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Interpolation in Output-Feedback Tube-Based Robust MPC

Maximilian Balandat

Abstract— The theoretical framework of tube-based robust
model predictive control (MPC) for linear systems subject
to bounded, additive disturbances has recently drawn atten-
tion. This paper considers an extension of this framework,
specifically the use of interpolation methods for the terminal
controller, which can increase the overall controller’s region
of attraction for a modest increase in complexity. Standard
interpolation-based robust MPC guarantees robust asymptotic
convergence of the closed-loop system to a robust invariant set.
This paper shows that, by choosing a modified cost function
and control law, robust exponential convergence can also be
guaranteed.

I. INTRODUCTION

Tube-based robust model predictive control (TBRMPC)
[1], [2] is a framework for robust model predictive control
(MPC) of linear systems that are subject to bounded, additive
disturbances. It builds upon the theory of set invariance [3],
[4]. The approach was later also extended to the output-
feedback problem [5].

One of the main advantages of TBRMPC is its compara-
tively low on-line complexity, at the expense of being more
conservative than exact min-max MPC formulations [6], [7].
A drawback that may arise with TBRMPC is that, when the
terminal controller is optimized for local performance, the
region of attraction of the resulting overall controller may
be quite small. Although one can increase the region of
attraction by increasing the prediction horizon, this comes
at a potentially high computational cost.

In [8], [9], the authors show that using a model predictive
controller for tracking enlarges the region of attraction.
Another way of achieving this while retaining favorable
computational properties is to interpolate between a number
of pre-computed linear terminal controllers [10], [11], [12],
[13]. This can essentially be seen as “on-line tuning” a
time-varying terminal controller, allowing for both a large
region of attraction and good local performance. Motivated
by these ideas, interpolation-based robust MPC (IMPC) has
been proposed in [14], [15], [16].

This papers combines the main ideas from IMPC and
TBRMPC. In particular, a new controller is proposed that
features an enlarged region of attraction while being com-
putationally tractable. While sharing many similarities, the
newly presented controller differs from IMPC in terms of
cost function and terminal constraint: IMPC uses the set-
based robust MPC approach from [17], whereas the con-
troller presented here is a variant of to the one in [5]. As a
result, it is possible to prove robust exponential stability of
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a robust positively invariant set for the closed-loop system,
while IMPC only guarantees robust asymptotic stability of
such a set. In addition, the chosen formulation simplifies
controller synthesis in that it involves only the computation
of a positively invariant set rather than a robust positively
invariant set in a higher dimensional state space. Finally,
it is shown that the controller recovers optimality (i.e. the
performance of standard TRMPC) for a known subset of its
overall region of attraction.

Outline: Section II provides a brief review of output-
feedback TBRMPC and IMPC. Section III introduces the
controller and presents the main theoretical results. A case
study provided in section IV illustrates important properties
of the controller. Section V concludes this paper.

II. BACKGROUND
A. Notation and basic definitions

In this paper, S1 P Sy ={s1+52|s1 €51,82 €S2} and
51652 ={z €R™ | x+s82€ 51,V $2 €S2} denote Minkowski
set addition and Pontryagin difference [18], respectively. A
set S is positively invariant (PI) for the system x(k+1) =
f(z(k)) if for all 2(0) € S the solution z(k) € S for all k> 0;
S is robust positively invariant (RPI) for the system x(k+1) =
f(z(k),w(k)) if for all z(0) €S the solution x(k) €S for all
k>0 and all w(k) €W [19]. A polyhedron is the intersection
of a finite number of open and/or closed half-spaces and a
polytope is a closed and bounded polyhedron. Proj,(S):=
{z | 3y s.t. [z y]T € S} denotes the projection of a set S
on the x-space, Convh denotes the convex hull, > denotes
positive definiteness and O (I) is the zero (identity) matrix
of appropriate dimension. Furthermore, [|z||, := /21Qx.

B. Output-Feedback Tube-Based Robust MPC

This section provides a brief review of the output-
feedback tube-based robust MPC framework [5]. Consider
the discrete-time linear time-invariant system

T = Az + Bu+w

1
y=Cx+ v, M

where x € R"™ and v € R™ are the current state and
control input, respectively. The successor state =+ and the
current measured output y € RP are affected by unknown but
bounded additive disturbances we W CR™and veV CRP
T simplify computation both YW and V are assumed to be
polytopic and to contain the origin in their respective interior.
A, B and C are system matrices of appropriate dimension.
State and control input of the system are subject to the
constraints

z€X, uel, 2
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where X CR™is polyhedral, UCR™ is polytopic, and both X
and U contain the origin in their respective interior. It is
assumed in the following that (A, B) is controllable and
that (A4, C) is observable.
A standard Luenberger observer of the form
2T = A2+ Bu+ L(y — 9)
X N 3)
9= C1z,
is used to estimate x, where & € R™ is the current observer
state, T the successor state estimate, § € RP the current
output estimate and L € R™*? the observer feedback gain.
The underlying strategy of TBRMPC is to control an
artificial nominal system

zT = Az + Bu €]

in such a way that the actual system (1) is guaranteed

to satisfy its constraints (2) for all possible disturbance

sequences w:={w(0),w(1),...} and v:={v(0),v(1),... }.
The control law

u=1u+ K(&—T) 5)

consists of a predicted nominal control action % and a feed-
back component K (% —Z), where the disturbance rejection
controller K is chosen such that Ay = A+ BK is Hurwitz.

Defining the state estimation error e, := x —2 and the
error e, := & — T between observer state and state of the
nominal system, the actual system state can be expressed as
T=T+e =T +e.+e =T+e.

Suppose now that the errors e. and e, can be bounded by
RPI sets £ and &, respectively (€, and &, can be determined
as in [5], [20]), and let £ := E. @ &,. It is shown in [5] that
if the control problem for the nominal system (4) is solved
for the tightened constraints

X:=X6¢, U:=UoKE, (6)

the use of the feedback policy (5) will ensure persistent
constraint satisfaction for the controlled uncertain system (1).
For the problem to be well-posed, the following must hold:
Assumption 1: There exist K €¢ R"*" and L € R™*P such
that X and U exist and contain the origin.

C. Interpolation-Based MPC

Let Ky,...,K,_1, be v stabilizing linear controllers de-
signed for the nominal system (4) satisfying the following:

Assumption 2: K is the infinite horizon LQR controller
for system (4) for cost matrices ) > 0 and R > 0. Fur-
thermore, K, ..., K, ; are stabilizing linear state-feedback
controllers for system (4), i.e. p(A+BK,)<1.

Note that Assumption 2 implies that for each K, there
exists P, = 0 such that A:’I;pPpAKp—Pp = —Q-K[RK,.
With such P, the infinite horizon cost of the trajectory of the
unconstrained closed-loop system z7=(A+ BK,)ZT starting
from an initial state Zg is given by Vi (Zo) = 28 PyZo.

Following [21], an interpolated control law of the form

u=r"(z)=> Ky’ (7)

is used as the terminal control law, where the nominal state

T = P ®)
p=0

is decomposed into v slack state variables z”. The closed-
loop nominal system under the control law (7) can be written

as zt= AKU£+Z;;11(AKP—AKO)JEP, where Ay :=A+BK,.

Introducing auxiliary systems (ip)+::A K, 2, one can form
an augmented closed-loop system [22] as

+

z AKO AKI_AKO . AKV—I_AKO z
@t 0 Ay ... 0 '
(i’u_l ) + 0 0 AK,,,l i.lf—l

&)
which is subject to the constraints
v—1
zeX, a=Koz+» (K,—Ky)i*eU. (10)
p=1
Defining the augmented state
27 =27 @ ... @1, (1)

the augmented system (9) can be written as (z7)":= APzE.
From its block diagonal structure and Assumption 2 it is
easy to verify that A® is Hurwitz. Hence, provided that
Assumption 1 holds, the maximal positively invariant (MPI)
set QL for the augmented system (9) exists and contains a
nonempty region around the origin [23], [24]. Furthermore,
since X and U are polytopic and (9) is linear, Q% is also
polytopic. Denote by X + the projection of QL onto the z-
space, i.e. Xy := Proj,(QL).

Proposition 1: Let Ky,..., K, satisfy Assumption 2,
and let QF be the MPI set for system (9) subject to (10).
Then, X is a constraint admissible PI set for the system
7+ = Az+Br™(Z) subject to constraints Z<€ X and @€ U.

Proof: Proposition 1 is a special case of Proposition 1
in [22]. ]

Proposition 2: Let Q2 ... Q%" be the v MPI sets cor-
responding to the closed-loop systems Z+= A, Z subject to
z€X and € U. Then, X; D Convh(Q%,..., QL.

Proof: Consider the case when only the p*th slack state
variable #”" is non-zero. Then (9) can be reduced to

- 5[]

Ak,

since ZP = 0 for all p # p* It is easy to see that (12) is
equivalent to 2= A Ky Ts for which the associated MPI set
is Q7. Thus, Proj,(QL) D Q. Since (9) is linear and the
constraints Z € X and @ € U are polytopic, it follows that
Xf D Convh(QY,...,QLh). ]

Proposition 2 states that X; contains the convex hull of
all v MPI sets QF_ for the respective closed-loop systems
under the feedback controllers K,,. Hence, using an inter-
polated terminal controller of the form (7) can significantly
enlarge X ¢ and consequently the overall region of attraction.
Note that in contrast to [22], the set X s obtained not from

12)
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a RPI set but rather from a (nominal) PI set. I_n many cases,
this can greatly simplify the computation of Xy.

III. THE CONTROLLER

In this section, the ideas of IMPC are combined with
those of TBRMPC in order to synthesize a refined tube-
based robust model predictive controller. The benefit of using
interpolation is a potentially larger region of attraction than
that of TBRMPC for a comparable on-line computational
complexity. The general idea for the controller presented
in the following is drawn from the one described in [14],
[15], [16], which uses a similar interpolation method and
guarantees robust asymptotic stability of a RPI set. By using
a different cost function and control law, the controller pro-
posed here can be shown to also guarantee robust exponential
stability of a RPI set.

This paper considers the general output-feedback case. A
state-feedback controller is easily obtained by setting C' =1
and v = 0 in (1), yielding e, = O or, equivalently, z = Z.

A. Cost Function and Control Law

Consider the cost function

AL = 2
VN (& %0, 1, %) 1= Z ||‘r1HQ+Hul|IR+ZH llp,

p=0
(13)
where % := {#%,...,#% "} denotes the set of slack state
variables into which the terminal state Z is decomposed,
u:={dop, u1,. ..} denotes the sequence of predicted optimal
nominal control actions, and the weighting matrices @, R
and Py, ..., P, satisfy Assumption 2.

Let ®(k;Z, 1) denote the solution of (4) at time %k con-
trolled by the sequence u when the initial state at time 0
is Z. The set of admissible nominal control sequences for a
given nominal initial state Z is given by

Uy (Zo) ={ua | u; €U, ®(i;z0,u) € X for i € Ly, (14)
®(N;zo, 1) € Xy},
where Iy := {0,..., N—1} and X; = Proj,(Q%). At each

time step, given an estimate & of the current system state x,
the following optimization problem is solved on-line:

Vi(2) = min {VN(i-:EO 0,%) | e Uy (o),
$0,uXN
(15)
Toe{i}d (- Z zhy, :ENEQE}

with fﬁ as defined in (11). It is easy to see that (15) is a
Quadratic Program (QP).

Let Z$(Z), u*(Z) and X*(&) denote the minimizers of (15).
The domain of the value function Vi (-) is

.)E'N:{:f? ‘ dzy s.t. foe{f}@(*gc), UN(Q_S()) #* @}
(16)
Define Xy := {Z | Un(Z) # 0} as the set of admissible

nominal initial states. It is easy to verify that Xy =XnDPE,.

Applying only the first element of the optimizer u*(%)
obtained from (15) at each time step in a Receding Horizon
fashion yields the Model Predictive Control law

KR (@) = ay(2) + K (& — 75(2))- (17)

Remark 1: Note that for v > 1, the on-line computation
still involves solving a QP even for the trivial prediction
horizon N =0. This is because the decomposition (8) of Zy
is performed on-line. In this case the controller essentially

degenerates to the one proposed in [11].

B. Controller Properties

Assumption 3: Suppose & and &. are RPI sets as de-
fined in section II-B such that Assumption 1 holds. Let
{Ky,...,K,1} be a set of linear state-feedback controllers
for the nominal system (4) satisfying Assumption 2 for the
same weighting matrices ) and R as in (13). Furthermore,
let QY be the MPI set for the system 7= (A + BK()Z
subject to the constraints = € X and u € U, and let QF be
the MPI set for system (9) subject to the constraints (10).

Lemma 1 (Persistent feasibility): Suppose that Assump-
tion 3 holds. Then, for any initial system and observer
states 2(0) and (0) € Xy that satisfy 2:(0) — £(0) € &, the
resulting state trajectory x:={x(0),2(1),...} and sequence
of control inputs u := {u(0),u(1),...} of the perturbed
closed-loop system z* = Az + Bk (&) + w are persistently
feasible, i.e. it holds that z(t) € X and u(t) €U for all ¢ >0,
provided that w(t) €W and v(t) € V.

Proof: Since £—x§ €&, is an explicit constraint in (15),
the result follows directly from Theorem 1 in [5]. |

Theorem 1 (Robust exponential stability): Suppose that
Assumption 3 holds. Then, if initial system and observer
states satisfy x(0) —£(0) € &, the set £ = E D&, is
robustly exponentially stable for the perturbed closed-
loop system z7 = Az + Bk (%) +w with a region of
attraction Xy = Xy O&..

Proof: The assumption z(0) — #(0) € £, guarantees
that £(0) € Xy for all 2(0) € Xy. Denote by V;: (&) the
cost obtained from solving (15) for the current state estimate
i € Xx. At the next time step, the cost Vi (2T) for the
feasible control sequence ut={u3,...,u% 4, P (%)} and
the feasible initial state T& = 77 is

Z||xz||Q+||u1||R+Z||AK

v—1
n(T) +Zl|~§’v*I|Q+ZIIK e [P
1
||U0||R+Z||AK T ||~p’ Hp
v—1
= @) (AR, PyAw,~ B+ Q+ KL RE,) (@8
p=0

~ _x |2 —x (12
+ Va (@) —=llz5llg —lulls

~ _x(2 —
=Vn @) =llz5llg =l
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Since the control sequence at and the initial state iaL are
feasible but not necessarily optimal, it holds that
Vi () - Vi(@) <
Note that V3 (£) =0 for all £ € &, as the trivial choice
a*={0,...,0}, x*={0,...,0}, x5 ={0,...,0} is feasible
for all  €&,. On the other hand, the constraint £—2j € &,
implies that Zj # 0, V& ¢ E.. Together with (18) this yields
robust exponential stability of &. for the state estimate Z.
Since z(0) — £(0) € &, it follows from Proposition 1 in [5]
that r € 2 HE, C E D E. = £, which proves robust expo-
nential stability of £ for the actual system state z. [ ]
Lemma 2 (Increased attracnwty) Suppose Assumption 3
holds. Then, Xy 2 Convh(XY, ..., X%), where X% de-
notes the region of attraction of state estimates of a TBRMPC
controller that employs K, as its terminal controller.
Proof: Define the one-step controllable set Ctrl(€2) :=
{zeX | 3ueU st Az + Bu € Q} of a target set § for
the nominal system (4). Clearly, the region of attraction
of nominal states of the controller is Xy = Ctrl™(Xj),
where Ctrl” (-) indicates N recursive operations of Ctrl(-).
Together with Proposition 2 it follows from convexity of the
sets X, U and QP ,p=1,...,v—1, and linearity of the
system (4) that X (X;) D Convh(XY(Xy), ..., X5 (Xp)).
Noting that Xy =Xy BE, completes the argument. [ ]
Theorem 2 (Local optimality): Suppose Assumption 3
holds. Then, for all & € XY, the control law £%(Z) yields
the same closed-loop performance as a standard TBRMPC
controller k(&) that employs the unconstrained infinite
horizon optimal controller KO as 1ts terminal controller.
Proof: Consider Zp L NH p,» the terminal cost com-
ponent in (13). Since K is the infinite horizon unconstrained
optimal controller it holds that P, > P, for all p # 0. Hence,

* * 2
Z a1 + N1 +Z EXA

N

2 _ 2 ~ 2
Z \xr||Q+||u:||R+Z &% (19)
i=1 p=0

— _x 12
—[1Zollg — gl [ 5- (18)

N
. 112 2
Z ‘xi||Q+||ui||R+||xNHPo

Therefore, if feasible, the optimal values of the slack state
variables are Z%* = Z% and Z%* = 0 for all p # 0. This
combination is feasible for all 7}, € Q2 and hence for all
T} € XY. In this case the cost function (13) is reduced to that
of standard TBRMPC [2]. Consequently, Ky (%) = IiN(A)
for all # € X, i.e. TBRMPC is recovered within X []

C. The Role of the Terminal Controller Gains K,

By choosing the design parameters v and Ki,..., K, 1,
one can trade off complexity for optimality. A simple way
to determine the K, is to use unconstrained LQR controllers
designed for different weighting matrices ¢ and R [25]. A
more systematic way is to use LMI optimization techniques.
In this context, [16] propose solving an LMI optimization

problem that maximizes the volume of the projection of a
positively invariant ellipsoid in the Z¥-space onto the z-
space, where the gains K7,..., K, ; are regarded as opti-
mization variables. Unfortunately, the resulting optimization
problem is, in general, subject to non-convex Bilinear Matrix
Inequality (BMI) constraints. The question of how to choose
the different K, has been further investigated in [14], [16].
It should be clear from the previous section that interpo-
lation will yield strictly “better” results compared to using a
single terminal controller. Specifically, for any given single
terminal controller, adding additional terminal controller
gains to interpolate between will only lead to an increase
in overall controller performance or size of the region of
attraction (or both), but never to a decrease in either.

IV. CASE STUDY

Consider the output-feedback double integrator example
from [5] with system dynamics

x+*11:1:—|—1u—|—
“lo 1 1 w

Y= [1 1]m+v,

(20)

with state constraints X = {z | =50 < z; < 3, i = 1,2}
and control constraints U = {u | |u| < 3}. The state and
output disturbances w and v are assumed to be bounded
by W= {w | [|Jw|l, <01} and V = {v | [v] < 0.05},
respectively. The weighting matrices in the cost function (13)
are given by Q = I, and R = 0.01, and the disturbance
rejection controller and observer gains are chosen as K =
[—0.7 —1.0] and L = [1.00 0.96]".

For comparison with standard output-feedback TBRMPC
(controller A) with prediction horizon N4 = 13, two in-
stances (B and C) of the controller from section III were
designed for the system (20). Controller B uses vp = 2
terminal controllers and a prediction horizon of Np = 6,
while controller C uses v¢c = 3 terminal controllers and a
prediction horizon of No = 4. Kj is the infinite horizon
LQR controller for the specified weighting matrices Q) =1,
and R=0.01. The terminal controllers of controller B and C
were computed as the infinite horizon LQR controllers for the
modified input weights Rp 1 =10, Rc,1 =1 and R¢g o =100,
respectively.

A. Regions of Attraction

B and X and the

corresponding regions of attraction XN, xp and x§ for
state estimates of the three controllers are depicted in Flg-
ure 1. Figure 1 also shows the regions of optimality X
and ngt for controllers B and C (by definition, the reglon
of optimality of controller A is X ;\‘}). Note that, even for the
significantly reduced prediction horizons Np=6 and N¢ =
4, the regions of attraction X% and X§ of controller B and C
are comparable to that of controller A with N4 =13.

The terminal constraint sets Xf,
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4r v B vC
opt 'X‘upl,

=12
—30

Fig. 1. Terminal sets & regions of attraction for controllers A, B and C

B. Controller Complexity and Performance

Table I shows that the QPs of controller B and C involve a
significantly lower number of variables and constraints than
that of controller A. However, the reduction in the number of
variables N,q, from B to C is only minor, while the number
of constraints N,,,, actually grows. This is because with each
additional K, the dimension of the augmented system (9)
is increased by m, which generally results in a terminal
set QE of higher complexity. It is therefore necessary to
find a tradeoff between the number v of terminal controllers
and the prediction horizon N.

For a simulation horizon of Ng;,, = 15, the closed-loop
system for each of the three controllers was simulated for
the same 100 randomly generated initial conditions scattered
over X B To ensure comparability of performance, the
random disturbance sequences w and v were the same for all
three controllers. For each controller, the on-line computation
time for each of the 1500 single solutions of the optimization
problem (15) was determined. From this data, the minimal
(tmin), maximal (¢,,42), and average (t4.,4) computation time
was extracted and reported in Table I. The implementation,
which was not specifically optimized for speed (e.g. by
warm-starting the solver), is based on the interior-point
algorithm of QPC [26], running on a on a 2.5 Ghz Intel
Core2 Duo CPU. The off-line polytopic computations of this
example were performed using the MPT-Toolbox [27].

TABLE I
SIMULATION RESULTS (TIME IN ms)
Nyar Neon tmin lavg tmaa max ‘ J;;;]A ‘
A 41 117 4.5 5.3 18.7 0
B 22 76 2.3 2.8 12.9 0.0034 %
C 18 79 2.2 2.6 8.5 0.2198 %

Table I reports that the average computation time #qq4
for controller B (C) is only about 53% (49%) of that for
controller A. Maximal and minimal computation times ¢,

and t,,,, for controllers B and C have also been significantly
reduced. Although Theorem 2 guarantees local optimality
for all three controllers, it is not obvious how the reduced
prediction horizons N4 and Np together with the modified
terminal costs affect the control performance during tran-
sients. Fortunately, it turns out that, at least for the example
in this case study, the effect is very small. Consider to this
end the actual cost J(x,u):= g:o |:1c(lc)||z2 + Hu(k:)H?2
of a state trajectory x driven by the control sequence u
with simulation horizon Ng;,,. The last column of Table I
contains the maximal relative difference between .J(x,u)
and the cost Ja(x4,u4) of the “true optimal trajectory”
(the one resulting from controller A) over all 100 initial
conditions. A maximal relative difference in the trajectory
cost of less than 0.01% for controller B, and of about 0.2%
for controller C shows that the performance loss is indeed
very small in this case.

V. CONCLUSION

This paper proposes a refined formulation of a tube-based
robust model predictive controller that uses interpolation over
multiple, precomputed linear terminal controller gains in
order to enlarge the closed-loop system’s region of attraction.
The controller was shown to guarantee persistent feasibility,
robust exponential stability of a robust positively invariant
set, increased attractivity as well as local optimality. One of
its main benefits is that its on-line computation only amounts
to solving a Quadratic Program.

Despite many similarities, the controller differs from
the one discussed in [14], [15], [16] (in the following:
“Sui’s Controller”) and features some important advantages.
The most apparent difference concerns the choice of cost
function and control law: Sui’s Controller uses the control
parametrization from [17] of the form u; = Kx +¢; for
the first N —1 time steps. The controller presented in this
paper instead follows [5] in using a control law of the
form k(%) = uf(2) + K(& — z5(2)). As a result, by
separating the evolution of actual system, observer system
and virtual nominal system, controller synthesis is simplified.
Specifically, the newly proposed controller only involves
the computation of a positively invariant set for system (9)
subject to appropriately tightened constraints, whereas Sui’s
Controller requires the computation of a robust positively
invariant set in the augmented state space, a task which is
significantly more involved.

Furthermore, allowing the initial state Zy of the nominal
system to differ from the system state estimate z, it is
possible to prove robust exponential stability rather than
robust asymptotic stability of a robust invariant set for the
closed-loop system. Finally, the local optimality property
is treated rigorously in this paper, yielding the result that
optimal TBRMPC performance is recovered for all z € X 9.
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