
Deadlock-Avoidance Control of Multithreaded Software:
An Efficient Siphon-based Algorithm for Gadara Petri Nets

Hongwei Liao, Jason Stanley, Yin Wang, Stéphane Lafortune, Spyros Reveliotis, and Scott Mahlke

Abstract— This paper presents an efficient implementation of
an iterative control algorithm for the synthesis of maximally-
permissive liveness-enforcing control policies for Gadara nets
presented in earlier work. Gadara nets are a special class
of Petri nets arising when modeling multithreaded software
for the purpose of deadlock analysis and resolution. The
considered control synthesis algorithm is based on structural
analysis of Gadara nets in terms of a certain type of siphons,
called resource-induced deadly-marked siphons. We propose
a new customized mixed integer programming formulation to
detect these siphons in Gadara nets. We then compare the
performance of our customized algorithm with that of a generic
siphon detection algorithm for process-resource nets in the
context of the iterative control algorithm. Finally, we investigate
the scalability of the overall algorithm to large program models.

I. INTRODUCTION

Petri nets, one of the most popular modeling formalisms
for Discrete Event Systems (DES), are an efficient tool to
capture the concurrency of a dynamic system [17]. Deadlock
analysis of Petri nets has been extensively investigated in the
context of flexible manufacturing systems and other techno-
logical applications involving a resource allocation function
[14], [21]. Recently, there has also been a growing interest
in the application of DES to computer systems [10], [1], [6].
In our on-going Gadara project [11], we use Petri nets to
systematically model, analyze, and control shared-memory
multithreaded C programs with lock allocation and release
operations, for the purpose of deadlock avoidance. Petri nets
provide a compact representation of the program dynamics
without enumerating the entire reachable state space. This
feature of Petri nets is crucial for the scalability of our
method to real-world software. Multithreaded programming
is a common paradigm for concurrent software, which aims
to exploit the full potential of multicore hardware architec-
tures. Compared to the traditional serial programming, rea-
soning about concurrency in the multithreaded programming
paradigm is much more challenging for human programmers.
Lock primitives, such as mutual exclusion locks (mutexes),
are often employed to protect shared data and prevent data

H. Liao, J. Stanley, S. Lafortune, and S. Mahlke are with the
Department of EECS, The University of Michigan, Ann Arbor,
MI 48109, USA, {hwliao, jasonsta, stephane,
mahlke}@eecs.umich.edu.

Y. Wang is with HP Labs, Palo Alto, CA 94303, USA,
yin.wang@hp.com.

S. Reveliotis is with the School of Industrial & Systems Engi-
neering, Georgia Institute of Technology, Atlanta, GA 30332, USA,
spyros@isye.gatech.edu.

This work was partially supported by NSF grant CCF-0819882 and an
award from HP Labs Innovation Research Program (Michigan) and by NSF
grants CMMI-0619978 and CMMI-0928231 (Georgia Tech).

races. Inappropriate use of mutexes can lead to circular-
mutex-wait (CMW) deadlocks in the program, where a set of
threads are waiting indefinitely for one another and none of
them can proceed. In the remainder of this paper, deadlock
freeness of a program will refer to the absence of CMW
deadlocks.

In [24], [16], we proposed a new class of Petri nets,
called Gadara nets, to systematically model multithreaded
C programs with lock allocation and release operations; the
main properties of Gadara nets that are important to deadlock
analysis were also established. Gadara nets share features
with classes of Petri nets that arise in the modeling of man-
ufacturing systems, such as S3PR and S4PR, even though
they are distinctly different from these classes. The properties
of Gadara nets reveal that a multithreaded program that can
be modeled as a Gadara net is CMW-deadlock-free if and
only if its associated Gadara net is live [16]. This correspon-
dence motivated our investigation of a structural approach
to maximally-permissive liveness-enforcing (MPLE) control
of Gadara nets in [15]. (In parallel, we are also pursuing
an alternative approach based on state space expansion and
classification theory [18].) The control synthesis presented
in [15] is based on structural analysis of Gadara nets in
terms of a certain type of siphons, called resource-induced
deadly-marked (RIDM) siphons. There have been results
reported in the literature on deadlock prevention policies
using siphon analysis; see, e.g., [5], [12], [8], [19]. But
these results do not exploit the special structure of Gadara
nets, and thus they are not well suited for our pursued
MPLE control policy. In [22], an iterative liveness-enforcing
control based on siphon analysis has been studied for the
class of S4PR nets. But this method is sub-optimal in
general, i.e., it does not guarantee maximal permissiveness.
In [9], the role of iterations in liveness-enforcing control
synthesis is discussed and a net transformation technique is
employed to transform non-ordinary nets into PT-ordinary
nets during the iterations. This approach, however, may not
guarantee convergence within a finite number of iterations.
In fact, the problem of MPLE control synthesis based on
siphon analysis in non-ordinary Petri nets has not been
fully resolved yet. Compared to existing results on structure-
based liveness-enforcing control, the main contribution of the
control synthesis technique proposed in [15] is that, under
certain conditions, it achieves two metrics of effectiveness
at the same time: correctness and maximal permissiveness
with respect to the goal of liveness enforcement. These two
metrics of effectiveness are independent of the method used
to detect the RIDM siphons in the net. On the other hand,
we also noticed that the RIDM siphon detection algorithm

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 1142

does play a significant role in the efficiency of the iterative
control strategy; this is the main topic of the present paper.

In Petri nets, siphon is a well-defined structural construct
that is important to the analysis of certain behavioral prop-
erties of the net, such as deadlock-freeness and liveness
[20], [21]. Many approaches have been proposed for siphon
detection in Petri nets. In [2], a basis siphon generation al-
gorithm is presented using the sign incidence matrix derived
from the original incidence matrix of the net. In the Gadara
project, an efficient siphon detection algorithm using the so-
called lock dependency graph is reported in [23], where the
correspondence between place-minimal siphons and strongly
connected components in the graph is studied. Recently, a
similar method of siphon detection using graph theory has
been applied to the class of S4PR nets [3].

In contrast to the above explicit siphon generation ap-
proaches, a Mixed Integer Programming (MIP) formulation
is proposed in [4] to detect the maximal empty siphon that
is reachable in a structurally bounded ordinary net. Based on
the detected maximal empty siphon, strict minimal siphons
can be derived. This method has been employed for the
synthesis of more permissive liveness-enforcing supervisors
in the class of S3PR nets [13]. The notion of RIDM
siphon was introduced in [21]. RIDM siphons serve as a
generic structural construct to characterize the liveness of
general process-resource nets that need not be ordinary. In an
ordinary net, an empty siphon that involves resource places is
a special case of a RIDM siphon. For Gadara nets, liveness of
the net can also be characterized in terms of RIDM siphons
[24], [16]. In [21], an MIP formulation is proposed to detect
maximal RIDM siphons in general process-resource nets.

In the control synthesis methodology presented in [15],
we know that if the iterative control strategy starts with a
Gadara net that is ordinary, then the resulting controlled
Gadara nets will remain ordinary throughout the iterations. In
this paper, we exploit this property and propose a customized
RIDM siphon detection algorithm that focuses on the case of
ordinary Gadara nets. At each iteration, a RIDM siphon is
detected by solving a customized MIP; then, the detected
RIDM siphon is prevented from becoming reachable by
synthesizing MPLE monitor place(s). This iterative process
is guaranteed to converge in a finite number of iterations as
it is a special case of the general methodology investigated
in [15]. In summary, reference [15] focuses on the general
methodology of MPLE control synthesis of Gadara nets,
while the present paper concentrates on its efficient imple-
mentation, performance evaluation, and scalability analysis.

The main contributions of this paper are summarized
as follows. (i) We present an efficient MIP-based RIDM
siphon detection algorithm for the iterative control synthesis
of Gadara nets, where the problem of siphon detection is
mapped to the problem of finding a “total-deadlock modified-
marking.” (ii) We report on the experimental results of a
comparative analysis between the performance of the iter-
ative control strategy based on the proposed RIDM siphon
detection algorithm with that of the original RIDM siphon
detection algorithm in [21] for general process-resource nets.
The proposed method detects a RIDM siphon significantly
more quickly at each iteration; moreover, it requires fewer

iterations to converge. (iii) We present a sample of ex-
perimental results that demonstrate the scalability of the
proposed iterative control strategy.

This paper is organized as follows. Section II reviews
the definitions and control synthesis results pertaining to
Gadara nets. In Section III, we present the customized MIP-
based RIDM siphon detection algorithm for the iterative
control synthesis of Gadara nets. The experimental results
on the comparative analysis and the scalability study of
the iterative control process are reported in Section IV. We
conclude the paper in Section V. Due to space limitations,
proofs and examples are omitted. (These are presented in a
comprehensive report available from the authors.)

II. GADARA PETRI NETS

Gadara nets are a special class of Petri nets that are
employed to systematically model multithreaded C programs
with lock allocation and release operations, for the purpose of
deadlock analysis and resolution. In this section, we review
important results on Gadara nets.

A. Definitions of Gadara nets
We assume readers are familiar with standard Petri net

definitions; see Section II of [15] for necessary background
and [17] for a comprehensive treatment. The class of Gadara
nets [24], [16] is defined as follows.

Definition 1: [24], [16] Let IN = {1, 2, ..., m} be a finite
set of process subnet indices. A Gadara net is an ordinary,
self-loop-free Petri net NG = (P, T, A, M0) where

1) P = P0 ∪ PS ∪ PR is a partition such that: a) PS =⋃
i∈IN PSi

, PSi
6= ∅, and PSi

∩PSj
= ∅, for all i 6= j;

b) P0 =
⋃

i∈IN P0i
, where P0i

= {p0i
}; and c) PR =

{r1, r2, ..., rn}, n > 0. P0 is the set of idle (or initial)
places, PS the set of operation places of the process
subnets, and PR the set of resource places that are
shared among the process subnets.

2) T =
⋃

i∈IN Ti, Ti 6= ∅, Ti ∩ Tj = ∅, for all i 6= j.
3) For all i ∈ IN , the subnet Ni generated by PSi

∪
{p0i

} ∪ Ti is a strongly connected state machine.
4) ∀p ∈ PS , if |p • | > 1, then ∀t ∈ p•, •t ∩ PR = ∅.
5) For each r ∈ PR, there exists a unique minimal-

support P-semiflow, Yr, such that {r} = ‖Yr‖ ∩PR,
(∀p ∈ ‖ Yr ‖)(Yr(p) = 1), P0 ∩ ‖ Yr ‖= ∅, and
PS ∩ ‖Yr‖6= ∅.

6) ∀r ∈ PR,M0(r) = 1, ∀p ∈ PS ,M0(p) = 0, and
∀p0 ∈ P0,M0(p0) ≥ 1.

7) PS =
⋃

r∈PR
(‖Yr‖ \{r}).

Supervision Based on Place Invariants (SBPI) [9] is a
common monitor-based control technique for Petri nets. This
approach enforces any given specification that is in the form
of a linear inequality on the net markings by synthesizing a
monitor place. When we use SBPI as the control technique
on a Gadara net, the original net will be augmented by the
synthesized monitor places with their associated arcs. The
resulting augmented net is called a controlled Gadara net
[24], [16], and it is formally defined as follows.

Definition 2: [24], [16] Let NG = (P, T, A, M0) be a
Gadara net. A controlled Gadara net N c

G = (P ∪PC , T, A∪
AC ,W c,M c

0) is a self-loop-free Petri net such that, in
addition to all conditions in Definition 1 for NG, we have

1143

8) For each pc ∈ PC , there exists a unique minimal-
support P-semiflow, Ypc

, such that {pc} =‖Ypc
‖ ∩ PC ,

P0 ∩ ‖Ypc
‖= ∅, PR ∩ ‖Ypc

‖= ∅, PS ∩ ‖Ypc
‖6= ∅, and

Ypc
(pc) = 1.

9) For each pc ∈ PC , M c
0 (pc) ≥ max

p∈PS

Ypc
(p).

From Definition 1, we know that an original Gadara net
NG is ordinary, due to the nature of the multithreaded
programs it models. On the other hand, from Definition 2, a
controlled Gadara net N c

G need not be ordinary in general,
because the added monitor places may introduce associated
arcs with weights greater than one. Condition 4 of Defi-
nition 1 implies that any transition that models a branch
selection in the program (e.g., if/else) should not be
constrained by any place in PR, due to the inherent nature
of the program. In the case of N c

G, it might be desirable to
extend the scope of that condition to include monitor places
in PC in addition to resources places in PR. Specifically,
let Condition 4’ be the equivalent to Condition 4 with PR

replaced by PC . Condition 4’ implies that all the branching
transitions are uncontrollable, which is consistent with the
requirement that the control logic for the software program
should not interfere with its branching behavior. If a con-
trolled net N c

G satisfies Condition 4’, then it is said to be
admissible; otherwise, it is said to be inadmissible. The
notion of admissibility is defined for monitor places in a
similar way. In the remainder of this paper, we shall only
consider admissible N c

G and admissible monitor places, and
therefore we have the following assumption:

Assumption 1: N c
G is admissible.

B. Control synthesis for Gadara nets

We first present some relevant definitions.
The reachable state space R(N ,M0) of net N is the set of

all markings reachable by transition firing sequences starting
from M0. The set of reachable markings of net N starting
from M is denoted as R(N ,M).

Definition 3: A Petri net (N ,M0) is live if ∀t ∈ T , and
∀M ∈ R(N ,M0), there is a marking M ′ ∈ R(N ,M) such
that t is enabled at M ′.

Definition 4: Place p is said to be a disabling place at
marking M if there exists t ∈ p•, s.t. M(p) < W (p, t).

Definition 5: A nonempty set of places S is said to be a
siphon if •S ⊆ S•.

Definition 6: A siphon S in a Gadara net N c
G is said to

be a Resource-Induced Deadly Marked (RIDM) siphon [21]
at marking M , if it satisfies the following conditions:

1) every t ∈ •S is disabled by some p ∈ S at M ;
2) S ∩ (PR ∪ PC) 6= ∅;
3) ∀p ∈ S ∩ (PR ∪ PC), p is a disabling place at M .
In order to characterize liveness in Gadara nets, a be-

havioral property, in terms of RIDM siphons, a structural
property, we need the notion of modified marking [21].

Definition 7: Given a Gadara net N c
G and a marking M ∈

R(N c
G,M c

0), the modified marking M is defined by

M(p) =
{

M(p), if p /∈ P0;
0, if p ∈ P0. (1)

Next, we define the notion of unsafe marking. M is said
to be a RIDM-unsafe marking if there exists at least one

Fig. 1. Iterative Control of (controlled) Gadara nets (ICOG)

RIDM siphon at the corresponding modified marking M . M
is said to be an unsafe marking if M is either a RIDM-unsafe
marking or a marking from which the net will unavoidably
lead to a RIDM-unsafe marking.

In order to enforce liveness for Gadara nets, we want to
prevent all unsafe markings from becoming reachable in the
controlled Gadara nets through control synthesis.

We now review the Iterative Control Of Gadara nets
(ICOG) Methodology proposed in [15], whose flowchart is
shown in Figure 1. ICOG takes as input a potentially non-
live Gadara net N c

G. ICOG first runs the RIDM Siphon
Detection Algorithm to find a RIDM siphon that is po-
tentially reachable in N c

G. According to the properties of
Gadara nets established in [24], [16], if N c

G is not live,
then the algorithm will always detect a new RIDM siphon
that has not been considered in previous iterations. On the
other hand, if the algorithm does not detect any new RIDM
siphon, ICOG terminates and outputs a live Gadara net. If
a new RIDM siphon S is detected, ICOG runs the UCCOR
Algorithm, which takes S as input and synthesizes MPLE
monitor place(s) that prevent S from becoming reachable in
the augmented controlled net. At the same time, a “global
bookkeeping set” is maintained and updated; this set records
all the unsafe states that have been prevented so far. At the
end of each iteration, the augmented N c

G is fed into the
RIDM Siphon Detection Algorithm, which signifies the start
of a new iteration.

We briefly describe the UCCOR Algorithm as follows;
the detailed development of UCCOR is presented in [15].
UCCOR is a new algorithm for controlling RIDM siphons in
Gadara nets, where UCCOR is short for “Unsafe-Covering-
based Control Of RIDM siphons”. A covering C (refer to
Definition 17 of [15]) is a generalized marking on the set
of operation places, whose components can be 0, 1, or χ.
Here, “χ” stands for “0 or 1”. The notions of RIDM-unsafe
marking and unsafe marking can also be generalized in terms
of coverings. Figure 2 is the flowchart of UCCOR. In Step 1,
the set of possible RIDM-unsafe coverings with respect to the
input RIDM siphon is solved. Step 2 further generalizes the
unsafe coverings obtained from Step 1, by utilizing a certain
type of monotonicity property of Gadara nets. In Step 3, the
coverings that have already been controlled are removed from
consideration. The output of this step is a further modified set

1144

Fig. 2. Flowchart of the UCCOR Algorithm

of unsafe coverings, C(2)
u . In Step 4, if C(2)

u is an empty set,
then the algorithm terminates; otherwise, control synthesis
using SBPI [9] is carried out. One MPLE monitor place will
be synthesized for each unsafe covering in C(2)

u .1

We highlight the following important properties:
Proposition 1: [15] In N c

G, for any monitor place synthe-
sized by the UCCOR Algorithm, its associated incoming and
outgoing arcs all have unit arc weights.

Corollary 1: If ICOG starts with a Gadara net that is
ordinary, then the resulting controlled Gadara nets will
remain ordinary throughout the iterations.

Theorem 1: [15] (a) In N c
G, the control logic synthesized

for any RIDM siphon S based on the UCCOR Algorithm is
correct and maximally permissive with respect to the goal
of liveness enforcement. (b) ICOG is correct and maximally
permissive with respect to the goal of liveness enforcement.
(c) ICOG converges in a finite number of iterations.

III. EFFICIENT RIDM SIPHON DETECTION IN GADARA
NETS USING MATHEMATICAL PROGRAMMING

The results of Section II-B show that both the ICOG
Methodology and the associated UCCOR Algorithm are
correct and maximally permissive with respect to the goal
of liveness enforcement, independent of the method used
to detect the RIDM siphons. However, the RIDM siphon
detection algorithm used does play an important role in the
efficiency of control synthesis; it is in fact the computational
bottleneck of ICOG (see experimental results in Section IV).
Mixed integer programming has been employed to detect
maximal RIDM siphons in general process-resource nets
[21]; we refer to this more general MIP formulation, stated
on pp. 139-140 of [21] and not repeated here due to space
constraints, as G-MIP hereafter. According to Corollary 1,
we know that if ICOG takes as input an ordinary N c

G, then

1In [15] it was implicitly assumed that the synthesized monitor places
satisfy Assumption 1. A more detailed discussion of the necessary mod-
ifications of the SBPI method so that it guarantees the satisfaction of
Assumption 1 in the considered application context, is provided in an
extended journal version of the results of [15], that is currently under review.

the resulting controlled Gadara nets will remain ordinary
throughout the iterations. We exploit this nice property in
this section and present a customized MIP formulation for
efficient RIDM siphon detection in ordinary N c

G; we refer to
this new Customized MIP formulation as C-MIP hereafter.

A. Key properties
We first present some properties of Gadara nets that are

relevant to the development of our algorithm.
Definition 8: A Petri net is in a total deadlock if all the

transitions in the net are disabled.
The set of modified markings (Definition 7) induced by

the set of reachable markings is defined by R(N c
G,M c

0) =
{M |M ∈ R(N c

G,M c
0)}. From the properties of Gadara nets

established in [24], [16], we have the following result.
Proposition 2: If N c

G is not live, then N c
G will reach a

modified marking M ∈ R(N c
G,M c

0), such that M 6= M c
0

and N c
G is in a total deadlock at the modified marking M .

The intuition of this proposition is explained as follows. If
N c

G is not live, then N c
G can reach a marking, such that there

exists at least one process subnet “half-way” in execution,
where no transition in it can be fired, and the process subnet
(as well as N c

G) cannot return to its initial marking. For
all other process subnets that can successfully complete
their executions, their tokens in the operation places will
eventually return to the idle places. After all these process
subnets complete their executions, their returned tokens in
the idle places are erased under the notion of modified
marking. Now, all transitions in N c

G are disabled under the
modified marking. Thus, we have a total-deadlock modified-
marking that is different from the modified initial marking.

Based on the definitions of Gadara nets and RIDM siphons
we can demonstrate the following two results. We use the
term “generalized resource place” to refer to any place p ∈
PR ∪ PC .

Proposition 3: Given a modified marking M ∈
R(N c

G,M c
0) and a set of places S, if N c

G is in a
total deadlock at the modified marking M , and S contains
P0, PS , and all the disabling generalized resource places at
M , then S is a RIDM siphon at marking M .

Proposition 4: In an ordinary N c
G, any RIDM siphon

contains at least two generalized resource places.

B. The customized MIP formulation for Gadara nets
Let IM (p) be an indicator variable associated with place

p at modified marking M . The value of IM (p) is defined as:

IM (p) =
{

1, if place p contains at least one token at M ;
0, if place p does not contain any token at M .

(2)
Remark 1: Since N c

G remains ordinary throughout the
control synthesis, we know that: (i) IM (p) = 1 iff p enables
all of its output transitions at M , and (ii) IM (p) = 0 iff p
disables all of its output transitions at M .

Define SB(p) to be a structural bound of place p. In
Gadara nets, we can set: SB(p) = M c

0 (p), ∀p ∈ P0 ∪ PC ,
and SB(p) = 1, ∀p ∈ PS ∪ PR.

According to Proposition 2, if N c
G is not live, then we

know a priori that the net will reach a total deadlock at
modified marking M , where all the transitions in the net are

1145

disabled. Moreover, once M is reached, we know a priori
from Proposition 3 that there exists a RIDM siphon S under
M . This RIDM siphon is constructed as follows:

S = {p ∈ P : (p ∈ P0 ∪ PS) ∨ (IM (p) = 0)} (3)

This implies that we can find a RIDM siphon in a non-live
N c

G in a very efficient way by proceeding in two steps:

1) Find a total-deadlock modified-marking M ;
2) Based on M , construct a RIDM siphon using (3).

So the problem of detecting a RIDM siphon in a non-live N c
G

can be mapped to the problem of finding a total-deadlock
modified-marking in the modified reachability space. The
latter one can be solved by the formulation C-MIP below:

min
∑

p∈PS

IM (p) (4)

s.t. M = M c
0 + Dσ (5)

M(p) = M(p),∀p /∈ P0;M(p) = 0,∀p ∈ P0 (6)
IM (p) = 0,∀p ∈ P0 (7)
IM (p) = 0,∀p ∈ Q, where, (8)

Q = {q ∈ P : (∃t ∈ T), (•t = {q}) ∧ (q ∈ PS)}∑
p∈•t

IM (p)− | • t|+ 1 ≤ 0,∀t s.t. | • t| > 1 (9)

M(p) ≥ IM (p) ≥ M(p)
SB(p)

,∀p ∈ PS ∪ PR ∪ PC

(10)∑

p∈PR∪PC

IM (p) ≤ |PR ∪ PC | − 2 (11)

∑

p∈PS

IM (p) ≥ 2 (12)

M ≥ 0;σ ∈ Z+
0 ; IM (p) ∈ {0, 1},∀p ∈ P (13)

Before explaining the above formulation, we briefly re-
view some results derived in [15] that are relevant to the
development of this formulation. From Conditions 5, 6, and
7 of Definition 1, we know that the marking of any operation
place can only be 0 or 1. Further, we have shown in [15]
that Gadara nets have a so-called monotonicity property,
which can be illustrated by the following simple example.
Consider an unsafe marking M1, whose partial marking on
the set of operation places PS is [1, 1, 0, 0]T . Then, any
reachable marking M2, such that its partial marking on PS

is [1, 1, 0, 1]T , [1, 1, 1, 0]T , or [1, 1, 1, 1]T (which dominates
[1, 1, 0, 0]T), is also unsafe. Using the notion of covering,
discussed in Section II-B, any reachable marking, whose
partial marking on PS is covered by [1, 1, χ, χ]T , is unsafe.

From the above discussion, we observe that for any given
unsafe marking associated with a detected RIDM siphon, we
can apply the monotonicity property and consider its partial
marking on PS . Any “0” component in this partial marking
can be generalized (i.e., replaced) by “χ”; and, any “1”
component in this partial marking remains unchanged. The
resulting generalized marking is called an unsafe covering,
such that all markings it covers are unsafe. This process is
carried out in Step 2 of the UCCOR Algorithm.

We are now ready to explain the C-MIP formulation
presented in (4) – (13). In the objective function (4), we want
to minimize the number of marked operation places in the
detected RIDM siphon. In this way, the unsafe covering that
is controlled in Step 4b of the UCCOR Algorithm contains
the smallest possible number of 1’s, or equivalently, the
largest possible number of χ’s. The intuition is that the more
χ’s an unsafe covering contains, the more unsafe markings
it can potentially cover. The RIDM siphon detected by this
algorithm involves the smallest number of activated threads
that can be entangled in a deadlock. This attribute of the
detected RIDMs when combined with the covering effect of
the UCCOR Algorithm mentioned above, tends to reduce
the total number of iterations needed in ICOG. This effect
is highlighted in the experiments presented in Section IV.

Constraint (5) is the state equation of the net. Constraint
(6) connects an original marking with its associated modified
marking based on Definition 7. Constraint (7) specifies that
the value of the indicator variable of any idle place is 0,
since our RIDM siphon detection is carried out in the set of
modified markings. From above, we want to detect a RIDM
siphon by finding a total-deadlock modified-marking M .
Constraints (7), (8), and (9) enforce this condition. According
to Remark 1, for a place to be a disabling place in an
ordinary N c

G, its associated indicator variable must take the
value of 0. In a total deadlocked Gadara net, consider the
set of transitions that have only one input place: this single
input place can be either a disabling idle place, which is
addressed above in (7), or a disabling operation place, which
is addressed in (8). Moreover, for the set of transitions that
have more than one input place, Constraint (9) enforces that
at least one input place must be a disabling place. Constraint
(10) bounds the value of the indicator variable associated
with any operation place or generalized resource place based
on (2). Constraint (11) follows from Proposition 4. Constraint
(12) follows from the fact that at least two threads must
be involved in a deadlock incurred by lack of tokens in
some generalized resource places, and that each process stage
cannot have more than one active process instance, due to
Condition 6 of Definition 1. Constraint (13) specifies the
bounds of the variables. We see that the variable M can
be nonnegative rational, while the other variables must be
integers; thus, this is an MIP problem.

The solution of this C-MIP problem is a total-deadlock
modified-marking M and its associated IM , based on which
we can construct a RIDM siphon using (3). The correctness
of the C-MIP formulation is established as a result of
Propositions 2, 3, and 4, and the preceding discussion.

The G-MIP formulation for maximal RIDM siphon detec-
tion in general process-resource nets is O(|P ||T |) in terms of
variables and constraints, because it includes binary variables
and constraints that relate to the arcs of the net [21]. On the
other hand, the number of variables and constraints used by
C-MIP is O(|P |+|T |); in particular, the formulation involves
2|P | non-negative real variables, |P | binary variables, and
|T | non-negative integer variables.

IV. EXPERIMENTAL EVALUATION OF ICOG
In this section, we present a summary of experimental

results from a comparative analysis between the performance

1146

of ICOG based on C-MIP, denoted as ICOG-C, and that
of ICOG based on G-MIP, denoted as ICOG-G. We also
report a sample of experimental results that demonstrate the
scalability of ICOG-C. The experiments in this section were
completed on a Mac OS X laptop with a 2.4 GHz Intel
Core2Duo processor and 2 GB of RAM. Both ICOG-C and
ICOG-G are entirely implemented in C++ and compiled
under the GNU gcc compiler. The MIP formulations are
solved using Gurobi 3.0.1 [7]. Random Gadara nets for these
experiments are generated by a random-walk-style algorithm.
At each step, the program randomly decides either to grab a
lock or to release one already held; the number of steps is
specified by the input parameters described below. Additional
logic was applied to ensure valid behavior. The random
Gadara net generator is based on our experience modeling
real concurrent programs [23].

Table I presents a summary of the experimental results of
the comparative analysis between the performance of ICOG-
C and that of ICOG-G. For each set of parameters (each
row in the table), over 90 samples of random Gadara nets
are generated. The generated nets with no unsafe states are
removed from the samples. The left half of each row shows
the set of parameters of the sample random Gadara nets.
The right half of each row is further divided into two sub-
rows: the top sub-row is the performance of ICOG-C, and
the bottom italicized sub-row is the performance of ICOG-
G. We set a time-out threshold of 15 seconds for the stage
of RIDM siphon detection in ICOG. A net times out if it
cannot be solved by either C-MIP or G-MIP in less than 15
seconds. All statistical data in this table, such as means µ
and standard deviations σ (except TLE in the tenth column),
are calculated over only the sample nets where both ICOG-C
and ICOG-G did not time out.

The first four columns correspond to the parameters used
to generate sample random Gadara nets. The first column
(l) is the number of resources (locks) in the original Gadara
net. The second (s) and third (a) columns are the number of
process subnets and the number of resource acquisitions per
subnet. The fourth column (r) is the probability of acquiring
a new resource before releasing one already held. The fifth
(P) and sixth (T) columns correspond to the average number
of places and transitions in the original Gadara nets. The
seventh (SS) and eighth (US) columns describe the state
space complexity, i.e., the average number of safe and unsafe
states that are reachable by the original nets. Note that ICOG
does not construct this state space, since it exploits structural
properties of Gadara nets; these numbers were generated
separately for the sake of scalability assessment. ICOG only
needs to bookkeep the unsafe coverings of the net, the
number of which is equal to the number of monitor places
synthesized. The ninth column (n) is the number of generated
Gadara nets, where both ICOG-C and ICOG-G did not ever
time out throughout the iterations. The tenth column (TLE)
shows the ratio of sample nets that timed out in any iteration
of ICOG-C and ICOG-G. The eleventh column (time (s)) is
the average time (in seconds) the entire ICOG-C and ICOG-
G processes took until they converged. The twelfth column
(iterations) is the average number of iterations for ICOG-C
and ICOG-G to converge. The thirteenth column (monitors)

is the average number of monitor places synthesized by
ICOG-C and ICOG-G. The last column (time/iterations) is
the average time per iteration of ICOG-C and ICOG-G.

In the experiments, we observed that the majority of time
spent by ICOG is on the stage of RIDM siphon detection.
This is precisely why we developed a customized MIP
formulation for RIDM siphon detection in Gadara nets.
Since C-MIP is customized for Gadara nets, while G-MIP is
formulated for general process-resource nets, we of course
expected ICOG-C to be more efficient than ICOG-G in the
context of the Gadara nets. The data in Table I show that
ICOG-C is in fact significantly faster than ICOG-G – the
improvement in time ranges from 32 to 525 times faster. In
addition, ICOG-C takes an average of 2.5 to 3.3 times fewer
iterations than ICOG-G. ICOG-C timed out on much fewer
nets; in fact, ICOG-C never timed out on a net that ICOG-G
solved within time. Finally, we see from the data that ICOG-
C does not remove previously synthesized monitor places
throughout the iteration process (the number of iterations is
one more because of the final siphon detection to determine
that the net is live); we are investigating further this interest-
ing property. We note that ICOG does not guarantee that the
number of monitor places is minimal. The alternative method
studied in [18] does guarantee a minimal number of monitor
places, but at the price of having to generate the reachable
state space, so that techniques from classification theory can
be applied.

Table II presents a sample of experimental results that
highlight the scalability of ICOG-C. The first (SS) and
second (US) columns are the number of safe and unsafe
states. (Again, ICOG does not expand these states; these
numbers were generated separately.) The third column (time
(s)) is the total time (in seconds) for ICOG-C to converge.
The fourth column (iters) is the number of iterations until
convergence, and the fifth column (monits) is the number
of monitor places synthesized. We set a time-out threshold
of 6000 seconds for these experiments. If ICOG-C took
longer than 6000 seconds, it was forced to terminate (see
the second row of the table). Table II shows that ICOG-C is
very scalable even on a modest computer set up.

V. CONCLUSION

Motivated by the fact that the bottleneck of the ICOG
Methodology for the synthesis of MPLE control policies for
Gadara nets is the RIDM siphon detection step, we presented
an efficient MIP-based RIDM siphon detection algorithm
that is customized for Gadara nets. In the proposed C-MIP,
the problem of siphon detection is mapped to the problem
of finding a total-deadlock modified-marking. Based on the
detected total-deadlock modified-marking, we can construct
a RIDM siphon using a priori knowledge derived from
the properties of Gadara nets. The experimental results in
Section IV show that ICOG-C is significantly faster than
ICOG-G and has scalability properties that make it practical
for a large class of multithreaded concurrent programs,
the application area driving these investigations. In future
work, we will further compare our approach with other
siphon detection algorithms widely used in the literature, and
evaluate their performance in the context of ICOG.

1147

TABLE I
EXPERIMENTAL RESULTS OF COMPARATIVE ANALYSIS BETWEEN ICOG-C AND ICOG-G

l s a r P T SS US n TLE time (s) iterations monitors time
iteration

µ σ µ σ µ σ

10 6 6 0.3 63.2 54.2 26,033 1,518 26 0.00 0.04 0.02 3.35 2.00 2.35 2.00 0.01
0.10 1.20 1.59 8.23 8.19 2.35 2.00 0.15

10 6 6 0.5 68.4 59.1 38,863 2,623 39 0.05 0.59 3.14 5.74 4.40 4.74 4.40 0.10
0.39 28.70 79.35 18.80 26.53 5.41 5.66 1.53

10 6 7 0.3 72.4 62.9 77,641 5,074 28 0.00 0.05 0.03 3.96 2.24 2.96 2.24 0.01
0.15 5.59 13.55 10.39 10.13 3.14 2.46 0.54

10 6 7 0.5 75.5 66.1 63,827 3,539 31 0.11 0.09 0.08 6.03 3.95 5.03 3.95 0.01
0.62 13.56 27.80 14.84 12.87 5.23 4.29 0.91

10 7 6 0.3 71.5 62.3 79,322 3,531 32 0.00 0.05 0.05 3.50 2.27 2.50 2.27 0.01
0.16 2.33 4.63 9.03 9.83 2.69 2.80 0.26

10 7 6 0.5 77.2 67.8 102,063 5,808 33 0.07 0.08 0.11 5.33 3.88 4.33 3.88 0.02
0.54 7.99 18.36 13.79 13.43 4.45 3.93 0.58

10 7 7 0.3 82.7 72.9 248,289 11,936 26 0.00 0.05 0.03 4.08 2.23 3.08 2.23 0.01
0.30 28.75 114.27 13.46 22.83 4.00 4.89 2.14

10 7 7 0.5 86.4 76.8 173,024 9,330 25 0.17 0.10 0.09 5.88 3.97 4.88 3.97 0.02
0.69 19.82 37.38 18.88 19.14 5.48 4.57 1.05

TABLE II
EXPERIMENTAL RESULTS OF SCALABILITY STUDY OF ICOG-C

SS US time (s) iters monits

8,696,502 71,677 0.11 6 5
5,696,776 1,165,958 6000.00 121* 120*
5,501,728 1,321,928 1.10 24 23
4,532,269 1,237,469 2.54 40 39
3,981,880 109,164 119.92 18 17
3,580,234 438,753 0.17 10 9
2,940,540 1,107,696 419.41 78 77
2,598,863 351,324 0.50 16 15
2,041,645 109,164 119.24 18 17
1,488,093 118,016 0.19 10 9
1,109,390 152,908 61.00 29 28
1,022,542 307,176 2.14 40 39
812,089 133,944 0.82 23 22
656,917 134,260 446.32 85 84
555,392 164,358 3.08 51 50

REFERENCES

[1] A. Auer, J. Dingel, and K. Rudie. Concurrency control generation
for dynamic threads using discrete-event systems. In Proc. Allerton
Conference on Communication, Control and Computing, 2009.

[2] E. R. Boer and T. Murata. Generating basis siphons and traps of Petri
nets using the sign incidence matrix. IEEE Transactions on Circuits
and Systems—I, 41(4):266–271, April 1994.

[3] E. E. Cano, C. A. Rovetto, and J.-M. Colom. An algorithm to compute
the minimal siphons in S4PR nets. In Proc. International Workshop
on Discrete Event Systems, pages 18–23, 2010.

[4] F. Chu and X.-L. Xie. Deadlock analysis of Petri nets using siphons
and mathematical programming. IEEE Transactions on Robotics and
Automation, 13(6):793–804, December 1997.

[5] J. Ezpeleta, J. M. Colom, and J. Martı́nez. A Petri net based
deadlock prevention policy for flexible manufacturing systems. IEEE
Transactions on Robotics and Automation, 11(2):173–184, April 1995.

[6] A. Gamatie, H. Yu, G. Delaval, and E. Rutten. A case study on
controller synthesis for data-intensive embedded system. In Proc.
International Conference on Embedded Software and Systems, 2009.

[7] Gurobi. Gurobi Optimizer, 2010.
[8] Y.-S. Huang, M. Jeng, X. Xie, and D.-H. Chung. Siphon-based

deadlock prevention policy for flexible manufacturing systems. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, 36(6):1248 –1256, November 2006.

[9] M. V. Iordache and P. J. Antsaklis. Supervisory Control of Concurrent
Systems: A Petri Net Structural Approach. Birkhäuser, Boston, MA,
2006.

[10] M. V. Iordache and P. J. Antsaklis. Petri nets and programming: A
survey. In Proc. 2009 American Control Conference, pages 4994–
4999, 2009.

[11] T. Kelly, Y. Wang, S. Lafortune, and S. Mahlke. Eliminating concur-
rency bugs with control engineering. IEEE Computer, 42(12):52–60,
December 2009.

[12] Z. Li and M. Zhou. Elementary siphons of Petri nets and their
application to deadlock prevention in flexible manufacturing systems.
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, 34(1):38 – 51, January 2004.

[13] Z. Li and M. Zhou. Two-stage method for synthesizing liveness-
enforcing supervisors for flexible manufacturing systems using Petri
nets. IEEE Transactions on Industrial Informatics, 2(4):313–323,
November 2006.

[14] Z. Li, M. Zhou, and N. Wu. A survey and comparison of Petri
net-based deadlock prevention policies for flexible manufacturing
systems. IEEE Transactions on Systems, Man, and Cybernetics—Part
C, 38(2):173–188, March 2008.

[15] H. Liao, S. Lafortune, S. Reveliotis, Y. Wang, and S. Mahlke.
Synthesis of maximally-permissive liveness-enforcing control policies
for Gadara Petri nets. In Proc. the 49th IEEE Conference and Decision
and Control, 2010.

[16] H. Liao, Y. Wang, H. K. Cho, J. Stanley, T. Kelly, S. Lafortune,
S. Mahlke, and S. Reveliotis. Concurrency bugs in multithreaded
software: Modeling and analysis using Petri nets. Submitted for
publication, 2011.

[17] T. Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541–580, April 1989.

[18] A. Nazeem, S. Reveliotis, Y. Wang, and S. Lafortune. Optimal
deadlock avoidance for complex resource allocation systems through
classification theory. In Proc. the 10th International Workshop on
Discrete Event Systems, 2010.

[19] L. Piroddi, R. Cordone, and I. Fumagalli. Selective siphon control
for deadlock prevention in Petri nets. IEEE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Humans, 38(6):1337 –
1348, November 2008.

[20] W. Reisig. Petri Nets: An Introduction. Springer-Verlag, 1985.
[21] S. A. Reveliotis. Real-Time Management of Resource Allocation

Systems: A Discrete-Event Systems Approach. Springer, New York,
NY, 2005.

[22] F. Tricas, F. Garcia-Valles, J. Colom, and J. Ezpeleta. A Petri net
structure-based deadlock prevention solution for sequential resource
allocation systems. In Proc. IEEE International Conference on
Robotics and Automation, pages 271 – 277, 2005.

[23] Y. Wang. Software Failure Avoidance Using Discrete Control Theory.
PhD thesis, University of Michigan, 2009.

[24] Y. Wang, H. Liao, S. Reveliotis, T. Kelly, S. Mahlke, and S. Lafortune.
Gadara nets: Modeling and analyzing lock allocation for deadlock
avoidance in multithreaded software. In Proc. the 48th IEEE Confer-
ence and Decision and Control, pages 4971–4976, 2009.

1148

