2

µ2
. (11)

Under conditions (11), the optimal social welfare is:

−
1

2

(

λ1,max
r1

µ1

+ λ2,max
r2

µ2

+ amax
re

d
− (R + Rh)

)2

λ1,max

u1,max

·
r2

1

µ2

1
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·
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·
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e
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+
1

2
λ1,maxu1,max +

1

2
λ2,maxu2,max +

1

2
amaxymax. (12)

We summarize the above result as follows:

Proposition VI.3 Given (11), in the regime of many small

loads, the long-term average of active requests of the external

RS class is Rh, and the optimal performance is given by (12).

VII. NUMERICAL EXPERIMENTS

In this section, we report numerical experiments that verify

and validate our results.

Assume that the SMO can support a maximal consumption

of 1200 KW with R = 1000 KW and Rh = 200 KW.

This consumption is consistent with the Boston University

(BU) Photonics building housing the office of the first two

co-authors. Consider two internal classes characterized by

(all arrival rates are in arrivals/minute and departure rates

in departures/minute): λ1(u1) = 1600 − 80u1, λ2(u2) =
800 − 80u2, u1,max = 20, u2,max = 10, λ1,max = 1600,

λ2,max = 800, r1 = 2 KW, r2 = 1 KW, µ1 = 1, µ2 = 2. The

RS class arrival rate is: a(y) = 1000(1−y/ymax) with ymax

to be determined, amax = 1000, re = 1 KW, d = 2. The

penalty function has a slope of K = 1000. Assume that the

social welfare Ui is uniformly distributed on [0, ui,max] and

Y is uniformly distributed on [0, yi,max]. With these values

we can solve the NLP problem (9) and obtain asymptotically

optimal static prices.

Consider a typical regulation service cycle consisting of

three 5-minute periods. Each cycle starts with a full RS

standby state, namely, with all RS active loads totalling

Rh. This is the result of the ISO 5 minute dispatch which

we model by tuning the value of ymax. In the following

two periods within the cycle, ISO requests are modeled as

random samples from a uniform distribution over [0, 2Rh]
which are instantiated by setting the corresponding value of

ymax. This random cycle is statistically neutral over the long

time-scale. In this experiment, ymax changes every 5 minutes

and the SMO must control internal class loads to meet ISO

requests within the 5 minute requirement of RS reserves.

By formulating and solving the NLP problem (9) at the

beginning of every period, the SMO is able to appropriately

set the prices that result in the required arrivals of internal

classes. We simulate the system for the long time-scale of

one hour consisting of 12 periods of 5 minutes each and

report the results below.

The steady-state arrival rates for the two internal classes

and the RS class in these periods are shown in Tab. I. The

evolution of the total consumption due to internal loads and

the total load of the RS class are shown in Fig. 1. Note
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TABLE I

THE ARRIVAL RATES OF INTERNAL CLASSES AND THE RS CLASS.

Period Internal class 1 Internal class 2 RS class

1 376 494 400
2 409 502 258
3 346 486 527
4 376 494 400
5 309 477 683
6 409 502 257
7 376 494 400
8 322 480 630
9 445 511 106
10 376 494 400
11 403 500 286
12 321 480 635

Fig. 1. Energy consumption by internal classes and active RS requests.

that by applying static pricing policies that are piece-wise

constant over each 5-minute period, internal loads converge

to the ISO request. Recalling that RS reserves are required to

respond with a ramp of Rh/5 KW per minute, the response

of internal class loads conforms well to requirements. Indeed,

since Rh = 200 KW in this example, the rate at which

n1(t)r1 + n2(t)r2 + m(t)re move away from and then

approach the 1200 KW level should be close to 40 KW

per minute. Figure 1 demonstrates this to be the case. The

SMO’s decision to offer 200 KW of RS is consistent with its

capability to perform according to the associated contractual

requirements. In Figure 2, where we plot the number of

internal loads and RS requests, we note that there are on

average 350 active loads of class 1 with a 2 KW consumption

rate – these might be HVAC heating zone loads – and 250
active loads of class 2 with a 1 KW consumption rate. These

quantities are consistent with the BU Photonics building

which features several hundred heating zones.

VIII. CONCLUSIONS

The prospect of a paradigm shift in the capabilities of the

electric power grid as well as building side of the meter mi-

crogrids through cyber-physical system (CPS) infrastructure

development is within sight. Such CPS infrastructure will

certainly enable loads to participate in power markets on a

par basis with generating units, not only in the provision

Fig. 2. Number of active internal loads and active RS requests.

of electric energy, but also in the provision of fast reserves.

In this paper we develop and test a market based approach

for a Smart Microgrid Operator (SMO) to control numerous

and diverse loads and provide such services. We start by

formulating a detailed dynamic optimal control problem and

then derive an associated tractable and yet near optimal non-

linear optimization model that is capable of determining both

short term (at the minutes time-scale) operational decision

support to the SMO as well as longer time-scale transaction

quantities (at the hourly time-scale). Our model is elaborated

and validated by numerical simulation results.
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