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Abstract— Exogenous insulin administration is the basic way
to face the widespread disease of Diabetes Mellitus. To this aim,
closed-loop approaches, though theoretically realizable accord-
ing to the control theory results and to the recent technology
concerning continuous glucose measurements and affordable
insulin infusion pumps, require a careful and thorough testing
ground on a virtual environment before arranging an in-vivo
clinical setting of experiments. In this work, a model-based
control law for the plasma glycemia, recently published by the
same authors, is evaluated by closing the loop on a virtual
patient, whose model equations are different from the ones used
to synthesize the control law. That means: a minimal model
of the glucose-insulin system to design the insulin therapy,
and a different, more detailed, comprehensive model to test
in silico the control scheme. Uncertainties on the blood glucose
measurements, as well as malfunctioning on the insulin delivery
devices are considered, according to the standard technology,
in order to obtain an effective benchmark for the closed-loop
control and to show in fact the robustness of the proposed
approach.

I. INTRODUCTION

The term “diabetes” comprises a group of metabolic
disorders characterized by hyperglycemia resulting from
defects in insulin secretion, insulin action, or both. In one
category (Type 1 diabetes), there is an absolute deficiency
of insulin secretion caused by an autoimmune pathologic
process occurring in the pancreatic islets. Individuals with
this extensive beta-cell destruction, and therefore no residual
insulin secretion, require insulin for survival. In the other,
much more prevalent category (Type 2 diabetes), the cause is
a combination of resistance to insulin action and inadequate
compensatory insulin secretory response. These individuals
have therefore insulin resistance and usually have relative
(rather than absolute) insulin deficiency, in the face of
increased levels of circulating insulin.

Exogenous insulin administration is a basic procedure to
cope with most malfunctioning of the endogenous insulin
feedback action (in Type 1 diabetes only exogenous insulin
is available, while in Type 2 exogenous insulin comple-
ments pancreatic production). Glucose control strategies are
mainly actuated by subcutaneous or intravenous injections
or infusions. Control of glycemia by means of subcutaneous
insulin injections is by far more widespread than control
by means of intravenous insulin, since the dose is habitu-
ally administered by the patients themselves (see [1] and
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references therein). However, only open loop or semiclosed
loop control strategies can be used in this situation, mainly
due to the problem of accurately modeling the absorption of
the hormone from the subcutaneous depot into the plasma
circulation (see [20] for a critical review of subcutaneous
absorption models and [7] for a model of intra/inter sub-
ject variability of the absorption of subcutaneous insulin
preparations). On the other hand, the use of intravenous
insulin administration, delivered by automatic, variable speed
pumps under the direct supervision of a physician, provides
a wider range of possible strategies and ensures a rapid
delivery with negligible delays. As a matter of fact, control
algorithms based on intravenous insulin administration are
directly applicable so far only to problems of glycemia
stabilization in critically ill subjects, such as in surgical
Intensive Care Units after major procedures.

A closed loop control strategy may be implemented ac-
cording to a model-less or to a model-based approach. The
first approach does not use a mathematical model of the
glucose-insulin system, and provides an arbitrary (while
possibly very effective) control rule for insulin infusion rate,
based on experimental data: recent papers on this topic
are mainly devoted to the application of PID controllers
aiming to mimic the pancreatic glucose response (see e.g.
[5], [32], [14], [19]). Clearly, before applying these empirical
therapies in a clinical setting, they need to be tested on
a virtual environment, usually provided by a total-body
comprehensive model of the glucose-insulin system, which
details about the many organs and tissues involved in the
insulin dependent/independent glucose uptake as well as in
the endogenous/exogenous insulin administration [8], [31],
[9]. On the other hand a model-based approach presupposes
sufficiently detailed knowledge of the physiology of the
system under investigation. The advantages of a model-
based approach are evident since, by using a glucose/insulin
model, the control problem may be treated mathematically
and optimal strategies may be determined. Clearly, the more
accurate the model, the more effective is the control law.
Recently, model-based glucose controls have been proposed,
based on nonlinear models such as the Minimal Model,
[2], [33], or more exhaustive compartmental models, [8],
[31], [16], (e.g. Model Predictive Control in [15], Parametric
Programming in [10], Neural Predictive Control in [34], H∞
control in [28], non-standard H∞ control in [6], [30]). It has
to be stressed that most of these approaches are based on the
approximation of the original nonlinear model, provided by
linearization, discretization and model reduction (balanced
truncation). In most of the above mentioned papers, insulin
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is assumed to be intra-venously administered. An excellent
review of the available models presently adopted for blood
glucose regulation as well as the closed loop control method-
ologies and technical devices (blood glucose sensors and
insulin pumps) may be found in [4].

In this paper, the attention is focused on a model-
based, closed-loop control scheme, recently published by the
same authors in [24]. Differently from previously mentioned
model-based approaches, which use nonlinear Ordinary Dif-
ferential Equation (ODE) models, the one presented in [24]
uses a nonlinear discrete-Delay Differential Equation (DDE)
model of the glucose/insulin system, [22], [27]. Despite the
great spread of DDE models in the last decade, which allow
a better representation of pancreatic Insulin Delivery Rate
(IDR) (see e.g. [18] and references therein), their use is
still lacking in the field of glucose control, according to
the authors’ knowledge. Indeed, when attempting to design
a closed-loop glucose control, the works published so far
have concentrated on Type 1 diabetic patients (who have
essentially no endogenous insulin production), avoiding in
this way the need to take pancreatic IDR into account. In
[24] we do take into account spontaneous pancreatic IDR,
thereby treating healthy, Type 2 diabetic and Type 1 diabetic
patients in a unified fashion.

The control law aims to track a desired glucose reference
trajectory by means of intravenous insulin infusions (like
many of the previously cited approaches [10], [28], [6],
[30]). To this aim, the input-output feedback linearization
with delay cancelation has been used (see [12], [21]),
with a feedback depending on glucose measurements ac-
quired intra-venously, for instance by using implanted de-
vices like the ones supplied by Medtronic MiniMed Inc.
(www.minimed.com). Insulinemia levels are assumed to be
estimated by means of a state observer for nonlinear time-
delay systems [11], [13].

The contribute of the present paper is devoted to build a
virtual environment in order to effectively test the method-
ology developed in [24]. Being synthesized by suitably
exploiting a minimal DDE model, the control law requires
to be tested in closed-loop onto a different, more detailed,
comprehensive model of the glucose-insulin system. In silico
tests are usually needed to be thoroughly carried out on a
virtual patient (VP, shortly) (or better on a population of
VPs), making it possible to evaluate a possibly exhaustive
set of different scenarios, including cases of measurement
error and other failures, [3], before to arrange a set of
reliable clinical experiments (which are usually costly, time-
consuming and confounded by ethical issues). The multi-
compartmental model chosen for the VP is [9], which relates
in as much details as possible the glucose-insulin evolution
with respect to possible exogenous perturbations such as
meals or insulin infusions. Based on these model equations,
a computer simulator of diabetic patients has been recently
accepted by the Food and Drug Administration (FDA) as
a substitute to animal trials for the preclinical testing of
control strategies in artificial pancreas [17]. The crucial
point to ensure attainable experiments is to make the two
models consistent each other. Such a task is performed by

considering a virtual Intra-Venous Glucose Tolerance Test
(IVGTT) on the VP in order to identify the DDE model
parameters which best fit the glucose-insulin evolutions.
Then, the model-based control law is synthesized, and the
control parameters are tuned by simulations on the DDE,
just as it should be done before to apply the control law to
a real patient. Finally, the control law is applied to the VP.

Uncertainties on the blood glucose measurements, as well
as malfunctioning on the insulin delivery devices are con-
sidered, according to the standard technology, in order to
obtain an effective benchmark for the closed-loop control
and to show in fact the robustness of the proposed approach.
Criteria of safety and efficacy will be adopted in order to
stress the robustness of the control methodology with respect
to a population of VPs.

II. PRELIMINIARIES ON THE MODEL-BASED CONTROL
SCHEME

Denote G(t), [mM], I(t), [pM], plasma glycemia and in-
sulinemia, respectively. The model considered to synthesize
the closed-loop glucose control consists of a single discrete-
delay differential equation system [27], [22]:

dG(t)
dt

= −KxgiG(t)I(t) +
Tgh
VG

,

dI(t)
dt

= −KxiI(t) +
TiGmax
VI

f
(
G(t− τg)

)
+ u(t), (1)

G(τ) = G0(τ), I(τ) = I0(τ), τ ∈ [−τg, 0],

where the nonlinear map f(·) models the endogenous pan-
creatic insulin delivery rate as:

f(G) =

(
G
G∗

)γ
1 +

(
G
G∗

)γ , (2)

and u(t), [pM/min], is the the control input, i.e. the exoge-
nous intra-venous insulin delivery rate. Refer to [27], [22]
for a detailed description of the model parameters and their
physiological meaning.

(
G0(τ), I0(τ)

)
is the pair of initial

conditions, equal to the constant basal levels (Gb, Ib).
It has to be stressed that model (1) represents equally

well healthy subjects and insulin-resistant or severe diabetic
patients, changing the parameter values as appropriate.

The aim of the considered control law is to reduce a
high basal plasma glucose concentration Gb to a lower
level, according to a smooth reference glucose trajectory
Gref(t), by means of intra-venous insulin administration. No
exogenous glucose intake is considered, thus the patient is
assumed to be controlled out of meals.

In [23], by applying the theory of input-output feedback
linearization with delay cancellation (see [12], [21]), with
respect to the output y(t) = G(t) and the input u(t), the
following feedback control law is found:

u(t) =
S
(
G(t), I(t), G(t− τg)

)
− v(t)

KxgiG(t)
, t ≥ 0, (3)
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where

S
(
G(t), I(t), G(t− τg)

)
= −KxgiI(t)

(
−KxgiI(t)G(t) + Tgh

VG

)
−KxgiG(t)

(
−KxiI(t) + TiGmax

VI
f
(
G(t− τg)

))
(4)

and v(t) = G̈ref(t) +Re(t); matrix R ∈ IR1×2 is such that:

H =
[

0 1
0 0

]
+
[

0
1

]
R (5)

has prescribed eigenvalues in the left half complex plane and

e(t) =
[
e1(t)
e2(t)

]
= Z(t)− Zref(t) (6)

with:

Z(t) =
[
z1(t)
z2(t)

]
=
[

G(t)
−KxgiG(t)I(t) + Tgh

VG

]
, (7)

and

Zref(t) =
[
Gref(t)
Ġref(t)

]
. (8)

It is shown in [23] that, by applying (3-8) the tracking
error variable e(t) asymptotically converges to zero, since:

ė(t) = He(t), H Hurwitz, according to (5). (9)

Such a control law (3-8) requires both glucose and insulin
measurements: on the other hand, insulin measurements are
slower and more cumbersome to obtain, more expensive, and
also less accurate than glucose measurements: therefore, a
state observer for system (1) has been considered, in order
to estimate the plasma insulin concentration and design a
feedback control law based on only glucose measurements
[24]:[

dĜ
dt

dÎ
dt

]
=

[
−KxgiĜ(t)Î(t) + Tgh

VG

−KxiÎ(t) + TiGmax

VI
f
(
Ĝ(t− τg)

)
+ u(t)

]
+Q−1

(
Ĝ(t), Î(t)

)
W (G(t)− Ĝ(t)), t ≥ 0,

Ĝ(τ) = Ĝ0(τ), Î(τ) = Î0(τ), τ ∈ [−τg, 0], (10)

where Q−1 is the inverse matrix of the matrix function
Q(x1, x2) ∈ IR2×2 defined as:

Q(x1, x2) =
[

1 0
−Kxgix2 −Kxgix1

]
, (11)

and W ∈ IR2×1 is such that the matrix

Ĥ =
[

0 1
0 0

]
−W

[
1 0

]
(12)

has prescribed eigenvalues in the left half complex plane.
According to results in [11], [13], the observer (10)

guarantees local exponential convergence of the estimation
error to zero. More specifically, if the estimation error at
zero is sufficiently small, then the estimation error converges
exponentially to zero, with arbitrary decay rate fixed by
means of a suitable choice of W .

In order to close the loop from the observed state, the
following feedback control law has been considered:

u(t) =
S
(
Ĝ(t), Î(t), Ĝ(t− τg)

)
− v(t)

KxgiĜ(t)
, (13)

with v(t) = G̈ref(t) + Rê(t), where ê(t) = Ẑ(t) − Zref(t),
t ≥ −τg , and

Ẑ(t) =
[
ẑ1(t)
ẑ2(t)

]
=

[
Ĝ(t)

−KxgiĜ(t)Î(t) + Tgh

VG

]
. (14)

Such control law (13-14) does not make use of insulin
measurements, differently from the control law (3-8). Ac-
tually, it makes use of the glucose and insulin estimations
provided by the observer, on the basis of the only glucose
measurements.

In [24] it has been proven that there exist gains R and
W such that, for the closed-loop system (1), (10), (13-14),
the plasma glycemia is controlled to track the reference
trajectory, with the error tracking asymptotically converging
to zero, provided that the initial tracking and observer errors
are suitably small.

III. THE VIRTUAL ENVIRONMENT

The basic idea of the paper is to use a simplified (though
accurate) model of the glucose-insulin system to synthesize
a model-based glucose control, and to use a different, more
exhaustive, comprehensive model to test the control law on
a realistic virtual patient. To this aim, it has been chosen the
model dealt with in [9], where the glucose-insulin system is
described by means of a two-compartmental subsystem for
the glucose kinetics (detailing insulin dependent/independent
glucose uptake in the tissues as well as the renal extrac-
tion and the endogenous glucose production) and a two-
compartmental subsystem for the insulin kinetics (detailing
the pancreatic insulin production and the degradation in the
liver and the peripheral tissues), for an overall 9th order ODE
model with about 30 parameters. Since no exogenous glucose
intake is considered in this paper, the gastro-intestinal tract
equations, though thoroughly treated in [9], are not consid-
ered in this framework, and their contributes are, therefore,
cleared from the model. Refer to [9] and reference therein for
the many contributes which allowed to build up the model.

The chosen VP is a Type II diabetic patient, body weight
of 90kg, identified by the parameters taken from Table I
of [9], whose corresponding basal glycemia and insulinemia
are Gb = 8.85mM and Ib = 59.85pM. Once the VP is
chosen, the DDE model parameters need to be estimated
in order to approximate the VP by means of eq.s(1-2). To
this aim, a virtual IVGTT experiment is simulated on the
VP, which consists in administering intra-venously a glucose
bolus Dg after an overnight fast and, then, sampling blood
glucose and insulin concentration at fixed instants during the
following 3 hours. From a modeling point of view, the bolus
Dg , administered at time t = 0, produces an instantaneous
increase in both glycemia and insulinemia, so that:

G(0) = Gb +
Dg

VG
, I(0) = Ib + I∆

Dg

VG
, (15)
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TABLE I
DDE MODEL PARAMETERS OF THE VP

VG 0.18 L/kgBW
τg 6.5 min
Kxgi 3.15 · 10−5 min−1pM−1

Kxi 0.038 min−1

γ 15.92 -
TiGmax 1.67 min−1(pmol/kgBW)
Tgh 0.0023 min−1(mmol/kgBW)

with I∆ a further parameter to be estimated. According to
standard IVGTT clinical criteria:

- the bolus Dg is fixed equal to 300mg/kg Body Weight;
- blood samples are obtained every 2 minutes for the first

10-minute interval, every 5 minutes for the next 30-
minute interval, every 10 minutes for the next 20-minute
interval and finally every 20 minutes for the last 120-
minute interval (an overall sampling period of 3 hours);

Glycemia and insulinemia measurements are provided by the
VP according to the previous item: coefficients of variation
(CVs) have been considered of 1.5% for glycemia and 7%
for insulinemia, to reflect unmodeled measurement errors [2].

The Generalized Least Square method has been applied
[27], with:

- parameters Gb and Ib measured before the experiment
(they enter the model as covariates); to stress the
robustness of the algorithm, these basal values are
assumed to be measured with greater CVs than the
ones stated before: Gb = 8.46mM (' 4.5% error) and
Ib = 47.85pM (' 17% error). Note that these noisy
values will be used also to design the control law.

- VI = 0.25L/kgBW and G? = 9mM fixed by the
investigator and kept constant;

- VG, τg , Kxgi, Kxi, γ, I∆ free model parameters to be
estimated;

- TiGmax, Tgh determined from the other parameters
according to the algebraic steady-state conditions.

Estimated DDE model parameters are reported in Table I.
These values are characteristic of the frank clinical picture
of Type 2 Diabetes Mellitus. This subject presents with a
decreased insulin sensitivity, which however would not be
incompatible with maintained glycemic levels, were pancre-
atic insulin secretion able to compensate by increasing suffi-
ciently. Viceversa, basal insulin levels are relatively normal,
which, in the face of markedly increased fasting glycemia,
denotes a secretory insufficiency. In this context, low insulin
sensitivity (Kxgi) is an indicator of the likely previous history
of the subject, being a prime determinant of the development
of glucose toxicity and eventual derangement of glucose
homeostatic control. It is to be expected that the further
evolution of this subject would be marked by progressively
accelerating decrease of fasting insulinemia and increase of
fasting glycemia, unless adequate pharmacological therapy
is administered.

Once the DDE model parameters are identified for the VP,
the control scheme may be designed. At first, the reference

glucose trajectory is chosen as follows:

Gref(t) = Gd + (Gb −Gd) · e−t/T (16)

where Gd = 5mM is the desired plasma glycemia to track,
Gb = 8.46mM is the noisy glycemia, also used in the virtual
IVGTT and T = 30min is set in order to have a reference
signal which smoothly reduces the hyperglycemic level Gb
down to a healthy level within about 3T = 90 minutes.

The control law is designed by suitably choosing the
eigenvalues of matrices H and Ĥ in (5-12). Such a task
needs to be performed taking into account both theory and
numerical simulations. The theory is the one concerning the
convergence of the observer [11], [13], according to which
the following choices are taken:

λ(H) = {−0.15,−0.06}, λ(Ĥ) = {−0.1,−0.4}.
(17)

Simulations are required to check that no glucose oscil-
lations occur (with corresponding dangerous cases of hy-
poglycemia), as well as to avoid periods of theoretical
negative insulin administration, which would be treated as
a temporary switch off of the control law (undesired as well,
since the patient glucose-insulin system would be left in free
evolution, while it would require negative insulin). Such a
task is performed by closing the loop on the DDE model
itself (not on the VP), since the regulator needs to be tuned
and checked in silico before to be applied on a real/virtual
patient. Indeed, simulations reported in Fig.1 show excellent
results on a 3-hour horizon, and the control input u(t) is
never switched off, being always positive throughout the
simulation.

Fig. 1. Glucose control closed on the DDE model. x-axis is time in hours.

The designed control law is then applied to the VP. In
order to make more effective these simulations, it has to
be taken into account the fact that in the real case glucose
measurements are not available in continuous time, nor the
controller may work in continuous time. Indeed, in practice,
standard devices:
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– provide glucose measurements only at given sample
times, whose frequency is limited by the time needed
to analyze plasma glucose on a bed-side analyzer, [3];

– administer insulin by means of piecewise-constant in-
fusions.

Both technical assumptions will be taken into account in
the simulations concerning the VP. Indeed, let ∆T be the
sampling time according to which glucose measurements are
acquired at times t = k∆T , and constant insulin infusion
rates are administered, during intervals [k∆T, (k + 1)∆T ),
k = 0, 1, . . . Then the numerical algorithm is as follows, and
the chosen sampling time for simulations is ∆T = 5min,
which is reasonable according to current technology [29].

ALGORITHM
1. at time k∆T the measurement of G(k∆T ) is delivered

by the sensor;
2. from the available state estimates Ĝ(k∆T ), Ĝ(k∆T −

τg), Î(k∆T ), the control input is computed by (13):

u(k∆T ) =
S(Ĝ(k∆T ),Î(k∆T ),Ĝ(k∆T−τg))−v(k∆T )

KxgiĜ(k∆T )
;

(18)
3. the constant infusion u(k∆T ) is administered to the

patient in the time interval [k∆T, (k + 1)∆T );
4. contemporary to item [3.], the controller device runs in

the time-interval [k∆T, (k + 1)∆T ], by way of (10),
using the measurement G(k∆T ):[
dĜ
dt

dÎ
dt

]
=

[
−KxgiĜ(t)Î(t) + Tgh

VG

−KxiÎ(t) + TiGmax

VI
f
(
Ĝ(t− τg)

)
+ u(k∆T )

]

+Q−1
(
Ĝ(t), Î(t)

)
W
(
G(k∆T )− Ĝ(k∆T )

)
;
(19)

5. the value of k is incremented by 1.
Moreover, glucose measurement errors and insulin pump

malfunctioning have also been considered. The CVs used for
real-time glucose measurements and the insulin delivery rate
have been assumed equal to 5% and 15%, respectively, [3].

Simulations on the VP are reported in Fig.2, on the same
3-hours time horizon. Note that, despite the many errors
affecting the basal values, the measured glycemias, the input
actuator and the discretization of the regulator, there are only
few cases of switching off the controller, with no episodes
of hypoglycemia. Moreover, from an efficacy point of view,
a reasonable (< 6mM) normo-glycemia is definitely reached
within 90 minutes.

Finally, we considered the case of a population of 1,000
VPs, whose model parameters are distributed according to a
log-normal distribution with population means given by the
values taken from [9], and CVs set at 5%. It has to be stressed
that, by doing so, the patient characteristic may change so
far that the resulting subject may not be any more a diabetic
patient. For this reason each of the 1,000 VPs has been
chosen with a resulting basal glycemia of at least 6.5mM.
The control law applied to the population of VPs is always
the same, set for the VP with the mean value parameters. The
utility criterion chosen in order to state whether a simulation
associated to a stochastic realization of the virtual patient is

Fig. 2. Glucose control closed on the VP. x-axis is time in hours.

acceptable or not, needs to take into account both safety and
efficacy criteria. These criteria have been inspired by [3] and
are the following. As far as safety, the control law applied
to a VP could cause:

- severe hypoglycemia: plasma glycemia falls to 2mM or
lower, within the simulation period;

- hypoglycemia: plasma glycemia falls to 3.3mM or
lower, but always remains above 2mM, within the
simulation period.

Then, a set of simulations provides excellent safety if nei-
ther hypoglycemia nor severe hypoglycemia cases occur; it
provides good safety if less than 5% of simulations show
hypoglycemia, with no cases of severe hypoglycemia; it
provides satisfactory safety if less than 20% of simulations
show hypoglycemia, with no cases of severe hypoglycemia.
In any other case the simulation is unsafe.

As far as efficacy, the control law applied to a virtual
patient may provide

- excellent efficacy: plasma glycemia is constrained below
6mM after the first 3 hours of treatment;

- good efficacy: plasma glycemia is constrained below
7mM after the first 3 hours of treatment;

- satisfactory efficacy: plasma glycemia is constrained
below 8mM after the first 3 hours of treatment;

- unsatisfactory efficacy: plasma glycemia is not con-
strained below 8mM after the first 3 hours of treatment;

Results showed excellent safety and overall excellent efficacy
results (' 80%), as underlined by Table II

IV. CONCLUSIONS

In this work a virtual environment is set in order to test a
DDE-model-based glucose control law in as much realistic
details as possible, compatible with the available technology
of glucose sensors and insulin pump actuators. The control
law is evaluated by closing the loop on a virtual patient,
whose model equations have been recently accepted by the
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TABLE II
SAFETY AND EFFICACY RESULTS ON 1,000 VPS

Severe hypoglycemia 0 cases (0%)
Hypoglycemia 0 cases (0%)

Excellent efficacy 782 cases (78.2%)
Good efficacy 213 cases (21.3%)

Satisfactory efficacy 5 cases (0.5%)
Unsatisfactory efficacy 0 cases (0.0%)

Food and Drug Administration (FDA) as a substitute to
animal trials for the preclinical testing of control strategies
in artificial pancreas.

The clinical application of the control algorithms presented
in this work relate to the somewhat niche problem of
glycemia stabilization in critically ill subjects, such as can
be found in surgical Intensive Care Units after major pro-
cedures. However, because of the robustness of the method
highlighted by the proposed simulations, extensions of the
basic DDE-model could directly lead to the application in
wider contexts, such as insulin administration by means of
typical subcutaneous infusions, as well as glucose control in
presence of incoming disturbances such as meals or other
modes of oral glucose ingestion. A preliminary result upon
the former case has been recently accepted for presentation
at the 18th IFAC World Congress in Milan 2011 [25].

REFERENCES

[1] R. Bellazzi, G. Nucci and C. Cobelli, The subcutaneous route to insulin-
dependent diabetes therapy, IEEE Engineering in Medicine and Biology,
20, 54–64, 2001.

[2] R.N. Bergman, Y.Z. Ider, C.R. Bowden and C. Cobelli, Quantitative
estimation of Insulin sensitivity, Am. Journal on Physiology, 236, 667–
677, 1979.

[3] L.J. Chassin, M.E. Wilinska and R. Hovorka, Evaluation of glucose
controllers in virtual environment: methodology and sample application,
Artificial Intelligence in Medicine, 32, 171–181, 2004.

[4] F. Chee and T. Fernando, Closed-loop control of blood glucose,
Springer-Verlag, Berlin Heidelberg, 2007.

[5] F. Chee, T.L. Fernando, A.V. Savkin and V. van Heeden, Expert PID
control system for blood glucose control in critically ill patients, IEEE
Trans. Inf. Tech. in Biomedicine, 7, 419–425, 2003.

[6] F. Chee, A.V. Savkin, T.L. Fernando and S. Nahavandi, Optimal
H∞ insulin injection control for blood glucose regulation in diabetic
patients, IEEE Trans. on Biomedical Engineering, 52, 1625–1631, 2005.

[7] W.H.O. Clausen, A. De Gaetano and A. Vølund, Within-patient variation
of the pharmacokinetics of subcutaneously injected biphasic insulin
aspart as assessed by compartmental modelling, Diabetologia, 49,
2030–2038, 2006.

[8] C. Cobelli, G. Federspil, G. Pacini, A. Salvan and C. Scandellari, An
integrated mathematical model of the dynamics of blood glucose and
its hormonal control, Math. Biosci., 58, 27–60, 1982.

[9] C. Dalla Man, R.A. Rizza and C. Cobelli, Meal simulation model of the
glucose-insulin system, IEEE Trans. Biomedic. Eng., 54, 1740–1749,
2007.

[10] P. Dua, P, F.J. Doyle and E.N. Pistikopoulos, Model-based blood
glucose control for Type 1 diabetes via parametric programming, IEEE
Trans. Biomedic. Eng., 53, 1478-1491, 2006.

[11] A. Germani, C. Manes and P. Pepe, An Asymptotic State Observer
for a Class of Nonlinear Delay Systems, Kybernetika, 37(4), 459–478,
2001.

[12] A. Germani, C. Manes and P. Pepe, Input-Output Linearization with
Delay Cancellation for Nonlinear Delay Systems: the Problem of
the Internal Stability, International Journal of Robust and Nonlinear
Control, 13(9), 909–937, 2003.

[13] A. Germani and P. Pepe, A State Observer for a Class of Nonlinear
Systems with Multiple Discrete and Distributed Time Delays, European
Journal of Control, 11(3), 196–205, 2005.

[14] B. Gopakumaran, H.M. Duman, D.P. Overholser, I.F. Federiuk, M.J.
Quinn, M.D. Wood and W.K. Ward, A novel insulin delivery algorithm
in rats with type 1 diabetes: the fading memory proportional-derivative
method, Artificial Organs, 29, 599–607, 2005.

[15] R. Hovorka, V. Canonico, L.J. Chassin, U. Haueter, M. Massi-
Benedetti, M.O. Federici, T.R. Pieber, H.C. Schaller, L. Schaupp,
T. Vering and M.E. Wilinska, Nonlinear model predictive control of
glucose concentration in subjects with type I diabetes, Physiological
Measurements, 25, 905–920, 2004.

[16] R. Hovorka, F. Shojaee-Moradie, P.V. Carroll, L.J. Chassin, I.J.
Gowrie, N.C. Jackson, R.S. Tudor, A.M. Umpleby and R.H. Jones,
Partitioning glucose distribution/transport, disposal and endogenous
production during IVGTT, Am. J. Physiol. Endocrinol. Metab., 282,
992–1007, 2007.

[17] B.P. Kovatchev, M.D. Breton, C. Dalla Man and C. Cobelli, In silico
model and computer simulation environment approximating the human
glucose/insulin utilization. Food and Drug Administration Master File
MAF 1521, 2008.

[18] A. Makroglou, J. Li and Y. Kuang, Mathematical models and soft-
ware tools for the glucose-insulin regulatory system and diabetes: an
overview, Applied Numerical Mathematics, 56, 559–573, 2006.

[19] G. Marchetti, M. Barolo, L. Jovanovic, H. Zisser and D.E. Seborg,
An improved PID switching control strategy for type 1 diabetes, IEEE
Trans. Biomedic. Eng., 55, 857–865, 2008.

[20] G. Nucci and C. Cobelli, Models of subcutaneous insulin kinetics. A
critical review, Comp. Methods and Programs in Biomed., 62, 249–257,
2000.

[21] T. Oguchi, A. Watanabe and T. Nakamizo, Input-Output Linearization
of Retarded Non-linear Systems by Using an Extension of Lie Deriva-
tive, International Journal of Control, 75(8), 582–590, 2002.

[22] P. Palumbo, S. Panunzi and A. De Gaetano, Qualitative behavior of
a family of delay differential models of the glucose insulin system,
Discrete and Continuous Dynamical Systems - B, 7, 399–424, 2007.

[23] P. Palumbo, P. Pepe, S. Panunzi and A. De Gaetano, Robust Closed-
Loop Control of Plasma Glycemia: a Discrete-Delay Model Approach
Discrete and Continuous Dynamical Systems - B, 12(2), 455–468, 2009.

[24] P. Palumbo, P. Pepe, S. Panunzi and A. De Gaetano, Observer-based
closed-loop control of plasma glycemia, in Proc. 48th IEEE Conf. on
Decis. and Control, Shanghai, China, 3507-3512, 2009.

[25] P. Palumbo, P. Pepe, S. Panunzi and A. De Gaetano, Glucose control
by subcutaneous insulin administration: a DDE modelling approach, to
appear in Proc. 18th IFAC World Congress, Milan, Italy, August 28 -
September 2, 2011.

[26] S. Panunzi, A. De Gaetano and G. Mingrone, Advantages of the
single delay model for the assessment of insulin sensitivity from the
intravenous glucose tolerance test, Theoretical Biology and Medical
Modelling, 7(9), 120, 2010.

[27] S. Panunzi, P. Palumbo and A. De Gaetano, A discrete single delay
model for the Intra-Venous Glucose Tolerance Test, Theoretical Biology
and Medical Modelling, 4(35), 2007.

[28] R.S. Parker, F.J. Doyle III, J.H. Ward and N.A. Peppas, Robust H∞
glucose control in diabetes using a physiological model, AIChE Journal,
46, 2537–2549, 2000.

[29] G. Reach and G.S. Wilson, Can continuous glucose monitoring be
used for the treatment of diabetes, Anal. Chem., 64, A381–A386, 1992.

[30] E. RuizVelázquez, R. Femat and D.U. CamposDelgado, Blood glucose
control for type I diabetes mellitus: a robust H∞ tracking problem,
Control Engineering Practice, 12, 1179–1195, 2004.

[31] J.T. Sorensen, C.K. Colton, R.S. Hillman and J.S. Soeldner, Use
of a physiologic pharmacokinetic model of glucose homeostasis for
assesment of performance requirements for improved insulin therapies,
Diabetes Care, 5, 148–157, 1982.

[32] G.M. Steil, A.E. Panteleon and K. Rebrin, Closed-loop insulin delivery
– the path to physiological glucose control, Advanced Drug Delivery
Reviews, 56, 125–144, 2004.

[33] G. Toffolo, R.N. Bergman, D.T. Finegood, C.R. Bowden and C.
Cobelli, Quantitative estimation of beta cell sensitivity to glucose in
the intact organism: a minimal model of insulin kinetics in the dog,
Diabetes, 29, 979–990, 1980.

[34] Z. Trajanoski and P. Wach, Neural predictive control for insulin
delivery using the subcutaneous route, IEEE Trans. on Biomedic. Eng.,
45, 1122–1134, 1998.

6941


