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Abstract— The present paper deals with maximum entropy
completion of partially specified banded block–circulant matri-
ces. This problem has many applications in signal processing
since circulants happen to be covariance matrices of stationary
periodic processes and maximum entropy completion (i.e. the
completion which has maximal determinant) is in fact maxi-
mum likelihood estimation subject to conditional independence
constraints. Moreover, the maximal determinant completion
has the meaning of covariance matrix of stationary reciprocal
processes ([18], [20], [21]), a class of stochastic processes
which extends Markov processes and is particularly useful
for modeling signals indexed by space instead of time (think
for example of an image). The maximum entropy completion
problem for circulant matrices has been solved in [5] and some
generalizations are brougth forth in [6]. The main contribution
of this paper is an efficient algorithm for its solution.

I. INTRODUCTION

In this paper (a shortened version of our journal paper
[4]), we consider the problem of maximizing the determinant
of a partially specified banded block–circulant matrix under
the constraints that the completed matrix is positive definite
and circulant (CMEP). This problem is in the framework
of general covariance extension problems introduced by A.
P. Dempster [11] and studied by Grone, Johnson, Sa and
Wolkowicz [16] (see also [12] and [14] for the particu-
larization to given data consistent with a banded Toeplitz
structure and later extensions to generic banded algebras).
Notice, however, that the linear constraint that enforces the
circulant structure is not present in the Dempster setting.
For the class of completion problems studied by Dempster
(DMEP), it is well–known that the inverse of the maximum
entropy completion has zeros in the positions corresponding
to the unspecified entries in the original partially given
covariance matrix, a property which, from now on, will be
referred to as the Dempster property. A relevant fact is that,
even in presence of the constraint that enforces the circulant
structure, the inverse of the maximum entropy completion
maintains the Dempster property. This fact, which has been
first observed in [5] for given data on consecutive bands
and proved in complete generality, i.e. for arbitrary missing
entries in a circulant structure, in [6], is in fact non–trivial,
since, for example, it does not hold true for arbitrary missing
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elements in a Toeplitz structure (in such a case the solution
fails to satisfy the Dempster property unless the given data lie
on consecutive bands centered along the main diagonal). Oth-
erwise stated, it means that the solution of the CMEP and of
the DMEP with circulant data (i.e. with data consistent with a
block–circulant structure) coincide ([5], [6]). Because of the
above stated properties, the maximum entropy completion
becomes a crucial tool in solving the identification problem
for stationary reciprocal processes on the unit circle. In fact,
this kind of processes, suitable for describing random signals
which live on a finite interval of the integer line (think for
example of an image) are characterized by having a banded
block–circulant concentration matrix whose blocks are the
(matrix–valued) parameter of the model. A direct approach to
model identification leads to strong nonlinearities and seems
to be impracticable [5], while reformulating the problem
as a maximum entropy completion problem, leads to a
complete solution for which efficient algorithms may be
designed. An efficient algorithm for solving the CMEP is
in fact the main contribution of the present paper. Since the
solutions of the CMEP and of the DMEP with circulant data
coincide, all the methods available in the literature for the
DMEP can, in principle, be employed. In particular, it is
well–known that, if the graph associated with the specified
entries is chordal ([15]), the solution of the DMEP can be
expressed in closed form in terms of the principal minors
of the sample covariance matrix (see [16], [1], [19], [13]).
However the sparsity pattern associated with the given entries
in our problem is not chordal. For non-chordal graphs the
maximum entropy completion has to be computed iteratively.
A straightforward application of standard optimization algo-
rithms is too expensive for large sized problems, and several
specialized algorithms have been proposed in the literature
([11], [23], [22], [8]) which deal with the general, very
unstructured, setting of Dempster. In the present work, we
propose a modified matricial gradient descent algorithm for
the solution of the CMEP which naturally follows from the
variational analysis in [5] and exploits in an essential way the
circulant structure of our problem. This algorithm compares
very well with the algorithms proposed in the literature for
the solution of the DMEP.

II. NOTATION AND PRELIMINARIES

Let y be a wide–sense stationary, periodic process of pe-
riod N taking values in Rm. This is equivalent to assume for
its covariance matrix, say ΣN , a block–circulant symmetric

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 2963



structure, i.e. ΣN is the N ×N m–block matrix

ΣN =



Σ̃0 Σ̃>1 . . . Σ̃>τ . . . Σ̃τ . . . Σ̃1

Σ̃1 Σ̃0 Σ̃>1
. . . Σ̃>τ . . .

. . .
...

...
. . . . . . . . . Σ̃τ

Σ̃τ . . . Σ̃1 Σ̃0 Σ̃>1 . . .
. . .

... Σ̃τ . . . Σ̃0 . . . Σ̃>τ

Σ̃>τ
. . .

...
...

. . . . . . . . . . . . Σ̃>1
Σ̃>1 . . . Σ̃>τ . . . Σ̃τ Σ̃1 Σ̃0



(1)

We refer the reader to [9] for an introduction to circulants;
an extension of some relevant results for the block–case can
be found, for example, in [6]. Here we just recall that the
class of circulants is closed under sum, product, inverse
and transpose. Moreover, all circulants commute and are
simultaneously diagonalized by the Fourier matrix and thus
have explicitly given eigenvalues and eigenvectors.

Hereafter, let SN denote the vector space of symmetric
matrices with N × N square blocks of dimension m ×m.
Moreover, let Ib be the set of pairs of indices consistent with
a banded–symmetric block–circulant structure of bandwidth
n, i.e. the set of the (i, j)’s such that

if |i− j| ≤ mn ⇒ (i, j) ∈ Ib
if (i, j) ∈ Ib ⇒ (j, i) ∈ Ib
if (i, j) ∈ Ib ⇒

(
(j +m)mod mN, (i+m)mod mN

)
∈ Ib .

We will denote by Icb the complement of Ib, i.e. the set
Icb = [0, . . . , N − 1] × [0, . . . , N − 1]\Ib. Finally, recall
that the differential entropy H(p) of a zero-mean Gaussian
probability density function p with covariance matrix ΣN is
given by

H(p) =
1

2
log(det ΣN ) +

1

2
n (1 + log(2π)) .

We are interested in the following covariance extension
problem for block–circulant matrices (CMEP)

max {det ΣN | ΣN ∈ SN , ΣN > 0} (2a)
subject to :

eiΣNe
>
j = rij , for (i, j) ∈ Ib and rij ∈ Rb (2b)

ΣN is block–circulant (2c)

where ek is the zero row–vector with a 1 in the k–th position,
ek =

[
0 . . . 0 1 0 . . . 0

]
, and Rb denotes the set

of the given data consistent with a banded-symmetric block-
circulant structure, i.e.

Rb :=
{
rij ∈ R |(i, j) ∈ Ib, rij = rji,

rij = r(j+m)mod mN(i+m)mod mN

}
.

(In our case the rij’s represent the given entries of a partially
specified (block–circulant) sample covariance matrix, say
RN ).

If we remove the constraint (2c), we get the covariance se-
lection problem studied by A. P. Dempster, which sometimes
will be also referred to as the DMEP.

The first question to be addressed is feasibility of the
CMEP. In [5] a sufficient condition on the data for the
existence of a positive definite block–circulant completion
has been provided while a characterization of the set of all
positive definite completions of a partially specified block–
circulant matrix has been derived in [6]. A necessary and
sufficient condition for the feasibility of the CMEP for uni-
tary bandwidth and block–size is provided in a forthcoming,
more complete version of this paper [4].

III. ALGORITHMS FOR THE COVARIANCE SELECTION
PROBLEM

In this Section, we briefly discuss some of the algorithms
proposed in the literature for the covariance selection prob-
lem. To this aim, it seems natural to describe the pattern
of the specified entries of an Nm×Nm partial symmetric
matrix M = (mij) by an undirected graph of Nm vertices
which has an edge joining vertex i and vertex j if and
only if the entry mij is specified. Since the diagonal entries
are all assumed to be specified, we ignore loops at the
vertices. The undirected graph will be denoted by G = (V,E)
where V is the vertex set and E is the edge set which
consists of unordered pairs of distinct vertices. We assume
that the reader is familiar with some basic notions of graph
theory and just recall some definitions which will be useful
throughout this Section (a standard reference is [15]). In
particular, we say that an undirected graph is chordal if every
cycle of length greater than three has a chord, i.e. an edge
joining two nonconsecutive vertices of the cycle. Moreover, a
clique of G is any maximal subset of vertices that is complete
in G (i.e. such that every pair of vertices is adjacent). Finally,
we define the complementary graph of G = (V,E) as the
graph G̃ with vertex set V and edge set Ẽ with the property
that (u, v) ∈ Ẽ if and only if u 6= v and (u, v) /∈ E.

If the graph of the specified entries is chordal, the co-
variance selection problem admits a closed form solution in
terms of the principal minors of the sample covariance matrix
(see [16], [1], [19], [13]). However, the graph associated
with a banded circulant sparsity pattern is never chordal.
We have therefore to resort to iterative algorithms. For the
applications we have in mind, we are dealing with vector–
valued processes possibly defined on a quite large interval.
A straightforward application of standard optimization algo-
rithms is too expensive for problems of such a size, and
several specialized algorithms have been proposed in the
literature ([11], [23], [22], [8]) which deals with the general,
very unstructured, setting of the DMEP. In his early work
([11]), Dempster himself proposed two iterative algorithms
which however are very demanding from a computational
point of view. Two popular methods are those proposed by
T. P. Speed and H. T. Kiiveri in [22], which we now briefly
discuss.

a) First algorithm: As mentioned in the Introduction,
for the class of problems studied by Dempster, the inverse of
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the unique completion which maximizes the entropy func-
tional has the property to be zero in the complementary posi-
tions of those fixed in ΣN . Thus, a rather natural procedure
to compute the solution of the covariance selection problem
seems to be the following: iterate maintaing the elements of
ΣN in Ib at the desired value (i.e. equal to the corresponding
elements in the sample covariance matrix) while forcing the
elements of Σ−1

N in Icb to zero. In particular, the entries of
Σ−1
N in Icb are forced to zero |c̃t| at time, where |·| denotes

the cardinality of the t–th clique, c̃t, in the complementary
graph G̃. The algorithm reads as follows.

Algorithm 1 First algorithm (Speed and Kiiveri [22])

Compute all the cliques c̃t in the complementary graph G̃
Initialize Σ

(0)
N = RN ;

while some stopping criterion is satisfyied do
for all the cliques c̃t in G̃ do

Σ
(t)
N = Σ

(t−1)
N + φ

(
Σ

(t−1)
N

)
end for

end while

where φ
(
Σ

(t−1)
N

)
is the mN × mN zero matrix which

equals{
diag

[(
(Σ

(t−1)
N )−1

)
c̃t

]−1
}−1

−
[(

(Σ
(t−1)
N )−1

)
c̃t

]−1

in the positions corresponding to the current clique c̃t (given
a Nm × Nm matrix M and a set a ⊂ [1, . . . , Nm], Ma

denotes the submatrix with entries {mij : i, j ∈ a}). In this
first algorithm, every cycle consists of as many steps as the
cliques in the complementary graph G̃ (the graph associated
to the elements in Icb ). At each step, only the elements in
ΣN corresponding to the current clique c̃t (i.e. only a subset
of the entries in Icb ) are modified in such a way to set
the elements of Σ−1

N in the corresponding positions to the
desired zero–value. Through the iterations the elements in

Σ
(t)
N are fixed over Ib while the elements of

(
Σ

(t)
N

)−1

vary
over Icb .

b) Second algorithm: The role of ΣN and Σ−1
N can

also be swapped, yielding a second iterative procedure, which
is the analogous of iterative proportional scaling (IPS) for
contingency tables [17]. If we denote by ϕ

(
Σ

(t−1)
N

)
the

mN ×mN zero matrix which equals

((RN )ct)
−1 −

((
Σ

(t−1)
N

)
ct

)−1

in the positions corresponding to the current clique ct in G
(the graph associated with the given entries), the procedure
can be formally described as in Algorithm 2. Every cycle
consists of as many steps as the cliques in G. At each step,
only the elements in Σ−1

N corresponding to the current clique
ct (i.e. only a subset of the entries in Ib) are modified in
such a way to set the elements of ΣN in the corresponding

Algorithm 2 Second algorithm (Speed and Kiiveri [22])

Compute all the cliques ct in G
Initialize Σ

(0)
N = INm;

while some stopping criterion is satisfyied do
for all the cliques ct in G do(

Σ
(t)
N

)−1

=
(
Σ

(t−1)
N

)−1

+ ϕ
(
Σ

(t−1)
N

)
end for

end while

positions to the desired value, namely equal to the sample
covariance RN . Through the iterations, the elements in(
Σ

(t)
N

)−1

are fixed over Icb , while the elements of Σ
(t)
N vary

over Ib.
The crucial step in both algorithms involves going from

Σ
(t−1)
N (respectively, from

(
Σ

(t−1)
N

)−1

) to Σ
(t)
N (
(
Σ

(t)
N

)−1

).
We refer the reader to [22] for more details about this and
for a convergence proof. An intuitive justification is also
possible if one recognizes that the two procedures can be
interpreted as a sequence of I–projection ([7]) on suitable
“subspaces” in the spirit of the von Neumann’s alternating
projection theorem.

c) Comparison between the two algorithms: The choice
of which algorithm is to be preferred in any application is
very much dependent on the number and size of the cliques
in G and G̃. In our setting, the complexity of the graph
associated with the given entries depends on the bandwidth
mn. In particular, for a bandwidth not too large with respect
to the completion size (which is the case we are interested in)
the complexity of the graph associated with the given data
G is far lower than the complexity of its complementary
(which, for small bandwidth, is almost complete). It turns
out that, for small bandwidth, the second algorithm (which,
from now on, will be referred to as IPS) runs faster than the
first, and thus has to be preferred (see Table I for a numerical
comparison of the execution times of the two algorithms for
N = 30 and bandwidth varying between 2 and 8).

d) Covariance selection via chordal embedding: In [8],
Dahl, Vanderberghe and Roychowdhury propose a new tech-
nique to improve the efficiency of the Newton’s method for
the covariance selection problem based on chordal embed-
ding: the given sparsity pattern is embedded in a chordal one
for which they provide efficient techniques for computing the
gradient and the Hessian. The complexity of the method is
dominated by the cost of forming and solving a system of
linear equations in which the number of unknowns depends
on the number of nonzero entries added in the chordal
embedding. For a circulant sparsity pattern, it is easy to check
that the number of nonzero elements added in the chordal
embedding is quite large. Hence the method does not seem
to be effective. A preconditioned conjugate gradient method
has also been proposed in ([8]), but the comparison is not
brought forth in the present paper.
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First algorithm Second algorithm

n
# of cl.

(max. cl. sz.) CPU time [s] # of cl.
(max. cl. sz.) CPU time [s]

2 4608(10) 9.7877 30(3) 0.4109
3 2406(7) 4.1515 30(4) 0.1783
4 1241(6) 1.9419 30(5) 0.3153
5 706(5) 1.0525 30(6) 0.5535
6 445(4) 0.6258 30(7) 0.9854
7 295(3) 0.4145 30(8) 1.7477
8 175(3) 0.2480 30(9) 3.0665

TABLE I: Execution time of the first and second algorithm
for N = 30, m = 1, bandwidth n = {2, . . . , 8}.

IV. MATRICIAL GRADIENT DESCENT ALGORITHM

Let UN denote the block–circulant “shift” matrix with
N × N blocks, whose first block–row is given by
[0 , Im , 0 , . . . , 0], Tn ∈ Sn+1 the block–Toeplitz ma-
trix of boundary data whose first block–row is given by[
Σ0, Σ>1 , . . . , Σ>n

]
and En the N × (n + 1) block matrix

given by En = [In+1,0n+1,N−n−1]
>, where 0h,k denotes

the h× k zero–matrix. Following [5], the maximum entropy
problem for banded block-circulant matrices (CMEP) can be
written as

max {log det ΣN | ΣN ∈ SN , ΣN > 0} (3a)
subject to :

E>n ΣNEn = Tn, (3b)
U>NΣNUN = ΣN . (3c)

where we have exploited the invariance of block–circulants
under the similarity CN 7→ U>NCNUN . Problem (3) is
a convex optimization problem since we are minimizing a
strictly convex function on the intersection of a convex cone
(minus the zero matrix) with a linear manifold. Hence, we
are dealing with a convex optimization problem. We shall
solve this problem by resorting to duality theory. To this
aim, consider the linear map

A : Sn+1 ×SN → SN

(Λ,Θ) 7→ EnΛE>n + UNΘU>N −Θ

and define the set

L+ :={(Λ,Θ) ∈ (Sn+1 ×SN ) | (Λ,Θ) ∈ (ker(A))⊥,(
EnΛE>n + UNΘU>N −Θ

)
> 0}. (4)

L+ is an open, convex subset of (ker(A))⊥. The Lagrangian
function is given by

L(ΣN ,Λ,Θ) = − tr log ΣN + tr
(
EnΛE>n ΣN

)
− tr (ΛTn)

+ tr
(
UNΘU>NΣN

)
− tr (ΘΣN )

and its first variation (at ΣN in direction δΣN ∈ SN ) is

δL(ΣN ,Λ,Θ; δΣN )=− tr
(
Σ−1
N δΣN

)
+ tr

(
EnΛE>n δΣN

)
+ tr

((
UNΘU>N −Θ

)
δΣN

)
.

Thus δL(ΣN ,Λ,Θ; δΣN ) = 0, ∀δΣN ∈ SN if and only if

Σ−1
N = EnΛE>n + UNΘU>N −Θ.

It follows that, for each fixed pair (Λ,Θ) ∈ L+, the unique
Σo
N minimizing the Lagrangian over SN,+ := {ΣN ∈

SN , ΣN > 0} is

Σo
N =

(
EnΛE>n + UNΘU>N −Θ

)−1
. (5)

Moreover, the Lagrangian computed for ΣN = Σo
N results

L(Σo
N ,Λ,Θ) = tr log

(
EnΛE>n + UNΘU>N −Θ

)
+ trImN − tr (ΛTn) .

This is a strictly concave function on L+ whose maximiza-
tion is the dual problem of (CMEP). We can equivalently
consider the convex problem

min {J(Λ,Θ), (Λ,Θ) ∈ L+} , (6)

where J is given by

J(Λ,Θ) = tr (ΛTn)− tr log
(
EnΛE>n + UNΘU>N −Θ

)
.

It can be shown ([5, Theorem 6.1]) that the function J admits
a unique minimum point

(
Λ̄, Θ̄

)
in L+.

In this section we propose a modified gradient descent
algorithm with backtracking line search (see, e.g., [2, Ch. 9])
for the numerical solution of the dual problem (6). This task
requires some care because we are working in a matricial
space. Let πCN

denote the orthogonal projection onto the
linear subspace of symmetric, block-circulant matrices CN .
Before proceeding, we need two preliminary lemmas. We
refer the reader to [5] for the proof of these statements.

Lemma 4.1: Let Λ ∈ Sn+1 be the matrix

Λ =


Λ00 Λ01 . . . Λ0n

Λ>01 Λ11 . . . Λ1n

...
. . .

...
Λ>0n Λ>1n . . . Λnn

 .
The orthogonal projection of EnΛE>n onto CN , say ΠΛ, is
given by

ΠΛ := πCN

(
EnΛ̄E>n

)
=


Π0 Π>1 Π>2 . . . Π1

Π1 Π0 Π>1 . . . Π2

...
. . . . . . . . .

...
Π>2 . . . Π1 Π0 Π>1
Π>1 Π>2 . . . Π1 Π0


with

Π0 =
1

N
(Λ00 + Λ11 + . . .+ Λnn), (7a)

Π1 =
1

N
(Λ01 + Λ12 + . . .+ Λn−1,n)>, (7b)

...

Πn =
1

N
Λ>0n , (7c)

while Πi = 0, forall i in the interval n+1 ≤ i ≤ N−n−1 .
Lemma 4.2: Let M ∈ SN . Then M ∈ (CN )⊥ if and

only if ∃S ∈ SN s.t. M = UNSU>N − S.
Consider the functional

J̄(Λ) := tr (ΛTn)− tr log
{
πCN

(
EnΛE>n

)}
(8)
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whose gradient ∇ΛJ̄(Λ) is given by

∇ΛJ̄(Λ) = −E>n
[
πCN

(
EnΛE>n

)]−1
En + Tn .

The proposed algorithm is as follows.

Algorithm 3 Matricial gradient descent algorithm

Given a starting point Λ ∈ dom J̄ , α ∈ (0, 0.5), β ∈ (0, 1)
while

∥∥∇ΛJ̄(Λ)
∥∥

2
> η do

∆Λ := −∇ΛJ̄(Λ)
t := 1
while J̄(Λ+t∆Λ) > J̄(Λ)+αt tr

{
∇ΛJ̄(Λ)>∆Λ

}
do

t := βt
end while
Λ := Λ + t∆Λ

end while

Theorem 4.1: Algorithm 3 is a gradient descent algo-
rithm restricted to the subspace{

(Λ,Θ) | πC⊥N
(
EnΛE>n

)
= −

(
UNΘU>N −Θ

)}
. (9)

Proof: Let (Λ̄, Θ̄) be the unique minimum point of the
functional J on L+. We know that (Λ̄, Θ̄) are such that Σo =
EnΛ̄E>n + UN Θ̄U>N − Θ̄ is circulant. Thus one can think
of restricting the search for the solution of the optimization
problem to the set{

(Λ,Θ) |
(
EnΛE>n + UNΘU>N −Θ

)
is circulant

}
i.e. to the set{

(Λ,Θ) | πC⊥N
(
EnΛE>n + UNΘU>N −Θ

)
= 0
}
.

Since
(
UNΘU>N −Θ

)
∈ C⊥N (see Lemma 4.2), the latter can

be written as{
(Λ,Θ) | πC⊥N

(
EnΛE>n

)
= −

(
UNΘU>N −Θ

)}
.

If we compute the dual function J on the set (9) we obtain

J(Λ,Θ) |{
(Λ,Θ) |π

C⊥
N

(EnΛE>n )=−(UNΘU>N−Θ)
}

= tr (ΛTn)− tr log
(
EnΛE>n + UNΘU>N −Θ>

)
= tr (ΛTn)− tr log

(
EnΛE>n − πC⊥N

(
EnΛE>n

))
= tr (ΛTn)− tr log

(
πCN

(
EnΛE>n

))
which is the modified functional defined above. Thus the pro-
posed algorithm is nothing but a gradient descent algorithm
in which the search of the minimum point has been restricted
to the subspace where the optimal solution is known to be,
i.e. to the subspace (9).

A. Initialization

The following Theorem is useful to provide a good starting
point for the iterative procedure 3. We refer the reader to [4]
for a complete proof of the statement.

Theorem 4.2: Let Tn, the block–Toeplitz matrix of
boundary data, be positive definite and let {Σ̂k, k =
0, 1, 2, . . .} with Σ̂k = Σk, k = 0, 1, 2, . . . , n be the

maximum entropy (positive) extension of {Σ0,Σ1, . . . ,Σn}.
Then, for N large enough the block–circulant matrix Σ

(c)
N

given by

Toepl
(
Σ̂0, Σ̂

>
1 , . . . , Σ̂

>
n , Σ̂

>
n+1, . . . , Σ̂

>
N
2 −1

, Σ̂>N
2

+ Σ̂N
2
,

Σ̂N
2 −1, . . . , Σ̂n+1, Σ̂n, . . . Σ̂1

)
,

for N even, and by

Toepl
(
Σ̂0, Σ̂

>
1 , . . . , Σ̂

>
n , Σ̂

>
n+1, . . . , Σ̂

>
N−1

2

,

Σ̂N−1
2
, . . . , Σ̂n+1, Σ̂n, . . . , Σ̂1

)
,

for N odd, is a covariance matrix which for N → ∞ is
arbitrarily close to the mN ×mN maximum entropy block-
circulant extension of Tn.
A possible way to compute the maximum entropy completion
of a partially specified block–Toeplitz matrix is the following.
The maximum entropy spectrum is given by

ΦME =
[
Ln(z−1)

]−1
Λn
[
Ln(z−1)

]−∗
where L(z−1) is the n–th Levinson–Whittle matrix polyno-
mial of the block–Toeplitz matrix Tn

L(z−1) =

n∑
k=0

An(k)z−k

with the An(k)’s and Λn = Λ>n > 0 solutions of the Yule–
Walker type equation[
An(0) An(1) . . . An(n)

]
T>n =

[
Λn 0 . . . 0

]
,

see [24], [10] and [25]. It follows that the spectral factor
W (z) :=

[
Ln(z−1)

]−1
Λ

1
2
n is given by

W (z) = C(zI −A)−1B +D

with D = Λ
1
2
n ,

C = −
[
An(n) An(n− 1) . . . . . . An(1)

]

A =



0 Im 0 0 . . . 0
0 0 Im 0 . . . 0
...

. . .
...

...
. . . 0

0 . . . . . . . . . 0 Im
−An(n) −An(n− 1) . . . . . . . . . −An(1)


,

and B> =

[
0 0 . . . 0

(
Λ

1
2
n

)>]
. The positive real part

of the maximum entropy spectrum is

ΦME,+(z) = C(zI −A)−1C̄> +
1

2
Σ0

where C̄> = APC>+BD>, with P = APA>+BB> and
the maximum entropy covariance extension results

Σ̂k = CAk−1C̄> , k > n.

With this extension in hand, we can compute an approxi-
mation for the maximum entropy block-circulant extension
as suggested by Theorem 4.2. A good starting point for our
gradient descent algorithm can then be obtained from (7)
assuming for Λ a Toeplitz structure.
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GDI GDT
N m # of itz. CPU time # of itz. CPU time
10 5 99 0.1455 61 0.0767
20 5 212 0.4143 65 0.1270
30 5 322 0.8355 97 0.2504
40 5 432 1.4233 130 0.4285
50 5 541 2.1937 163 0.6603

TABLE II: CPU time [in sec.] for the matricial gradient
descent algorithm with different initializations (identity on
the left and as in Section IV-A on the right). The reported
times have been computed for n = 3 and m = 5.

m = 5 m = 10
N IPS GD IPS GD
10 4.7048 0.0767 69.7671 0.1516
20 16.4981 0.1270 307.9596 0.4459
30 29.2779 0.2504 597.3791 0.8988
40 43.8072 0.4285 924.6431 1.4798
50 63.8069 0.6603 1341.0976 2.2052

TABLE III: Matricial gradient descent algorithm vs. iter-
ative proportional scaling: CPU time [in sec.] for N =
[10, 20, 30, 40, 50], n = 3, m = 5 and m = 10.

V. NUMERICAL EXPERIMENTS

The matricial gradient descent algorithm has been imple-
mented in Matlab. The implementation exploits the block–
circulant symmetric structure (see [9] for efficient imple-
mentation of the inverse of a block–circulant). At each
iteration, the algorithm requires the inversion of

⌈
N+1

2

⌉
matrices of order m. It follows that the execution time
increases as the completion size N and the block size m
increase. Moreover, it also increases, even to a lesser amount,
for increasing bandwidth n. Table II presents a comparison
between the execution times for different starting point Λ0.
The gradient descent algorithm has been initialized to the
normalized identity and by the procedure of Section IV-
A. The proposed initialization acts effectively to reduce the
number of iterations (and thus the computational time) to
reach the minimum.

Finally, the gradient descent algorithm (GD) has been
compared to the iterative proportional scaling procedure
(IPS) by Speed and Kiiveri. The Bron–Kerbosch algorithm
[3] has been employed for finding the cliques in the graph
for IPS. The execution times for different completion size
N and block size m are reported in Table III. It can be
seen that the gradient descent algorithm runs faster than
the iterative proportional scaling and the gap between the
two increases as N increases. Moreover, the gap becomes
much more evident as m grows, making the gradient descent
algorithm more attractive for applications where the process
under observation is vector–valued (m > 1).

VI. CONCLUSIONS

The main contribution of the present paper is an efficient
algorithm to solve the maximum entropy band extension
problem for block–circulant matrices. This problem has
many applications in signal processing since it arises in

connection with maximum likelihood estimation of periodic,
and in particular quasi–Markov (or reciprocal), processes.
Even if matrix completion problems have gained consider-
able attention in the past (think for example to the covariance
extension problem for stationary processes on the integer
line, i.e. for Toeplitz matrices), the maximum entropy band
extension problem for block–circulant matrices has been
addressed for the first time in [5]. The proposed algorithm
heavily exploits the circulant structure and relies on the
variational analysis brought forth in [5].
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