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Abstract— Attitude control systems naturally evolve on non-

linear configurations, such as S2

and SO(3). The nontrivial

topological properties of these configurations result in interest-

ing and complicated nonlinear dynamics when studying the

corresponding closed loop attitude control systems. In this

paper, we review some global analysis and simulation techniques

that allow us to describe the global nonlinear stable manifolds

of the hyperbolic equilibria of these closed loop systems. A

deeper understanding of these invariant manifold structures are

critical to understanding the global stabilization properties of

closed loop attitude control systems, and these global analysis

techniques are applicable to a broad range of problems on

nonlinear configuration manifolds.

I. INTRODUCTION

Global nonlinear dynamics of various classes of closed
loop attitude control systems have been studied in recent
years [1]. Closely related results on attitude control of a
spherical pendulum (with attitude an element of the two-
sphere S2) and of a 3D pendulum (with attitude an element
of the special orthogonal group SO(3)) are given in [2],
[3]. These publications address the global closed dynamics
of smooth vector fields on nonlinear manifolds.

Assuming that the controlled system has an asymptoti-
cally stable equilibrium, as desired in attitude stabilization
problems, additional hyperbolic equilibria necessarily ap-
pear [4]. As a result, the desired equilibrium is not globally
asymptotically stable, since the domain of attraction of the
desired asymptotically stable equilibrium excludes the union
of the stable manifolds of the hyperbolic equilibria. It is
referred to as almost globally asymptotically stable, as the
stable manifolds of the hyperbolic equilibria have lower
dimension than the attitude configuration manifold. However,
the characteristics of the stable manifolds to the hyperbolic
equilibria and the corresponding effects on the solutions have
not been directly studied in the prior literatures.

These geometric factors motivate the current paper, in
which new computational results to visualize the stable
manifolds of the hyperbolic equilibria are developed. To
make the development concrete, the presentation is built
around two specific closed loop vector fields: one for the
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attitude dynamics of a spherical pendulum and one for the
attitude dynamics of a 3D pendulum. While the observa-
tions in this paper are based on two particular examples,
the computational results suggest that the existence of the
hyperbolic equilibria may have nontrivial influences on the
solutions of any attitude control system, even though their
stable manifolds have zero measure. Further studies are
required to understand the effects of the hyperbolic equilibria
completely. Another contribution of this paper is that the
presented computational tools are also broadly applicable to
studying the geometry of more general control systems on
nonlinear manifolds.

II. SPHERICAL PENDULUM

A spherical pendulum is composed of a mass m connected
to a frictionless pivot by a massless link of length l. It is acts
under uniform gravity, and it is subject to a control moment
u. The configuration of a spherical pendulum is described by
a unit-vector q 2 R3, representing the direction of the link
with respect to a reference frame.

Therefore, the configuration space is the two-sphere S2 =

{q 2 R3 | q · q = 1}. The tangent space of the two-sphere
at q, namely T

q

S2, is the two-dimensional plane tangent to
the unit sphere at q, and it is identified with T

q

S2 ' {! 2
R3 | q · ! = 0}, using the following kinematics equation:

q̇ = ! ⇥ q,

where the vector ! 2 R3 represents the angular velocity of
the link. The equation of motion is given by

!̇ =

g

l
q ⇥ e3 +

1

ml2
u,

where the constant g is the gravitational acceleration, and
the vector e3 = [0, 0, 1] 2 R3 denotes the unit vector along
the direction of gravity. The control moment at the pivot is
denoted by u 2 R3.

A. Control System

Several proportional-derivative (PD) type control systems
have been developed on S2 in a coordinate-free fashion [5],
[6]. Here, we summarize a control system that stabilizes a
spherical pendulum to a fixed desired direction q

d

2 S2.
Consider an error function on S2, representing the distance

from the direction q to the desired direction q
d

, given by

 (q, q
d

) = 1 � q · q
d

.
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A control input is composed of a proportional term along the
gradient of  , and a derivative term and a cancelation term.
For positive constants k

q

, k
!

, it is given by

u = ml2(�k
q

q
d

⇥ q � k
!

! � g

l
q ⇥ e3).

The corresponding closed loop dynamics are written as

!̇ = �k
!

! � k
q

q
d

⇥ q, (1)
q̇ = ! ⇥ q. (2)

This yields two equilibrium solutions: (i) the desired
equilibrium (q, !) = (q

d

, 0); (ii) additionally, there exists
another equilibrium (�q

d

, 0) at the antipodal point.
In this paper, we analyze the local stability of each

equilibrium by linearizing the closed loop dynamics to study
the equilibrium structures.

B. Linearization

Here, we develop a coordinate-free form of the linearized
dynamics of (1), (2). A variation of a curve q(t) on S2 is
a family of curves q✏(t) parameterized by ✏ 2 R, satisfying
several properties [6]. It cannot be simply written as q✏(t) =

q(t) + ✏�q(t) for �q(t) in R3, since in general, this does not
guarantee that q✏(t) lies in S2. In [7], an expression for a
variation on S2 is given in terms of the exponential map as
follows:

q✏(t) = exp(✏ˆ⇠(t))q(t), (3)

for a curve ⇠(t) in R3 satisfying ⇠(t) · q(t) = 0 for all t.
The hat map ˆ· : R3 ! so(3) is defined by the condition that
x̂y = x ⇥ y for any x, y 2 R3. The resulting infinitesimal
variation is given by

�q(t) =

d

d✏

����
✏=0

q✏(t) = ⇠(t) ⇥ q(t). (4)

The variation of the angular velocity can be written as

!✏

(t) = !(t) + ✏�!(t), (5)

for a curve �w(t) in R3 satisfying q(t) · w(t) = 0 for all
t. Hereafter, we do not write the dependency on time t
explicitly.

Next, we substitute (4), (5) into (1), (2), and we ignore
higher-order perturbation terms. Using the fact that ⇠ · q =

! ·q = 0, and vector identities, a coordinate-free form of the
linearized equations can be written as follows:

ẋ =


˙⇠

�!̇

�
=


qqT !̂ I � qqT

k
q

q̂
d

q̂ �k
w

I

� 
⇠
�!

�
= Ax, (6)

where the state vector of the linearized controlled system
is x = [⇠; �!] 2 R6 (see [8] for detailed derivation). A
spherical pendulum has two degrees of freedom, but this
linearized equation of motion evolves in R6 instead of R4.
Since q · ! = 0 and q · ⇠ = 0, we have the following two
additional constraints on ⇠, �!:

Cx =


qT 0

�!T q̂ qT

� 
⇠
�!

�
=


0

0

�
. (7)

Therefore, the state vector x should lie in the null space
of the matrix C 2 R2⇥4. However, this is not an extra
constraint that should be imposed when solving (6). As long
as the initial condition x(0) satisfies (7), the structure of (1),
(2), and (6), guarantees that x(t) satisfies (7) for all t, i.e.
d

dt

C(t)x(t) = 0 for all t � 0 when C(0)x(0) = 0.

C. Equilibrium Solutions
We choose the desired direction as q

d

= e3. The equi-
librium solution (q

d

, 0) = (e3, 0) is referred to as the
hanging equilibrium, and the additional equilibrium solution
(�q

d

, 0) = (�e3, 0) is referred to as the inverted equi-
librium. We study the eigen-structure of each equilibrium
using the linearized equation (6). To illustrate the ideas, the
controller gains are selected as k

q

= k
!

= 1.
1) Hanging Equilibrium: The eigenvalues �

i

, and the
eigenvectors v

i

of the matrix A at the hanging equilibrium
(e3, 0) are given by

�1,2 = (�1 ±
p

3i)/2, �3,4 = �1,2, �5 = 0, �6 = �1,

v1,2 = e1 + (�1 ±
p

3i)e4/2, v3,4 = e2 + (�1 ±
p

3i)e5/2,

v5 = e3, v6 = e6,

where e
i

2 R6 denotes the unit-vector whose i-th element
is one, and other elements are zeros. Note that there are
repeated eigenvalues, but we obtain six linearly independent
eigenvectors, i.e., the geometric multiplicities are equal to
the algebraic multiplicities.

The basis of the null space of the matrix C, namely N (C)

is {e1, e2, e4, e5}. The solution of the linearized equation can
be written as x(t) =

P6
i=1 c

i

exp(�
i

t)v
i

for constants c
i

that
are determined by the initial condition: x(0) =

P6
i=1 c

i

v
i

.
But, the eigenvectors v5, v6 do not satisfy the constraint
given by (7), since they do not lie in N (C). Therefore,
the constants c5, c6 are zero for initial conditions that are
compatible with (7). We have Re[�

i

] < 0 for 1  i  4.
Therefore, the hanging equilibrium is asymptotically stable.

2) Inverted Equilibrium: The eigenvalues �
i

, and the
eigenvectors v

i

of the matrix A at the inverted equilibrium
(�e3, 0) are given by

�1,2 = �(

p
5 + 1)/2, �3,4 = (

p
5 � 1)/2, �5 = 0, �6 = �1,

v1 = e1 � (

p
5 + 1)e4/2, v2 = e2 � (

p
5 + 1)e5/2, (8)

v3 = (

p
5 + 1)e1/2 + e4, v4 = (

p
5 + 1)e2/2 + e5,

v5 = e3, v6 = e6.

The basis of N (C) is {e1, e2, e4, e5}. Hence, the eigenvec-
tors v5, v6 do not lie in N (C). Therefore, the solution can
be written as x(t) =

P4
i=1 c

i

exp(�
i

t)v
i

for constants c
i

that
are determined by the initial condition.

We have Re[�1,2] < 0, and Re[�3,4] > 0. Therefore,
the inverted equilibrium (q, !) = (�e3, 0) is a hyperbolic
equilibrium, and in particular, a saddle equilibrium.

D. Stable Manifold for the Inverted Equilibrium
1) Stable Manifold: The saddle equilibrium (�e3, 0) has

a stable manifold W s, which is defined to be

W s

(�e3, 0) = {(q, !) 2 TS2 | lim

t!1
F t

(q, !) = (�e3, 0)},

3916



where F t

: (q(0), !(0)) ! (q(t), !(t)) denotes the flow map
along the solution of (1), (2). The existence of W s

(�e3, 0)

has nontrivial effects on the overall dynamics of the con-
trolled system. Trajectories in W s

(�e3, 0) converge to the
antipodal point of the desired equilibrium (e3, 0), and it takes
a long time period for any trajectory near W s

(�e3, 0) to
asymptotically converge to the desired equilibrium (e3, 0).

According to the stable and unstable manifold theorem [9],
a local stable manifold W s

loc

(�e3, 0) exists in the neighbor-
hood of (�e3, 0), and it is tangent to the stable eigenspace
Es

(�e3, 0) spanned by the eigenvectors v1 and v2 of the
stable eigenvalues �1,2. Then, the (global) stable manifold
can be written as

W s

(�e3, 0) =

[

t>0

F�t

(W s

loc

(�e3, 0)), (9)

which states that the stable manifold W s can be obtained by
globalizing the local stable manifold W s

loc

by the backward
flow map.

This yields a method to compute W s

(�e3, 0) [10]. We
choose a small ball B

�

⇢ W s

loc

(�e3, 0) with a radius �
around (�e3, 0), and we grow the manifold W s

(�e3, 0) by
evolving B

�

under the flow F�t. More explicitly, the stable
manifold can be parameterized by t as follows:

W s

(�e3, 0) = {F�t

(B
�

)}
t>0. (10)

A ball B
�

in the local stable manifold can be easily chosen
from the stable eigenspace of (�e3, 0) with a sufficiently
small radius �. Using the stable eigenvectors v1, v2 at (8),
Es

loc

(�e3, 0) can be written as

Es

loc

(�e3, 0) = {(q, !) 2 TS2 | q = exp(↵1ê1 + ↵2ê2)(�e3),

! = �q̂2(�(

p
5 + 1)/2)(↵1e1 + ↵2e2) for ↵1, ↵2 2 R},

(11)

where �q̂2 in the expression for ! corresponds to the
orthogonal projection onto the plane normal to q, as required
due to the constraint q ·! = 0. We define a distance on TS2

as follows:

dTS2
((q1, !1), (q2, !2)) =

p
 (q1, q2) + k!1 � !2k. (12)

Then, for a sufficiently small � > 0, B
�

is expressed as
(11), where the parameters ↵1, ↵2 are chosen such that the
distance from the elements on B

�

to (�e3, 0) becomes �.
2) Variational Integrators: The parameterization of the

stable manifold W
s

at (10) also requires the computation
of the backward flow map F�t. General purpose numerical
integrators may not preserve the structure of the two-sphere
or the underlying dynamic characteristics, such as energy
dissipation rate, accurately, and they may yield qualitatively
incorrect numerical results in simulating a complex trajectory
over a long-time period [11].

Geometric numerical integration is concerned with devel-
oping numerical integrators that preserve geometric features
of a system, such as invariants, symmetry, and reversibility.
In particular, variational integrators are geometric numerical
integrators for Lagrangian or Hamiltonian systems, con-
structed according to Hamilton’s principle. They have the

e
1

e
2

�e
3

(a) t = 8.5 (sec), k!k
max

=

0.65 (rad/s)

e
1

e
2

�e
3

(b) t = 9 (sec), k!k
max

=

1.43 (rad/s)

e
1

e
2

�e
3

(c) t = 8.5 (sec), k!k
max

=

2.96 (rad/s)

e
1

e
2

�e
3

(d) t = 9 (sec), k!k
max

=

8.02 (rad/s)

Fig. 1. Stable manifold to (q,!) = (�e
3

, 0) represented by
{F�t

(B�)}t>0

for several values of t. One hundred points of B� in
the stable eigenspace to (�e

3

, 0) are chosen with � = 10

�6, and they
are integrated backward in time. Each trajectory is illustrated on a sphere,
where the magnitude of angular velocity at each point is denoted by color
shading (red: k!k

max

, blue: k!k
min

' 0).

desirable computational properties of preserving symplec-
ticity and momentum maps, and they exhibit good energy
behavior [12]. A variational integrator has been developed
for Lagrangian or Hamiltonian systems evolving on the two-
sphere in [7]. It preserves both the underlying symplectic
properties and the structure of the two-sphere concurrently.
Here we rewrite the integrator equations in a backward form,
and we use it to compute the backward flow map (see [8]
for details).

3) Visualization: We choose 100 points on the surface of
B

�

with � = 10

�6, and each point is integrated backward
using a variational integrator with a timestep of 0.002

seconds. The resulting trajectories are illustrated in Fig. 1
for several values of t. Each colored curve on the sphere
represents a trajectory on TS2, since at any point q on the
curve, the direction of q̇ is tangent to the curve at q, and the
magnitude of q̇ is indirectly represented by color shading.

We observe the following characteristics of the stable
manifold W

s

(�e3, 0) of the inverted equilibrium:

• The boundary of the stable manifold W
s

(�e3, 0) ⇢ TS2

parameterized by t is circular when projected onto S2.
• Each trajectory in W

s

(�e3, 0) lies on a great circle, when
projected onto S2. According to the closed loop dynamics
(1), and the given initial condition at the surface of B

�

,
the direction of !̇ is always parallel to !. Therefore, the
direction of ! is fixed, and the resulting trajectory of q is
on a great circle. This also corresponds to the fact that the
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eigenvalue �1 for the first mode representing the rotations
about the first axis is equal to the eigenvalue �2 for the
second mode representing the rotations about the second
axis at (8), i.e. the convergence rates of these two rotations
are identical.

• The angular velocity decreases to zero as the direction of
the pendulum q converges to �e3.

• The stable manifold W
s

(�e3, 0) may cover S2 multiple
times if t is sufficiently large, as illustrated at Fig. 1(d).
Therefore, at any point q 2 S2, we can choose ! such
that (q, !) lies in the stable manifold W s

(�e3, 0) (the
corresponding value of ! is not unique, since if it is
sufficiently large, q can traverse the sphere several times
before converging to �e3).

The stable manifold W
s

(�e3, 0) to the inverted equilibrium
has zero measure in TS2, but as we illustrate by this example,
it may cover S2 multiple times. This has strong effects on
the overall flow of the controlled system, as a trajectory has
a slower convergence rate the closer it is to W

s

(�e3, 0).

III. 3D PENDULUM

A 3D pendulum is a rigid body supported by a frictionless
pivot acting under a gravitational potential. This is a gener-
alization of a planar pendulum or a spherical pendulum, as
it has three rotational degrees of freedom. It has been shown
that a 3D pendulum may exhibit irregular trajectories [13].

We choose a reference frame, and a body-fixed frame.
The origin of the body-fixed frame is located at the pivot
point. The attitude of a 3D pendulum is the orientation of
the body-fixed frame with respect to the reference frame, and
it is described by a rotation matrix representing the linear
transformation from the body-fixed frame to the reference
frame. The configuration manifold is the special orthogonal
group, SO(3) = {R 2 R3⇥3 |RTR = I, det[R] = 1}.

The equations of motion for a 3D pendulum are given by

J ˙

⌦+ ⌦⇥ J⌦ = mg⇢ ⇥ RT e3 + u,

˙R = Rˆ

⌦,

where the matrix J 2 R3⇥3 is the inertia matrix of the
pendulum about the pivot, and ⇢ 2 R3 is the vector from
the pivot to the center of mass of the pendulum. The angular
velocity and the control moment at the pivot are denoted by
⌦, u 2 R3, respectively. They are represented in the body
fixed frame.

A. Control System

Several control systems have been developed on
SO(3) [3], [6], [14]. Here, we summarize a control system
to stabilize a 3D pendulum to a fixed desired attitude R

d

2
SO(3). Consider an attitude error function given by

 (R, R
d

) =

1

2

tr
⇥
(I � RT

d

R)G
⇤
,

for a diagonal matrix G = diag[g1, g2, g3] 2 R3⇥3 with
g1, g2, g3 > 0. The derivative of this attitude error function

with respect to R along the direction of �R = R⌘̂ for ⌘ 2 R3

is given by

D
R

 (R, R
d

) · �R = e
R

· ⌘,

where the vee map, _ : so(3) ! R3, denotes the inverse
of the hat map. An attitude error vector is defined as e

R

=

1
2 (GRT

d

R � RTR
d

G) 2 R3. For positive constants k⌦, k
R

,
we choose the following control input consisting of terms
proportional to the attitude error vector and the angular
velocity vector and a cancellation term:

u = �k
R

e
R

� k⌦⌦� mg⇢ ⇥ RT e3.

The corresponding closed loop dynamics are given by

J ˙

⌦ = �⌦⇥ J⌦� k
R

e
R

� k⌦⌦, (13)
˙R = Rˆ

⌦. (14)

This system has four equilibria: in addition to the desired
equilibrium (R

d

, 0), there exist three other equilibria at
(R

d

exp(⇡ê
i

, 0), 0) for i 2 {1, 2, 3}, which correspond to
the rotation of the desired attitude by 180

� about each body-
fixed axis. The existence of additional, undesirable equilibria
is due to the nontrivial topological structure of SO(3), and it
cannot be avoided by constructing a different control system
(as long as it is continuous). It has been shown that it is not
possible to design a continuous feedback control stabilizing
an attitude globally on SO(3) [4], [15].

In this paper, we linearize the closed loop dynamics to
study the stability of each equilibrium.

B. Linearization
A variation in SO(3) can be expressed as:

R✏

= R exp(✏⌘̂), ⌦

✏

= ⌦+ ✏�⌦, (15)

for ⌘, �⌦ 2 R3. The corresponding infinitesimal variation of
R is given by �R = R⌘̂. Substituting these into (13), (14),
we obtain the linearized equation as follows:

ẋ =


⌘̇

� ˙

⌦

�
=

"
�ˆ

⌦ I

� 1
2k

R

J�1H J�1
(

cJ⌦� ˆ

⌦J � k⌦I)

# 
⌘

�⌦

�

= Ax, (16)

where H = tr[RTR
d

G]I � RTR
d

G 2 R3⇥3 (see [8] for
details).

C. Equilibrium Solutions
We choose the desired attitude as R

d

= I . In addition to
the desired equilibrium (I, 0), there are three additional equi-
libria, namely (exp(⇡ê1), 0), (exp(⇡ê2), 0), (exp(⇡ê3), 0).
We assume that

J = diag[3, 2, 1] kgm

2, G = diag[0.9, 1, 1.1], k
R

= k⌦ = 1.

1) Equilibrium (I, 0): The eigenvalues of the matrix A at
the desired equilibrium (I, 0) are given by

�1,2 = �0.1667 ± 0.5676i,

�3,4 = �0.25 ± 0.6614i,

�5,6 = �0.5 ± 0.8367i.

This equilibrium is an asymptotically stable focus.
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2) Equilibrium (exp(⇡ê1), 0): At this equilibrium, the
eigenvalues and the eigenvectors of A are given by

�1 = �0.7813, v1 = e1 + �1e4,

�2 = �0.5854, v2 = e2 + �2e5,

�3 = �1.0477, v3 = e3 + �3e6, (17)
�4 = 0.4480, v4 = e1 + �4e4,

�5 = 0.0854, v5 = e2 + �5e5,

�6 = 0.0477, v6 = e3 + �6e6.

Therefore, this equilibrium is a saddle equilibrium, where
three modes are stable, and three modes are unstable.

3) Equilibrium (exp(⇡ê2), 0): At this equilibrium, the
eigenvalues and the eigenvectors of A are given by

�1 = �0.3775, v1 = e1 + �1e4,

�2 = �1, v2 = e2 + �2e5, (18)
�3 = �0.9472, v3 = e3 + �3e6,

�4 = �0.0528, v4 = e3 + �4e6,

�5 = 0.0442, v5 = e1 + �5e4,

�6 = 0.5, v6 = e2 + �6e5.

Therefore, this equilibrium is a saddle equilibrium, where
four modes are stable, and two modes are unstable.

4) Equilibrium (exp(⇡ê3), 0): At this equilibrium, the
eigenvalues and the eigenvectors of A are given by

�1 = �0.0613, v1 = e1 + �1e4,

�2 = �0.2721, v2 = e1 + �2e4,

�3 = �0.1382, v3 = e2 + �3e5,

�4 = �0.3618, v4 = e2 + �4e5,

�5 = �1.5954, v5 = e3 + �5e6, (19)
�6 = 0.5954, v6 = e2 + �6e6.

Therefore, this equilibrium is a saddle equilibrium, where
five modes are stable, and one mode is unstable.

D. Stable Manifolds for the Saddle Equilibria

Eigen-structure analysis shows that there exist multi-
dimensional stable manifolds for each saddle equilibrium.
They have zero measure as the dimension of the stable
manifold is less than the dimension of TSO(3). But, the
existence of these stable manifolds may have nontrivial
effects on the attitude dynamics. We numerically characterize
these stable manifolds using backward time integration, as
discussed in Section II-D.

The stable eigenspace for each saddle equilibrium can be
written in terms of eigenvectors similar to (11). For example,
the stable eigenspace for (exp(⇡ê3), 0) is given by

Es

loc

(exp(⇡ê3), 0) = {(R,⌦) 2 TSO(3) |
R = exp(⇡ê3) exp((↵1 + ↵2)ê1 + (↵3 + ↵4)ê2 + ↵5ê3),

⌦ = (�1↵1 + �2↵2)e1 + (�3↵3 + �4↵4)e2

� �5↵5e3 for ↵
i

2 R},

e2
e1

e3

(a) Visualization on sphere

0 0.2 0.4 0.6 0.8 1
ï30

ï20

ï10

0

�

0 0.2 0.4 0.6 0.8 1
0

0.5

1

t

˙ �

(b) Rotation angle � (deg), and rota-
tion rate ˙� (rad/sec)

Fig. 3. Visualization of an attitude maneuver: R(t) = exp(�(t)ê
3

) for
0  t  1, where �(t) =

⇡
6

(sin

⇡
2

t � 1). This maneuver corresponds to
a rotation about the e

3

axis by 30

� to R(1) = I . The trajectory of the
i-th column of R(t) representing the direction of the i-th body-fixed axis
is illustrated on a sphere for i 2 {1, 2, 3} (left). As the third body-fixed
axis does not move during this maneuver, it is represented by a single point
along the e

3

axis on the sphere. The direction of ˙R(t) is tangent to these
curves, and the magnitude of ˙R(t) is denoted by color shading, according
to the magnitude of the rotation rate (right).

We define a distance on TSO(3) as follows:

dTSO(3)((R1,⌦1), (R2,⌦2)) =

p
 (R1, R2) + k⌦1 � ⌦2k.

A variational integrator for the attitude dynamics of a rigid
body on SO(3) has been developed in [16]. In this paper, we
rewrite is as a backward integration form, and we use it to
compute the backward flow map (see [8] for details).

1) Visualization of W
s

(exp(⇡ê1), 0): In [17], a method
to visualize a function or a trajectory on SO(3) is proposed.
Each column of a rotation matrix represents the direction
of a body-fixed axis, and it evolves on S2. Therefore, a
trajectory on SO(3) can be visualized by three curves on
a sphere, representing the trajectory of three columns of a
rotation matrix. The direction of the angular velocity should
be chosen such that the corresponding time-derivative of the
rotation matrix is tangent to the curve, and the magnitude
of angular velocity can be illustrated by color shading. An
example of visualizing a rotation about a single axis is
illustrated in Fig. 3.

We choose 112 points on the surface of B
�

⇢
Es

loc

(exp(⇡ê1), 0) with � = 10

�6, and each point is inte-
grated backward. The resulting trajectories are illustrated in
Fig. 2 for several values of t.

In each figure, three body-fixed axes of the desired attitude
R

d

= [e1, e2, e3], and three body-fixed axes of the additional
equilibrium attitude exp(⇡ê1) = [e1,�e2,�e3] are shown.
From these computational results, we observe the following
characteristics on the stable manifold W

s

(exp(⇡ê1), 0):
• When t  15, the trajectories in W

s

(exp(⇡ê1), 0) are
close to rotations about the third body-fixed axis e3 to
exp(⇡ê1). This is consistent with the linearized dynamics,
where the eigenvalue of the third mode, corresponding to
the rotations about e3, has the fastest convergence rate, as
seen in (17).

• When t � 15, the first mode representing the rotations
about e1 starts to appear, followed by the second mode
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Fig. 2. Stable manifold to (exp(⇡ê
1

), 0) = ([e
1

,�e
2

,�e
3

], 0) represented by {F�t
(B�)}t>0

with � = 10

�6 for several values of t.

representing the rotation about e2. This corresponds to the
fact that the first mode has a faster convergence rate than
the second mode, i.e. |�1| > |�2|.

• As t is increased further, the third body-fixed axis leaves
the neighborhood of �e3, and it exhibit the following
pattern:

• The stable manifold W
s

(exp(⇡ê1), 0) covers a certain part
of SO(3), when projected on to it. So, when an initial
attitude is chosen such that its third body-fixed axis is
sufficiently close to �e3, there possibly exist multiple ini-
tial angular velocities such that the corresponding solution
converges to exp(⇡ê1) instead of the desired attitude, I .

2) Visualization of W
s

(exp(⇡ê2), 0): Similarly, we com-
pute W

s

(exp(⇡ê2), 0) from 544 points. The resulting tra-
jectories are illustrated in Fig. 4 for several values of t.
From these computational results, we observe the following
characteristics on the stable manifold W

s

(exp(⇡ê2), 0):

• When t  12, the trajectories in W
s

(exp(⇡ê2), 0) is
close to the rotations about the second body-fixed axis
e2. As t increases, rotations about e3 starts to appear.
This corresponds to the linearized dynamics where the
second mode representing rotations about e2 has the fastest
convergence rate, followed by the third mode at (18).

• As t is increased further, nonlinear modes become dom-

inant. The trajectories in W
s

(exp(⇡ê2), 0) almost cover
SO(3). This suggests that for any initial attitude, we
can choose several initial angular velocities such that the
corresponding solutions converges to exp(⇡ê2).
3) Visualization of W

s

(exp(⇡ê3), 0): We also compute
W

s

(exp(⇡ê3), 0) from 976 points. The resulting trajectories
are illustrated in Fig. 5 for several values of t. From these
computational results, we observe the following characteris-
tics on the stable manifold W

s

(exp(⇡ê3), 0):
• When t  8, the trajectories in W

s

(exp(⇡ê3), 0) are
close to the rotations about the third body-fixed axis e3.
This corresponds to the linearized dynamics where the
fifth mode representing rotations about e3 has the fastest
convergence rate given in (19).

• The rotations about e3 are still dominant, even as t
is increased further. For the given simulation times, all
trajectories are close to rotations about e3.
In a 3D Pendulum, the characteristics of stable manifolds

can vary widely depending on the equilibria. We observe that
W

s

(exp(⇡ê3), 0) has a higher dimension, but it has simpler
trajectories over the time period considered in this paper.
The trajectories in W

s

(exp(⇡ê2), 0) are most complicated,
and they cover a large part of SO(3). This illustrates that
the existence of stable manifolds of the saddle equilibria has
important effects to the global dynamics of the controlled
system.

REFERENCES

[1] N. A. Chaturvedi, A. K. Sanyal, and N. H. McClamroch, “Rigid body
attitude control: Using rotation matrices for continuous, singularity-
free control laws,” IEEE Control Systems Magazine, pp. 30–51, 2011.

3920



e
1

e
2

e
3

�e
1

�e
3

(a) t = 11 (sec), k⌦k
max

=

0.03 (rad/s)

e
1

e
2

e
3

�e
1

�e
3

(b) t = 12 (sec), k⌦k
max

=

0.09 (rad/s)

e
1

e
2

e
3

�e
1

�e
3

(c) t = 13 (sec), k⌦k
max

=

0.25 (rad/s)

e
1

e
2

e
3

�e
1

�e
3

(d) t = 14 (sec), k⌦k
max

=

0.69 (rad/s)

e
1

e
2

e
3

�e
1

�e
3

(e) t = 15 (sec), k⌦k
max

=

1.69 (rad/s)

e
1

e
2

e
3

�e
1

�e
3

(f) t = 16 (sec), k⌦k
max

=

3.37 (rad/s)

e
1

e
2

e
3

�e
1

�e
3

(g) t = 17 (sec), k⌦k
max

=

7.01 (rad/s)

e
1

e
2

e
3

�e
1

�e
3

(h) t = 18 (sec), k⌦k
max

=

18.22 (rad/s)

Fig. 4. Stable manifold to (exp(⇡ê
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